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Many technological applications of multiferroics are based on their ability to reconstruct the domain structure
(DS) under the action of small external fields. In the present paper we analyze the different scenarios of the
DS behavior in a multiferroic that shows simultaneously ferromagnetic and antiferromagnetic ordering on the
different systems of magnetic ions. We consider the way to control a composition of the DS and macroscopic
properties of the sample by an appropriate field treatment. It is found that the sensitivity of the DS to the external
magnetic field and the magnetic susceptibility in a low-field region are determined mainly by the de-stressing
effects (that have a magnetoelastic origin). In a particular case of the Sr2Cu3O4Cl2 crystal we anticipate the
peculiarities of the elastic and magnetoelastic properties at T ≈ 100 K.

DOI: 10.1103/PhysRevB.83.054424 PACS number(s): 75.85.+t, 75.60.Ch, 46.25.Hf, 75.50.Ee

I. INTRODUCTION

During the las decade special attention was paid to the
materials in which magnetism coexisted with the other types
of ordering (i.e., ferroelectric,1,2 elastic,3 or martensitic4).
Solids that show strong coupling between the different types
of ordering are often called multiferroics.5 A growing interest
in multiferroics is based on the possibility (i) to control
such macroscopic properties of a sample as conductivity,
magnetization, or elongation, with the suitable fields of a
different nature; and (ii) to manipulate the state of the
magnetically (electrically, etc.) inert materials (see, e.g.,
Refs. 6 and 7).

One of the most technologically appealing properties of
multiferroics, namely, the sensitivity of their macroscopic
properties to the influence of small external fields, is due to the
formation and reconstruction of the domain structure (DS).8–10

This adaptivity, or ability to change macroscopic parameters
(such as a shape, magnetization, or electric polarization)
in response to external forces, is related to the finite size
and boundary of the sample. However, the description of
the DS in multiferroics seems to be a very complicated
problem mostly due to the fact that the domains can have
different origins and the corresponding DS is governed by
different physical mechanisms;11 domain walls that separate
different types of domains can clamp each other;12 the domains
of different natures appear at different spatial scales13 and
thus form a hierarchical structure. For example, the DS of
some popular magnetoelectrics [such as BiFeO3, BaTiO3

(Refs. 6, 14 and 15), MnWO4 (Ref. 16), and CuFe1−xGaxO2

(Ref. 17)] consists of at least three types of axial domains with
different antiferromagnetic (AFM) ordering and, in addition,
two types of polar domains that differ in the orientation of
ferroelectric polarization. While the appearance of equilibrium
polar (magnetic or ferroelectric) DS can be explained by the
well-known demagnetizing/depolarizing effects,18 the thermo-
dynamic equilibrium configuration of the axial domains needs
special treatment because (i) AFM’s produce no (or very small,
in the case of weak ferromagnetics) demagnetizing fields,
and (ii) axial (non-180◦) domains usually show ferroelastic

properties due to nonzero piezoelectric or/and magnetoelastic
effects (see, e.g., Ref. 19). Moreover, both polar and ferroe-
lastic domains can be sensitive to the same external field
(electric or magnetic), but should, in general, show a different
susceptibility related to the different nature of field-to-order
parameter coupling.

In the present paper we address the questions “What will be
the field-induced behavior of such a combined equilibrium DS
in multiferroics? Can one observe some new features, caused
by competition between the polar and axial (ferroelastic)
domains?”

As the simplest example of the competing domains of a
different nature we consider rather exotic multiferroics that
show simultaneously ferromagnetic (FM) and AFM ordering
on the different sites of the Brave lattice, namely, high-
temperature superconducting systems (like Sr2Cu3O4Cl2 or
Ba2Cu3O4Cl2). In contrast to magnetoelectrics like BiFeO3 or
RMnO3, these systems have a relatively simple, nonhierarchial
DS that includes a maximum of four types of domains.
Such FM + AFM multiferroics should be distinguished from
the systems with the intermediate state represented by a
mixture of AFM and FM domains (like those observed in
Refs. 20 and 21) that can be well described by demagnetizing
effects.22 In the present paper we analyze the competition
between the FM and AFM domains using the concept of the
shape-dependent de-stressing energy23 that accounts for the
long-range field of internal stresses induced by the transition
into a magnetically ordered state. We concentrate our attention
on the long-range dipole-dipole interactions between domains
and neglect the direct contribution from the domain walls
(which is responsible for the details of the domain pattern24,25

and kinetics of relaxation processes). However, we implicitly
take into account the mobility of the domain walls and
difference in nucleation barriers for different types of domains.

In the framework of the phenomenological approach,
we calculate the possible magnetization curves that can be
obtained for the samples of different shape and different field
treatment. On the basis of the developed model we make
an attempt to interpret the unusual behavior of macroscopic
magnetization observed in the experiments of Parks et al.26 and
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predict a peculiarity of the elastic properties of Sr2Cu3O4Cl2
at the temperature T ≈ 100 K.

II. MODEL

The crystal structure of high-temperature superconduct-
ing cuprates Sr2Cu3O4Cl2 and Ba2Cu3O4Cl2 consists of
Cu3O4 planes separated by spacer layers of SrCl or BaCl
(Refs. 26–28). Two types of magnetic ions, CuI and CuII
(see Fig. 1) form two interpenetrating square lattices within
Cu3O4 planes. Within the temperature interval TII ≈ 40 K�
T � TI ≈ 380 K the ions of the first type (CuI) are AFM
ordered while the ions of the second type (CuII) bear a small
but nonzero FM moment.29 According to the experiments,30

the mutual orientation of CuI and CuII moments depends
upon the direction of the external magnetic field and can be
either perpendicular or parallel. Thus, the magnetic structure
consists of two weakly coupled subsystems, namely, an AFM,
localized on CuI ions, and a FM one, localized on CuII
ions. The FM subsystem is unambiguously described by the
magnetization vector MF and the AFM subsystem is described
by two vectors: AFM vector L = (S1 − S2 + S3 − S4)/4 and
FM vector M = ∑

j Sj /4 (numeration of CuI sites is shown
in Fig. 1).

