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Deconfined criticality for the S = 1 spin model on the spatially anisotropic triangular lattice
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The quantum S = 1 spin model on the spatially anisotropic triangular lattice is investigated numerically. The
nematic and valence-bond-solid (VBS) phases are realized by adjusting the spatial anisotropy and the biquadratic
interaction. The phase transition between the nematic and VBS phases is expected to be a continuous one with
unconventional critical indices (deconfined criticality). The geometrical character (spatial anisotropy) is taken
into account by imposing the screw-boundary condition (Novotny’s method). Diagonalizing the finite-size cluster
with N � 20 spins, we observe a clear indication of continuous phase transition. The correlation-length critical
exponent is estimated as ν = 0.92(10).
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I. INTRODUCTION

According to the deconfined-criticality scenario,1–3 in two
dimensions, the phase transition separating the valence-bond-
solid (VBS) and antiferromagnetic phases is continuous;
naively,2 such a transition should be discontinuous because
the adjacent phases possess distinctive order parameters such
as the VBS coverage pattern and the sublattice magnetization,
respectively. A good deal of theoretical investigations4–11 has
been made to support this scenario. (On the contrary, in
Refs. 12–19 it was claimed that the transition would be a
weak first-order one.)

The magnetic frustration is a clue to the realization of the
VBS phase. Actually, the square-lattice antiferromagnet with
the next-nearest-neighbor interaction (J1-J2 model) exhibits
the VBS phase around the fully frustrated (J2/J1 ≈ 0.5)
regime.20 The quantum Monte Carlo method is not applicable
to this problem because of the negative-sign problem. So far,
the J1-J2 model has been studied with the series-expansion20,21

and numerical-diagonalization22 methods.
Alternatively, one is able to realize the VBS phase through

incorporating the biquadratic interaction;23,24 correspondingly,
one has to enlarge the magnitude of spin to S > 1/2. The
biquadratic interaction (unlike the magnetic frustration) is
tractable with the quantum Monte Carlo method. The decon-
fined criticality is realized by tuning the spatial anisotropy.25

That is, as the interchain interaction increases, a transition
from the VBS phase to either nematic or antiferromagnetic
phase occurs.25 Meanwhile, it turns out that the ring-exchange
(plaquette-four-spin) interaction also induces the VBS phase
even for S = 1/2. Extensive Monte Carlo simulations26,27

support the deconfined-criticality scenario; the results are
compared with ours in Sec. IV. The transition occurs for a
considerably large ring exchange; the antiferromagnetic order
would be far more robust than that of VBS. As mentioned
above, the character of the singularity is controversial;12–19

possibly, the log corrections28 affect the scaling analy-
sis. Even for the S = 1/2 spatially anisotropic triangular
antiferromagnet.29 The ring exchange gives rise to the VBS
phase.30,31 This model is intractable with the quantum Monte
Carlo method, and analytical considerations provide valuable
information as to the deconfined criticality.32–34

In this paper, we investigate the S = 1 spatially anisotropic-
triangular-lattice model with the biquadratic interaction by

means of the numerical diagonalization method. To be specific,
the Hamiltonian is given by

H = −J
∑

〈ij〉
[jSi · Sj + (Si · Sj )2] − J ′ ∑

〈〈ij〉〉
(Si · Sj )2. (1)

Here, the quantum S = 1 spins {Si} are placed at each
triangular-lattice point i; see Fig. 1(a). The summation∑

〈ij〉 (
∑

〈〈ij〉〉) runs over all possible nearest-neighbor (skew-
diagonal) pairs. The parameter J (J ′) denotes the correspond-
ing coupling constant. Hereafter, we consider J ′ as the unit
of energy (J ′ = 1). Along the J bond, both quadratic and
biquadratic interactions exist, and the parameter j controls a
strength of the former component. The J ′-bond interaction
is purely biquadratic. The interaction J interpolates the one-
dimensional (J = 0) and square-lattice (J ′ → ∞) structures.
Correspondingly, the VBS and spin-nematic phases appear,
as the interaction J varies; see a schematic phase diagram,
Fig. 2. To take into account such a geometrical character, we
implement the screw-boundary condition [Fig. 1(b)] through
resorting to Novotny’s method (Sec. II).