In the absence of the external field the FM moments at CuII
sites are oriented along 〈110〉 crystal directions perpendicular
to the staggered magnetizations of the AFM subsystem, as
shown in Fig. 1. Due to the tetragonal symmetry of the crystal
(space group I4/mmm) an equilibrium magnetic structure can
be realized in four types of equivalent domains as shown in
Figs. 1 and 2. Domains of type A and B can be thought
of as AFM domains because they correspond to different
orientations of the L vector and thus are sensitive to the
orientation of the magnetic field H with respect to the crystal
axes (see Fig. 3). Types A1 and A2 (and, correspondingly, B1
and B2) are FM domains, they have an opposite direction from
the MF vector and can be removed from the sample by H‖MF.
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FIG. 1. (Color online) Magnetic structure of Cu3O4 layer in two
different configurations (domains). Magnetic field is parallel to 〈110〉.
Two types of magnetic ions are represented with the filled and hollow
circles. FM ordered moments of CuII could be (a) parallel (domain
A) or (b) perpendicular (domain B) to the applied magnetic field.
Small canting of the CuI spins induced by the external magnetic field
is ignored.
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FIG. 2. (Color online) Four types of magnetic domains. Axes x

and y are parallel to 〈100〉 crystal directions. The external magnetic
field H‖[110] (if any). Types A and B have different orientations of
AFM vector, types 1 and 2 correspond to opposite directions of FM
vector MF . Ellipse (dashed line) images the supposed shape of the
sample and its orientation (axes X, Y ) with respect to crystal axes.

Qualitatively, the difference between the behavior of FM
and AFM domains in the external magnetic field and the
peculiarities of the possible magnetization curves is illustrated
in Fig. 3. The structure consisting of FM domains reconfigures
in the magnetic field which is parallel to an easy axis and
does not change if the magnetic field is perpendicular to
this axis. Macroscopic magnetization of the sample (and
hence, macroscopic susceptibility) is inversely proportional
to the appropriate component of the demagnetization tensor.
In contrast, AFM domain structure reconfigures for both
mutually perpendicular orientations of the magnetic field.
Macroscopic magnetization depends upon the components of
the de-stressing tensor that have a magnetoelastic origin. So, a
material that bears simultaneously the features of FM and AFM
can show some new type of behavior in the external magnetic
field governed by competition between the demagnetizing and
de-stressing effects.

The phenomenological description of the DS is based on
the analysis of the free energy potential � of the sample. We
take into account three constituents of �: magnetic �mag, stray
(demagnetizing) �stray, and de-stressing �dest energies

� = �mag + �stray + �dest. (1)

The last contribution describes shape-induced effects related
with AFM ordering. Usually, in FM (and also weak FM) this
term is not included into consideration because all the shape-
induced effects are accounted through the magnetic stray
energy �stray. However, in multiferroics with AFM ordering,
the contribution of the de-stressing energy is important and
gives rise to qualitatively new effects as will be shown below.
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FIG. 3. (Color online) Behavior of the (a) FM and (b) AFM
domain structures in the external magnetic field H. In the absence
of field, both types of domains (shown by arrows) are equally
represented. (a) FM domains have the opposite direction of the
magnetization vector. The magnetic field applied parallel to an easy
axis (upper panel) removes the degeneracy of the domains. As a result,
a fraction of the favorable domain increases. If H is perpendicular to
the easy axis (lower panel), domains of both types are equivalent, the
domain fraction does not change, and magnetic field induces a tilt of
the magnetizations. (b) AFM domains have different (perpendicular)
orientations of AFM vectors. Degeneracy of the domains is removed
for any of two mutually perpendicular orientations of the magnetic
field.

The magnetic energy of the Sr2Cu3O4Cl2 crystal in the
mean field approximation is well established28,30,31 and can be
written as follows:

�mag =
∫

V

dV

{
4

M2
0

[
J0(M2 − L2) + JavM · MF

+ JpdMFσ̂zL + K⊥L2
z

] − 8

M4
0

K‖L2
xL

2
y

− H · MF − 2H · M
}
. (2)

Here V is the sample volume, M0 is the CuI sublattice
magnetization, and orthogonal axes x and y are parallel
to the crystal directions [100] and [010], respectively (see
Fig. 2). σ̂z is the Pauli matrix. The meaning and values of
the phenomenological constants are given in Table I. In the
last column of this table all the constants are converted to Oe
by division by sublattice magnetization M0 = 27.4 Gs (that
corresponds to spin s = 1/2 per CuI site).

Contributions �stray and �dest in Eq. (1) arise from the
long-range dipole-dipole interactions of the magnetic and
magnetoelastic nature, correspondingly, and depend upon
the sample shape. In the experiments26 the samples had a
shape of a thin square or rectangular. Demagnetization and
de-stressing effects in this case give rise to a rather complicated
inhomogeneous spatial distribution of the effective magnetic
and stress fields inside the sample. However, if the sample size
is much greater than the characteristic width of the domain
walls, the contribution of the fine-scale inhomogeneities into
�stray and �dest is negligible. To this end the rectangular shape
can be approximated with an ellipse with the same aspect ratio.
So, for the sake of simplicity we consider a thin (thickness c)
pillar with an elliptic cross section whose principal axes X and
Y are parallel to 〈110〉 directions within the Cu3O4 layers (see
Fig. 2). In this case

�stray = V

2

[
Ndm

a 〈MFX + 2MX〉2 + Ndm
b 〈MFY + 2MY 〉2

]
, (3)

where the brackets 〈. . .〉 mean averaging over the sample
volume. The components of demagnetization tensor Ndm

a,b are
calculated in a standard way:32

Ndm
a = 4πc

a
√

1 − k2

∫ π/2

0

sin2 φdφ√
1 − k2 sin2 φ

;

(4)

Ndm
b = 4πc

√
1 − k2

a

∫ π/2

0

cos2 φdφ√
1 − k2 sin2 φ

.