The rest of this paper is organized as follows. In Sec. II,
we explain the simulation scheme. We also make an overview
on the biquadratic-interaction spin models relevant to ours.
In Sec. III, we demonstrate that the present model exhibits a
clear indication of deconfined criticality at a moderate value of
J . We also analyze the criticality with the finite-size-scaling
theory. In Sec. IV, we present the summary and discussions.

II. SCREW-BOUNDARY CONDITION:
NOVOTNY’S METHOD

In this section, we present the simulation scheme
(Novotny’s method35,36). A brief overview on the biquadratic-
interaction spin models follows.

Before commencing an explanation of the technical details,
we present a basic idea of Novotny’s method. We implement
the screw-boundary condition for a finite cluster with N spins;
see Fig. 1(b). Basically, the spins {Si} (i � N ) constitute a one-
dimensional (d = 1) structure, and the dimensionality is lifted
to d = 2 by the bridges over the long-range pairs. The present
system (1) has a spatial anisotropy governed by J . We take
into account such a geometrical character through imposing
the screw-boundary condition. According to Novotny, the
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FIG. 1. (a) We consider a spatially anisotropic triangular lattice;
the Hamiltonian is given by Eq. (1). The interaction J interpolate
the one- and two-dimensional lattice structures in the limiting cases
J = 0 and J → ∞, respectively. (b) To take into account such a
geometrical character, we implement the screw-boundary condition.
As shown in the drawing, a basic structure of the cluster is an
alignment of spins {Si} (i � N ). Thereby, the dimensionality is lifted
to d = 2 by the bridges over the (

√
N )th neighbor pairs through the

J bonds. Technical details are explicated in Sec. II.

long-range interactions are introduced systematically by the
use of the translation operator P ; see Eq. (3), for instance. The
operator P satisfies the formula

P |S1,S2, . . . ,SN 〉 = |SN,S1, . . . ,SN−1〉. (2)

Here, the base |{Si}〉 diagonalizes each of {Sz
i }; namely, the

relation Sz
k |{Si}〉 = Sk|{Si}〉 holds.

Novotny’s method was adapted to the quantum S = 1
XY model in d = 2 dimensions.36 Our simulation scheme
is based on this formalism. In the following, we present the
modifications explicitly for the sake of self-consistency. The
XY interaction HXY , Eq. (4) of Ref. 36, has to be replaced
with the Heisenberg interaction

HXXX(v) =
N∑

i=1

(P vSx
i P −vSx

i + P vS
y

i P −vS
y

i + P vSz
i P

−vSz
i ).

(3)

Additionally, we introduce the biquadratic interaction

H4(v) = −1

2
HXXX(v) + 1

2

N∑

i=1

5∑

α=1

P vQα
i P −vQα

i . (4)

The definition of {Qα
i } and an algebra are presented in the

Appendix. Based on these expressions, we replace Eq. (3) of
Ref. 36 with

H = −J [jHXXX(
√

N ) + jHXXX(
√

N − 1) + H4(
√

N )

+ H4(
√

N − 1)] − J ′H4(1). (5)
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FIG. 2. A schematic phase diagram for the S = 1 spatially
anisotropic-triangular-lattice model, Eq. (1), is presented. The lim-
iting cases J → 0 and J → ∞ were studied in Refs. 37 and 38,
respectively. The solid (dashed) lines stand for the phase boundaries of
discontinuous (continuous) character. The dotted lines are ambiguous.
We investigate the phase boundary separating the nematic and VBS
phases.

We diagonalize this matrix for N � 20 spins in Sec. III. The
above formulas complete the formal basis of our simulation
scheme. However, to evaluate the above Hamiltonian-matrix
elements efficiently, one may refer to a number of techniques
addressed in Refs. 35 and 36.

Last, we overview the biquadratic-interaction spin models.
As mentioned in the Introduction, the present model reduces to
the one-dimensional and square-lattice models in the limiting
cases J = 0 and J → ∞, respectively. Each of these limiting
cases has been studied extensively. Here, we devote ourselves
to the nearest-neighbor interaction of the generic form cos θSi ·
Sj + sin θ (Si · Sj )2, parameterized by θ . The regime π < θ <

2π is relevant to the present research. As for d = 1 (Ref. 37),
the dimer phase appears in 5π/4 < θ < 7π/4. Namely, around
θ ≈ 3π/2, the stability of the dimer (VBS) phase would be
maximal. For d = 2 (Ref. 38), the ferromagnetic, nematic,
and antiferromagnetic phases appear in θ < 5π/4, 5π/4 <

θ < 3π/2, and 3π/2 < θ , respectively. The phase diagram in
Fig. 2 is based on these preceding studies.