Here a � b(	 c) are the ellipses’s semi-axes (parallel to the X

and Y axes) and the parameter k2 = 1 − b2/a2 depends upon
an aspect ratio b/a of the sample.

The de-stressing energy be written in an analogous form23

�dest = V

M4
0

[
Ndes

is

(〈
L2

Y − L2
X

〉2 + 4〈LXLY 〉2
)

+Ndes
2an

〈
L2

X − L2
Y

〉−Ndes
4an

(〈
L2

X − L2
Y

〉2− 4〈LXLY 〉2
)]

.

(5)

An explicit form of the de-stressing constants Ndes depends
upon the elastic and magnetoelastic properties of the crystal

TABLE I. Parameters used in the free energy potential [Eq. (2)]. The second column gives the raw data (in meV) as taken from Refs. 26, 30
and 31, in the last column the same values are given in Oe.

Parameter Meaning Value in meV Value in Oe

J0 CuI-CuII superexchange (in-plane) 130 1.02 · 107

Jav isotropic pseudodipolar interaction −12 −9.4 · 105

Jpd anisotropic pseudodipolar interaction −0.027 −2.1 · 103

K⊥ out-of-plane anisotropy28 0.068 5.3 · 103

K‖ in-plane anisotropy 10 · 10−6 7.8 · 10−2
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which we assume to be isotropic (that means, in particular, the
following relation between the elastic modules: c11 − c12 =
2c44). Then,

Ndes
is = λ2(3 − 4ν)

16c44(1 − ν)
,

Ndes
2 = c

b
· [λ2(2 − 3ν) + λvλ]J2(k)

8c44(1 − ν)
, (6)

Ndes
4an = c

b
· λ2J4(k)

3c44(1 − ν)
,

where λ and λv are magnetoelastic constants, ν = c12/(c11 +
c12) is the Poisson ratio, and we have introduced the dimen-
sionless shape-factors J2,4(k) as follows23

J2(k) =
∫ π/2

0

(sin2 φ + cos 2φ/k2)dφ√
1 − k2 sin2 φ

,

J4(k) =
∫ π/2

0

(1 − 8 cos 2φ − k2 sin2 φ + 8 cos 2φ/k2)dφ√
1 − k2 sin2 φ

.

(7)

In Eqs. (3) and (5) we have omitted the Z(‖z‖[001]) com-
ponents of the demagnetizing and de-stressing tensors as
inessential for further consideration.

Expressions (2), (3), and (5) can be substantially simplified
if one takes into account that (i) far below the Néel temperature

the values of sublattice magnetizations M0 and MF are satu-
rated and constant; as a result (ii) L ⊥ M and L2 + M2 = M2

0
(normalization conditions); (iii) if the magnetic field is much
smaller than the spin-flip field, H 
 J0/M0 and coupling
between the FM and AFM subsystems is much smaller than the
AFM exchange JavMF 
 J0M0, the magnetization induced in
the AFM subsystem is small, M 
 M0, and vector M can be
excluded from Eq. (2) as follows:33

M = 1

8J0

{
L ×

[(
H − 2

Jav

M2
0

MF

)
× L

]}
; (8)

(iv) if out-of-plane anisotropy is strong enough, K⊥ 	 K‖
(see Table I), all the magnetic vectors lie within xy (and,
equivalently, XY ) plane and could be described with the only
angle variable, as shown in Fig. 2:

Lx = M0 cos θ, Ly = M0 sin θ ;
(9)

MFx = mFM0 cos ϕ, MFy = mFM0 sin ϕ.

Here mF[=10−3 for Sr2Cu3O4Cl2 (Ref. 30)] is a
dimensionless constant that represents the ratio be-
tween the spin moments localized on CuII and CuI
sites.

With account of the relations (8) and (9) the spe-
cific potential φ ≡ �/V [see Eq. (1)] takes the following
form

φ = 4JpdmF〈cos(θ + ϕ)〉 + K‖〈cos 4θ〉 − J 2
av

8J0
m2

F〈cos 2(θ − ϕ)〉

−mFH

[(
1 − Jav

8J0

)
〈cos(ϕ − ψ)〉 + Jav

8J0
〈cos(2θ − ψ − ϕ)〉

]
+ H 2

32J0
〈cos 2(θ − ψ)〉

−Ndes
2an〈cos 2(θ − ψ)〉 + 1

2
M0m

2
F

[
Ndm

a 〈cos(ϕ − ψ)〉2 + Ndm
b 〈sin(ϕ − ψ)〉2

]
+Ndes〈cos 2(θ − ψ)〉2 + �Ndes〈sin 2(θ − ψ)〉2, (10)

where ψ is an angle between the magnetic field and x

axis, Ndes ≡ Ndes
is + Ndes

4an, �Ndes ≡ 4(Ndes
is − Ndes

4an), and we
assume that the field is parallel to one of the principal axes of
the sample (this corresponds to the experimental situation that
will be discussed below). Here and for the rest of the paper we
use the values in Oe (see the last column of Table I) instead of
energy units (say, φ → φ/M0, etc.).

Let us consider the case which corresponds to the experi-
mental setup in Refs. 28 and 31, namely, the magnetic field is
parallel to one of the easy axes, H‖[110], so, ψ = π/4. In an
infinite sample (all the components of tensors Ndm,Ndes are
equal to zero) the minimization of φ with respect to magnetic
variables θ and ϕ gives rise to the four solutions labeled as
A1,2 and B1,2 (see Fig. 2). Equilibrium values at H = 0 are

state A1 : θA1 = −π/4, ϕA1 = π/4;

state B1 : θB1 = π/4, ϕB1 = 3π/4;
(11)

state A2 : θA2 = 3π/4, ϕA2 = 5π/4;

state B2 : θB2 = 5π/4, ϕB2 = −π/4.