III. NUMERICAL RESULTS

In this section, we present the simulation results. We
employed the simulation scheme developed in Sec. II. We
devote ourselves to the analysis of the transition between the
nematic and VBS phases (deconfined criticality); see Fig. 2.
We treat a variety of system sizes N = 10,12, . . . ,20 (N is the
number of spins within a cluster). The linear dimension L of
the cluster is given by

L =
√

N. (6)

A. Critical point Jc

In this section, we investigate a location of the phase
boundary separating the VBS and nematic phases.
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FIG. 3. The scaled energy gap L�E is plotted for various J and
N = 10,12, . . . ,20. The quadratic-interaction strength j is fixed to
j = 0.5. (J ′ is the unit of energy.) We observe a clear indication of
the deconfined criticality around J ≈ 0.28.

In Fig. 3, we plot the scaled energy gap L�E for various J

and N = 10,12, . . . ,20. The quadratic-interaction strength j

is fixed to j = 0.5. The symbol �E denotes the first excitation
gap. According to the finite-size scaling, the scaled energy gap
L�E should be scale-invariant at the critical point. In fact,
we observe an intersection point at Jc ≈ 0.28, which indicates
an onset of the J -driven phase transition. As mentioned in
the Introduction, the nature of this singularity is under current
interest. The present result indicates that the singularity is
a continuous one; the critical phenomena (below the upper
critical dimension) should be described by the finite-size
scaling.

In Fig. 4, we plot the approximate transition point Jc(L1,L2)
for [2/(L1 + L2)]2 with 10 � N1 < N2 � 20 (L1,2 = √

N1,2).
The parameters are the same as those of Fig. 3. Here, the
approximate transition point denotes a scale-invariant point
with respect to a pair of system sizes (L1,L2). Namely, the
following relation holds:

L1�E(L1)|J=Jc(L1,L2) = L2�E(L2)|J=Jc(L1,L2). (7)
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FIG. 4. The approximate critical point Jc(L1,L2) (7) is plotted
for [2/(L1 + L2)]2 with 10 � N1 < N2 � 20. The parameters are
the same as those of Fig. 3. The least-squares fit to these data yields
Jc = 0.285(5) in the thermodynamic limit.

The least-squares fit to the data of Fig. 4 yields an estimate
Jc = 0.285(5) in the thermodynamic limit L → ∞. To ap-
preciate possible extrapolation errors, we made an alternative
extrapolation with the 1/L3-abscissa scale. Thereby, we obtain
Jc = 0.285(3). The extrapolation errors appear to be negligi-
ble. (As a matter of fact, we surveyed a wide range of j , and
found that the parameter j = 0.5 yields an optimal finite-size
behavior.) Hence, we obtain an estimate Jc = 0.285(5).

Making similar analyses for various values of j , we arrived
at a phase diagram, Fig. 2. The phase boundary around j ≈ 0
and 1 is ambiguous because of finite-size errors. Possibly,
around j ≈ 1, the magnetic structure (antiferromagnetic order)
conflicts with the screw-boundary condition, resulting in an
enhancement of finite-size errors. On the one hand, in j < 0,
the character of the transition changes to a discontinuous one,
and the finite-size-scaling method becomes invalid. Hence,
the finite-size behavior improves around the midst (j ≈ 0.5)
of 0 < j < 1.

Last, we address a number of remarks. First, in the
scaling analysis, Fig. 3, we assumed the dynamical critical
exponent z = 1, following the conclusion of the Monte Carlo
simulations.26,27 Second, we argue a possible systematic
error for the data Jc(L1,L2) in Fig. 4. As a matter of
fact, for large system sizes, the data Jc(L1,L2) exhibit an
enhancement, suggesting that the extrapolated value of Jc

should be larger than 0.285(5). However, in the subsequent
analyses, the extrapolated value of Jc is no longer used, and
systematic deviations are less influential. Nevertheless, as to
the singularity of Jc, it has to be mentioned that the present
data cannot exclude a possibility of weak-first-order transition,
for which the scaling approach becomes invalidated.