It should be stressed that, in contrast to pure AFM’s, the
configurations with (MF,L) and (MF, − L) are inequivalent
due to anisotropic pseudodipolar interactions (described by
the constant Jpd).

Figure 4 illustrates the field-induced variation of equilib-
rium magnetic configurations (represented by X projections of
MF and L vectors) obtained from the numerical minimization
of Eq. (10) using the data from Table I. It is clearly seen
that within the interval |H | � Hs−f1 = 525 Oe there exist
all four states A1,2 and B1,2. The magnetic field removes
degeneracy between the states A1, A2, and B,34 as can be
seen from Fig. 4(a). In particular, when H � 0, the specific
partial energies φj ≡ φ(θj ,ϕj ) of equilibrium states are related
as follows: φA1 < φB < φA2. So, in some cases (discussed
below) variation of the external field may induce formation
of the AFM (B) instead of the FM (A2) domain. Orientations
of MF and L vectors in the A states are not influenced by
the field, while in the B states both vectors are slightly tilted
[see Figs. 4(b) and (c)]. Rotation of AFM vector from the field
direction in the state B (where H‖L) is a peculiar feature of the
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FIG. 4. (Color online) Stability ranges of homogeneous config-
urations shown in Fig. 2 in the external magnetic field H‖[110].
(a) Specific energy (in Oe) of equilibrium homogeneous state vs H .
(b, c) Normalized projections of FM and AFM moments on the field
direction. Field induces rather noticeable rotation of MF vector toward
the (b) field direction and (c) slight tilt of L vector. Loss of stability
takes place at the critical values H = Hs−f1,2, as shown with arrows.

FM + AFM multiferroic caused by pseudodipolar interactions
between CuI and CuII ions. In the pure antiferromagnets an
AFM vector L keeps parallel (with respect to H) orientation
up to the field of spin-flop transition.

The first critical field Hs−f1 ∝ √
J0K‖ corresponds to a

step-like (spin-flop) transition B1,2 → A1. In the interval
Hs−f1 < |H | < Hs−f2 = 1465 Oe the potential � has only two
minima that correspond to the states A1 and A2. The second
critical field Hs−f2 corresponds to the 180◦ switching of the
MF vector. Its value depends on the effective anisotropy that
originates from the pseudodipolar coupling (corresponding
constants Jav,Jpd) and in-plane anisotropy K‖ and can be
calculated only numerically. Above H � Hs−f2 the sample
is in a single domain state (A1).

We should also stress that the above calculations for
homogeneous (single-domain sample) generalize a theoretical
description of the magnetic state given in Ref. 31 in two
aspects: account for mutual influence of CuI and CuII
magnetizations and complete the description for all the domain
types. Our analysis revealed metastable states (B1,2) in the
field oriented along the [110] axis and also field-induced
spin-flop transitions that are typical for AFM. However, in real,

finite-size samples step-like variation of magnetization (and
other macroscopic parameters) that accompanies spin-flop
transition is usually smeared due to the multidomain structure.
The details of such a behavior are considered in the next
section.

III. EQUILIBRIUM DOMAIN STRUCTURE AND
MAGNETIZATION CURVES

The magnetic structure of the finite-size sample can
change due to the rotation of the magnetic moments and
due to restructurization of the DS. Thus, on the large scales
(much greater than the characteristic scale of the magnetic
inhomogeneity, i.e., domain wall thickness) the magnetic
structure is represented by a set of magnetic variables {θj ,ϕj }
that describe the orientation of FM and AFM vectors inside
different domains (j = A1, A2, B1, B2) and a set of variables
{ξj } that represents the amount of matter (say, volume fraction)
in the state of the j type (obviously,

∑
ξj = 1). Equilibrium

DS in the presence of the external field is then found from the
condition for the minimum of � with respect to independent
variables.

In such an approach one can neglect the contribution of
the domain walls into the free energy potential �. However,
we implicitly account for the inhomogeneities in the spatial
distribution of the FM and AFM vectors when we chose
independent variables for the potential �. Namely, the re-
construction of the DS may proceed in two ways: (i) by the
field-induced motion of the domain walls; (ii) by the nucleation
and growth of the energetically favorable domains. The first
way is almost activation-less and the corresponding ξj are
free variables, while in the second case the system should
overcome the potential barrier related to the formation of the
domain walls and the ξj values are fixed by the prehistory of
the sample. In the case under consideration the domain walls
between AFM (A/B) and FM (A1/A2 or B1/B2) domains
have different energies, and so, appear at different conditions.
In what follows we consider some typical situations and show
the way to control the DS with the appropriate treatment of
the sample.

A. Four types of domains

In the case when all four types of domains may freely
grow or diminish in size (say, in a virgin sample that initially
contains domains of all types), the external magnetic field is
screened by an appropriate domain configuration (see Fig. 5)
and the effective field inside the sample is zero. Formally it
means that all the ξj are free variables. Equilibrium values of
the magnetic variables in this case are given by Eq. (11) and
the domain fractions depend on the magnetic field as follows:

ξA1,A2 = 1

4

[
1 − ξ (0) ± 2H

Hdm
+

(
H

Hdes

)2
]

;

(12)

ξB1 = ξB2 = 1

4

[
1 + ξ (0) −

(
H

Hdes

)2
]

,

where we have introduced the following notations

Hdm ≡ mFN
dm
a M0, Hdes ≡ 8

√
J0Ndes. (13)
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FIG. 5. (Color online) Behavior of the combined FM and AFM
domain structures in the external magnetic field H‖[110] (parallel
to the long side of the sample). (a) In the field absence all types of
domains (A1, A2, B1, B2) are equally represented, the disbalance ξ (0)

between type A and type B fractions depends upon the aspect ratio of
the sample. (b) In the region H � Hcr1, the domains are rearranged
in such a way that the effective magnetic field vanishes. (c) In the
interval Hcr1 � H � Hcr2 the unfavorable domains of the A2 type
disappear, A1 domains compete with the domains of the B type.
(d) At H > Hcr2 the sample is a single domain.

Physically, Hdm is the FM demagnetizing field calculated as if
an AFM subsystem is absent. In an analogous way, Hdes can be
treated as a de-stressing field in the absence of FM ordering.

As seen from Eq. (13), the value of the de-stressing field
is enhanced due to exchange interactions (constant J0). On
the contrary, the demagnetizing field is weakened due to
the small FM moment (mF 
 1). So, in the crystal under
consideration the demagnetizing effects are much smaller than
the de-stressing ones, Hdm 
 Hdes (see Table II).

The value ξ (0) introduced in Eq. (12) represents the
disbalance between type A and type B domain fractions in
the field absence. This value depends upon the shape of the
sample [or, equivalently, upon the aspect ratio, see Eq. (6)]:

ξ (0) ≡ Ndes
2an

Ndes
≈ c

b
J2(k). (14)

Such a shape-induced nonequivalence of domains has a mag-
netoelastic origin (see Ref. 23 for details) and originates from
the AFM properties of the system. The disbalance between
type A and type B domains was observed in the experiments in
Ref. 26 for the different sample shapes. The value ξ (0) = 0.22
calculated from Eq. (14) for the typical sample size (see
Table II) fits well the experimental magnetization curves, as
we will show below.

The described configuration of the DS [see Eq. (12)]
is schematically shown in Fig. 5(b). The fraction of the
unfavorable domains A2, B1, and B2 diminishes and at the
critical value,

H = Hcr1 ≡ H 2
des

Hdm

⎡
⎣1 −

√
1 − (1 − ξ (0))

(
Hdm

Hdes

)2
⎤
⎦

≈ 1

2
(1 − ξ (0))Hdm, (15)

calculated from Eq. (12) on the condition that ξA2 = 0, the
unfavorable FM domains A2 disappears.

At H � Hcr1 the internal effective magnetic field is nonzero
and magnetizations in the domains of the B type rotate.
However, if Hcr1 
 Hs−f (as, indeed is the case in the crystal
under consideration), the small tilt of MF and L vectors can
be neglected and the field dependence of the domain fractions
[shown in Fig. 5(c)] is approximated as

ξA1 = 1

2

[
1 − ξ (0) + 16HmFJ0

H 2
des

+
(

H

Hdes

)2
]

,

(16)

ξB1,2 = 1

4

[
1 + ξ (0) − 16HmFJ0

H 2
des

−
(

H

Hdes

)2
]

.

TABLE II. Parameters used in numerical simulations. The source of data (experimental or calculated) is specified in the last column.

Parameter Meaning Value Rem

a × b × c Sample size 7 × 2 × 0.5 mm3 Ref. 26
mF MF/M0 7 · 10−4 Ref. 28
MF Saturation magnetization 7 · 10−3 emu/g Ref. 26
ξ (0) Shape-induced bias 0.22 Eq. (14)
Hdm Demagnetization field 0.3 Oe Eq. (13)
N des Destressing const., T = 120 K 7 mOe Fitting

T = 100 K 1.5 mOe param.
Hdes Destressing field, T = 120 K 2.1 kOe Eq. (13)

T = 100 K 1.1 kOe

054424-6
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The second critical field at which the unfavorable domains
of the B type disappear [calculated from Eq. (12) on condition
ξB1,2 = 0] is given by the expression

Hcr2 ≡ 8mFJ0

⎡
⎣

√
1 +

(
Hdes

8mFJ0

)2 (
1 + ξ (0)

) − 1

⎤
⎦

≈ 2Ndes

mF
(1 + ξ (0)). (17)

Above this field, H � Hcr2, the sample is a single domain
(A1) on average, with the possible remnants of the states
A2 and B and the corresponding domain walls that can
serve as nucleation centers during the field cycling. Full
monodomainization of the sample takes place above the critical
field Hs−f2 	 Hcr2 at which all the states except A1 became
unstable.

Field cycling of the sample that initially had all the types
of domains is reversible if the maximal field value Hmax is not
very large, Hcr2 � Hmax 
 Hs−f2. Macroscopic magnetization
is parallel to the direction of the external field due to the full
compensation of the perpendicular component by the B1 and
B2 domains.

Field dependence of macroscopic magnetization Mpar ∝
(ξA1 − ξA2) at T = 120 K calculated from Eqs. (12) and
(16) (see Tables I and II) is represented in Fig. 6. One
can distinguish three intervals that correspond to different
domain composition: (i) steep growth of Mpar from 0 to
∝ 0.5(1 − ξ (0))MF (at H = Hcr1) due to the motion of A1/A2
domain walls initiated by demagnetization; (ii) smooth growth
of Mpar from ∝ 0.5(1 − ξ (0))MF to ≈ MF (at H = Hcr2) due to
the motion of A1/B domain walls initiated by the de-stressing;
(iii) very smooth growth of Mpar due to the rotation of sublattice
magnetizations (not seen in Fig. 6). Such a behavior contrasts
with a “standard” magnetization curve of FM and also with
the case when only two types of domains could compete under
the action of the external field. The last case will be considered
in detail in the next section.

-60 -40 -20 0 20 40 60

-1.0

-0.5

0.0

0.5

1.0

A1+A2+B

A2+B

A2

A1

A1+B

H

M

H (Oe)

FIG. 6. (Color online) Magnetization curve (projection on field
direction) in the external magnetic field H‖[110] for the case depicted
in Fig. 5. Inset shows the details of magnetization behavior below
Hcr1. The jogs (shown with arrows) arise at the critical fields
H = Hcr1,2 when one type of domain disappears. Magnetization is
normalized to saturation value.