B. Correlation-length critical exponent ν

In this section, we analyze the criticality found in Sec. III A.
In Fig. 5, we plot the approximate critical exponent

ν(L1,L2) = ln(L1/L2)

ln{∂J [L1�E(L1)]/∂J [L2�E(L2)]}|J=Jc(L1,L2)
,

(8)

for 2/(L1 + L2) with 10 � N1 < N2 � 20. The parameters
are the same as those of Fig. 3. The least-squares fit to
these data yields ν = 0.97(2) in the thermodynamic limit.
This estimate may be affected by systematic errors. (The
statistical error would be an underestimate.) To appreciate
an error margin, we made an alternative extrapolation with
the 1/L2-abscissa scale. Thereby, we obtain ν = 0.86(1). The
discrepancy indicates an amount of systematic errors. As a
result, we arrive at an estimate

ν = 0.92(10), (9)

which covers the above results obtained via independent
extrapolations.

This is a good position to address a remark on the scaling
behaviors of Figs. 3 through 5. As mentioned in the Introduc-
tion, notorious log corrections were observed for the S = 1/2
square-lattice antiferromagnet with the ring exchange. Our
data, on the contrary, appear to exhibit moderate corrections
to scaling, particularly, in Figs. 3 and 4. For the former
antiferromagnet, the VBS phase emerges for a considerably
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FIG. 5. The approximate critical exponent ν(L1,L2) (8) is plotted
for 2/(L1 + L2) with 10 � N1 < N2 � 20. The parameters are the
same as those of Fig. 3. The least-squares fit to these data yields
ν = 0.97(2) in the thermodynamic limit. A possible systematic error
is considered in the text.

large ring exchange, indicating that the antiferromagnetic
phase is robust. On the one hand, our model exhibits a stable
VBS state owing to the spatial anisotropy (one-dimensionality
in the J = 0 limit), and the nematic phase turns into the
VBS phase at a moderate coupling strength, Jc ≈ 0.3. We
suspect that these peculiarities of the present (rather artificially
designed) model bring about improved scaling behaviors.

Last, we make a consideration of the abscissa scale of Fig. 5
(4). The critical exponent (point) has a leading correction of
O(L−ω) [O(L−ω−1/ν)]; here, the symbol ω denotes the index
for corrections to scaling. At present, the index ω for the
deconfined criticality is unclear. As a reference, one may refer
to that of the d = 3 Heisenberg universality class, ω = 0.773
(Ref. 39). Making use of this value, we set the abscissa scale
to that depicted in Fig. 5 (4).

IV. SUMMARY AND DISCUSSIONS

The S = 1 spin model on the spatially anisotropic triangular
lattice, Eq. (1), was investigated numerically. As the spatial

anisotropy J changes, the VBS and nematic phases appear
(Fig. 2). Hence, this rather artificial model provides a candidate
for the analysis of the deconfined criticality, which is arousing
much attention recently. We employed Novotny’s method
(screw boundary condition) to take into account such a
geometrical character (spatial anisotropy).

As a result, we observe a clear indication of the J -driven
criticality through the finite-size-scaling analysis (Fig. 3). This
result supports the deconfined-criticality scenario. Thereby,
we estimate the correlation-length critical exponent as ν =
0.92(10).

As a reference, we overview related studies. For the
square-lattice antiferromagnet with the ring exchange, the
estimates, ν = 0.78(3) (Ref. 26) and ν = 0.68(4) (Ref. 27),
were reported. As for the spatially anisotropic-triangular
antiferromagnet with the ring exchange, the exponent ν =
0.80(15) was obtained30. These results are to be compared with
the index, ν = 0.7112(5) (Ref. 40), for the d = 3 Heisenberg
universality class. Our result indicates a tendency toward
an enhancement for the correlation-length critical exponent,
as compared to that for the d = 3 Heisenberg universality
class. Taking the advantage of the numerical diagonalization
method, we are able to extend the interactions so as to
eliminate finite-size errors. A frustrated interaction along the
J ′-bond direction may stabilize (extend the regime of) the VBS
phase substantially. This problem will be addressed in future
study.

APPENDIX: A REDUCTION FORMULA FOR THE
BIQUADRATIC INTERACTION

The biquadratic interaction (Si · Sj )2 reduces to a seem-
ingly quadratic form

(Si · Sj )2 = −Si · Sj /2 +
5∑

α=1

Qα
i Qα

j /2 + 4/3. (A1)

Here, the operators {