B. Competition of two domains

Let us consider a sample that was preliminary mon-
odomainized to the state A1 by excursion into the region of
high field, H � Hs−f2. The DS in this case depends upon the
relation between nucleation energies of different states. As
it was shown above, at H > 0 an AFM domain B is more
favorable than a FM domain A2 [see Fig. 4(a)]. If, in addition,
there is a slight misalignment between the magnetic field H
and a crystal axis [110] that removes degeneracy between the
B1 and B2 states, the DS of the sample is represented by the
domains of only two types, A1 and B1.

Equilibrium values of the magnetic variables in this
case were calculated by numerical minimization of the
potential (10) with limitations ξA2 = ξB2 = 0. The values
of the de-stressing coefficient Ndes at different temper-
atures (see Table II) were defined from the fitting of
experimental data.26

Field dependence of the macroscopic magnetization at
T = 120 K is shown in Fig. 7 with solid lines. The points
represent experimental data.26 Due to the fact that the domains

-100 -50 0 50 100

-8

-4

0

4

8

M

H
H (Oe)

Mperp (10-3 emu/g)

-100 -50 0 50 100

-8

-4

0

4

8

H

M

Mpar (10-3 emu/g)

H (Oe)

FIG. 7. (Color online) Macroscopic magnetization vs mag-
netic field. Points—experimental data for Sr2Cu3O4Cl2

26 taken at
T = 120 K after monodomainization of the sample at high fields
H ∝ 5 T. Solid lines—theoretical approximation (see text for details).
Upper and lower panels show, correspondingly, the parallel and
perpendicular components of magnetization with respect to magnetic
field. Insets show geometry of the experiment: orientation of the
field with respect to the sample and orientation of the measured
magnetization with respect to H. The dominant type of domains
for each field interval is depicted schematically by the single- and
double-headed arrows.
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A1+B1
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H3H2
H1

A1
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1

H

 H (Oe)

φ (Oe)

FIG. 8. (Color online) Magnetic energy vs magnetic field, T =
120 K. Lines 1 and 3 correspond to a single domain state (domains
A1 and A2, correspondingly), line 2 represents equilibrium two-
domain state (domains A1 and B1). Domain B1 appears at H =
H1. Domain A2 appears at field H = H2 (determined empirically)
when the energy difference between two- and single- domain states
is enough for nucleation of this energetically favorable domain. At
H = H3 the energy of two-domain state is equal to the energy of a
single-domain state A2, but the potential barrier between these two
states prevents nucleation of the domain A2.

A1 and B1 cannot screen the external field, the macroscopic
magnetization has two components: one that is parallel to H
(upper panel in Fig. 7) and one that is perpendicular to H (lower
panel). The parallel and perpendicular components represent
the fractions of the A1 and B1 domains, respectively.

When the field decreases from high positive values, an AFM
domain of the B type appears and magnetizations Mpar(H)
and Mperp(H) vary smoothly between zero and saturation
value. The slope of magnetization curves depends upon the
de-stressing coefficient and is thus much smaller than the
initial steep slope in the four-domain case (see Fig. 6). At
small negative field the sample is almost a single domain
(type B). However, this state is a metastable one from the
energy point of view, as seen from Figs. 4(a) and 8. Really,
below H = H3 ≈ 2.8 Oe (marked with an arrow in Fig. 8) the
energy of the state A2 (with MF ↑↓ H) is lower than that of
a single domain state B1 and a multidomain state A1 + B1.
On the other hand, due to preliminary high-field treatment, the
sample contains no nucleation centers of the A2 state. So, the
states B1 and A2 are separated with the potential barrier that
could be overcome only at H = H2 ≈ −50 Oe (according to
Ref. 26, this value varies from sample to sample and depends
on temperature). After the subsequent excursion into high
negative fields (well below H2) the sample transforms into
a single domain A2 and one can observe competition between
the A2 and B2 domains during the further field increase.

C. Domain structure and field treatment

In the previous sections we have considered two limiting
cases of field treatment that result in two types of magnetization
curves. In the virgin sample (no field treatment) the magneti-
zation can be smoothly and reversibly changed between two
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A2+B

A1+B

Mpar (10-3 emu/g)

H (Oe)
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-8
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4

8

A1+A2+B

A1+B

A2+BA2

B

A1

(b)

(a)

H

Mpar (10-3 emu/g)

H (Oe)

FIG. 9. (Color online) Macroscopic magnetization vs magnetic
field for different field treatment. Points—experimental data for
Sr2Cu3O4Cl2

26 taken at T = 100 K (see text for details), solid
lines—theoretical approximations. Thin arrows show the direction
of field sweeping. (a) Competition between FM and AFM domain
structures. Field treatment starts from the high positive values (H ≈
1 T) where the sample is in a single-domain state. Variation of field
is swept at intermediate value |H2| � |H | 
 |Hcr2|, large enough to
induce switching between metastable, B1, and stable, A2, states and
small enough to remove the traces of A1 and B1 phases from the
sample. (b) Hysteresis loop with the excursion into high fields. For
any field value the DS includes only two types of domains, as in
Fig. 7. Only the parallel component of magnetization is shown.

opposite directions. Field cycling between high fields (high
enough to remove all the domain walls and the remains of
unfavorable domains) results in a hysteretic behavior when
magnetization varies smoothly between zero and saturation
value and then suddenly changes due to the transition from
metastable to stable state.

In this section we consider some intermediate case when
a single domain sample is cycled in low fields. The corre-
sponding magnetization curve is shown in Fig. 9(a) (solid
lines—numerical simulations, points—experimental data26

T = 100 K). Field cycling starts at high positive fields, where
the sample is a single domain. When the field is decreased
down to H = H1 [see Fig. 8(a)] the domains of the B1
type appear and the DS consists of A1 and B1 domains.
The magnetization curve [upper curve in Fig. 9(a)] in this
case is of the two-domain type discussed in Sec. III B (we
still assume the slight misalignment that excludes one type
of B domain). However, further behavior of the DS, and
hence magnetization, depends upon the size of the loop. If
the loop is small (|H | � |H2|, where H2 is a coercive field
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at which domain B1 transforms into A2 as explained above),
magnetization varies smoothly between zero value at negative
fields and saturation value at positive fields. If the loop is
very large (|H | � |Hcr2|), the DS structure consists of two
domains: A1 and B1 for large positive and small negative
fields and A2 and B2 for large negative and small positive
fields, as shown in Figs. 7 and 9(b). In the intermediate
case (|H2| � |H | 
 |Hcr2|) the DS includes three types of
domains, A1, A2, and B2 [lower curve in Fig. 9(a)], and
the magnetization curve is asymmetric. It is worth noting
that theoretical magnetization curves calculated with only one
fitting parameter (de-stressing coefficient Ndes) fit well to the
experimental data, as seen from Figs. 7 and 9.

IV. DISCUSSION

We have considered the different types of the DS behavior
in a multiferroic with AFM and FM order parameters. First of
all, it is instructive to summarize the general features of DS
behavior that are different in single and multiferroics.

(1) In multiferroic (in contrast to single ferroics) the
potential barriers between different pairs of states (A1–A2 and
A1–B1 in our case) can differ significantly due to the different
physical nature of the varying order parameter. As a result, one
can easily control the types of domains that form the DS and
corresponding macroscopic properties of the sample.

(2) One of the important, experimentally observed charac-
teristics of the multidomain sample is the value critical field
at which some types of domains disappear. Our calculations
show that the critical fields of the same nature in multiferroics
and single ferroics depend upon phenomenological constants
in a different way. For example, in an AFM single ferroic
the critical field Hdes ∝

√
J0Ndes, while in the AFM +

FM multiferroic corresponding field Hcr ∝ Ndes/mF [see
Eq.(17)].

(3) In multiferroics the shape-dependent constants (like
demagnetizing, depolarizing, or de-stressing coefficients) can
be not only of a different physical nature, but also, which
is important, have different tensor and symmetry properties.
This opens a way to control the DS by the combination of
the external fields of a different symmetry (e.g., magnetic and
stress fields, etc). In addition, it may result in an unusual field
dependence of macroscopic parameters, like the appearance of
perpendicular magnetization of the sample described above.

Second, some features of the DS behavior may result from
the peculiarities of order parameters. In a particular case of
Sr2Cu3O4Cl2 multiferroic we found that depending on the
field treatment the DS may include from one to four types
of domains and can be unambiguously determined from the
magnetization curves in the field H‖[110]. Namely, if DS
includes all types of domains, macroscopic magnetization is
parallel to H, the magnetization curve is reversible, varies
between ± saturation value, and includes a steep section at
small fields. If the DS consists of three types of domains
(A1, A2, and B1) the macroscopic magnetization has two
components, parallel, Mpar, and perpendicular, Mperp, to
H. During field cycling Mpar varies between positive and
negative saturation values, while Mperp varies between zero
and saturation value. At last, if the DS includes only two

domains, A and B, both Mpar and Mperp vary between zero and
saturation value.

It should be mentioned that the nontrivial magnetization
behavior of Sr2Cu3O4Cl2 was interpreted in Ref. 26 as
resulting from restructurization of the DS. However, the
proposed phenomenological model was based on the idea
that the thermodynamic stability of DS is due to the entropy
contribution from the domain walls35 and effective steric
repulsion between them.

We argue that the formation of the equilibrium AFM
domain structure results from the de-stressing effect which, in
turn, originates from magnetoelastic interactions. An absolute
value of the magnetoelastic constant is rather small (compared
to such AFM’s as NiO, KCoF3, etc) and corresponds to
the spontaneous strain u ∝ 10−6 (for the estimation we took
c44 = 20 GPa at T = 120 K). Such a small value of u explains
the low potential barrier for the formation of AFM domains.

The analysis of magnetization curves shows that low-field
susceptibility χ of the sample that consists of AFM domains
is inversely proportional to the de-stressing coefficient Ndes

(in contrast to FM, where χ depends upon the demag-
netization constant). According to the experiments,26 the
inverse susceptibility χ−1 of Sr2Cu3O4Cl2 shows nontrivial
temperature dependence [see Fig. 10(b)] and attains the
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FIG. 10. (Color online) Temperature dependence (a) of the
destressing coefficient Ndes predicted from the comparison with the
(b) temperature dependence of the reciprocal domain A1 fraction
(2ξA1 − 1)−1 (triangles) and the inverse susceptibility χ−1 (diamonds)
plotted according to data.26 Raw data for χ−1 were normalized
(multiplied by the appropriate factor) to fall into the same range
of values as (2ξA1 − 1)−1. Dashed line shows linear approximation of
the experimental data. Peculiarity at T = 97 K is indicated with the
arrow.
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minimum at T = T0 = 97 K. The domain fraction ξA1 at
fixed H extracted from the neutron scattering experiments26

shows the same temperature dependence as χ , as can be
seen from Fig. 10(b). Using correlation between Ndes and
χ we can predict the following temperature dependence of the
de-stressing coefficient depicted in Fig. 10(a):

Ndes(T ) =
{

7.3 · 10−5 · (T − T0), T � T0,

6.13 · 10−5 · (T0 − T ), T < T0.
(18)

If one takes into account that Ndes ∝ λ2/c44 [see Eq. (6)] it
is possible also to anticipate a peculiarity of the elastic (or mag-
netoelastic) properties of the crystal in the vicinity of T = T0.
The magnetoelastic nature of AFM domains in Sr2Cu3O4Cl2
may reveal itself in the stress-induced magnetization of the
sample. In particular, we expect the same behavior as shown
in Fig. 6 of the parallel and perpendicular magnetization under
mechanical tension/contraction along [110] in the presence of
the small demagnetizing field (∝ Hdm ∝ 0.3 Oe).

At last, we would like to outline a possible generaliza-
tion of the considered model to the description of the DS
in multiferroics which combine magnetic and ferroelectric
ordering (see, e.g., Ref. 17). The main idea of the presented
approach is to account for the long-range interactions of the
elastic (magnetoelastic) nature via de-stressing energy (5). In
the general case, an additional (compared to demagnetizing)
shape-dependent contribution into the free energy of the
sample originates from the long-range interactions between
the “elastic dipoles” induced by magnetic, ferroelectric, and/or
martensitic phase transition:23

�dest = V

2

〈
σ in

j l

〉ℵjklm

〈
σ in

km

〉
,

(19)

ℵjklm ≡ ∂2

∂rk∂rm

∫
V

Gjl(r − r′)dr′,

where Gkm(r − r′) is a Green’s function of elasticity (with
zero nonsingular part) and fourth rank symmetrical de-

stressing tensor ˆ̂ℵ depends upon the sample shape. An explicit
expression for the transition-induced internal stresses σ̂ in

depends upon the character of the ordering. In particular,
for AFM σ in

jk = λjlkmLlLm, where the fourth order tensor
λjlkm describes magnetoelastic coupling. In the case of
magnetoelectrical systems σ̂ in can be proportional to the
combination of piezoelectric, λ̂piezo and magnetoelastic, λ̂m−e

constants, for example,

σ̂ in = λ̂piezo · P + λ̂m−e : L ⊗ L. (20)

Further consideration of the DS depends upon the sym-
metry of the crystal and of the particular sample. It
should be underlined that the de-stressing energy (19)
takes into account the contribution of the domains
with noncollinear orientation of polarization/magnetization
and could not be reduced to depolarizing/demagnetizing
effects.

In summary, we described the possible scenario of field-
induced restructurization of the domains in the system that
consists of the domains of a different physical nature.
The proposed model can be extended to multiferroics that
show simultaneously ferroelectric and AFM ordering and
also to FM martensites with ferroelastic and ferromagnetic
ordering.
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L. Hervé, A. Maignan, S. Hébert, C. Martin, C. Yaicle, M. Hervieu,
and B. Raveau, Phys. Rev. B 69, 020407 (2004).

22V. G. Baryakhtar, A. N. Bogdanov, and D. A. Yablonskii, Phys.
Usp. 31, 810 (1988).

23H. V. Gomonay and V. M. Loktev, Phys. Rev. B 75, 174439 (2007).
24Z. V. Gareeva and A. K. Zvezdin, Phys. Status Solidi Rapid Res.

Lett. 3, 79 (2009).
25Z. V. Gareeva and A. K. Zvezdin, Europhys. Lett. 91, 47006 (2010).
26B. Parks, M. A. Kastner, Y. J. Kim, A. B. Harris, F. C. Chou,

O. Entin-Wohlman, and A. Aharony, Phys. Rev. B 63, 134433
(2001).

27S. Noro, T. Kouchi, H. Harada, T. Yamadaya, M. Tadokoro, and
H. Suzuki, Mater. Sci. Eng. B 25, 167 (1994).

28Y. J. Kim, R. J. Birgeneau, F. C. Chou, M. Greven, M. A. Kastner,
Y. S. Lee, B. O. Wells, A. Aharony, O. Entin-Wohlman, I. Y.
Korenblit, A. B. Harris, R. W. Erwin, and G. Shirane, Phys. Rev. B
64, 024435 (2001).

29According to Ref. 30, the FM moments at CuII ions result from the
anisotropic “pseudodipolar” interactions between CuI and CuII.

30M. A. Kastner, A. Aharony, R. J. Birgeneau, F. C. Chou, O. Entin-
Wohlman, M. Greven, A. B. Harris, Y. J. Kim, Y. S. Lee, M. E.
Parks, and Q. Zhu, Phys. Rev. B 59, 14702 (1999).

31F. C. Chou, A. Aharony, R. J. Birgeneau, O. Entin-Wohlman,
M. Greven, A. B. Harris, M. A. Kastner, Y. J. Kim, D. S.
Kleinberg, Y. S. Lee, and Q. Zhu, Phys. Rev. Lett. 78, 535
(1997).

32A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin
Waves, North-Holland Series in Low Temperature Physics, Vol. 1,
(North-Holland, Amsterdam, 1968).

33A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Mag-
netization Waves. Dynamical and Topological Solitons (Naukova
Dumka, Kiev, 1983), p. 192.

34States B1 and B2 are equivalent in the field parallel to the [110]
direction.

35Y.-Y. Li, Phys. Rev. 101, 1450 (1956).

054424-11

http://dx.doi.org/10.1103/RevModPhys.21.541
http://dx.doi.org/10.1103/PhysRevB.81.134406
http://dx.doi.org/10.1103/PhysRevB.68.224412
http://dx.doi.org/10.1103/PhysRevB.68.224412
http://dx.doi.org/10.1103/PhysRevB.69.020407
http://dx.doi.org/10.1070/PU1988v031n09ABEH005621
http://dx.doi.org/10.1070/PU1988v031n09ABEH005621
http://dx.doi.org/10.1103/PhysRevB.75.174439
http://dx.doi.org/10.1002/pssr.200802282
http://dx.doi.org/10.1002/pssr.200802282
http://dx.doi.org/10.1209/0295-5075/91/47006
http://dx.doi.org/10.1103/PhysRevB.63.134433
http://dx.doi.org/10.1103/PhysRevB.63.134433
http://dx.doi.org/10.1016/0921-5107(94)90219-4
http://dx.doi.org/10.1103/PhysRevB.64.024435
http://dx.doi.org/10.1103/PhysRevB.64.024435
http://dx.doi.org/10.1103/PhysRevB.59.14702
http://dx.doi.org/10.1103/PhysRevLett.78.535
http://dx.doi.org/10.1103/PhysRevLett.78.535
http://dx.doi.org/10.1103/PhysRev.101.1450

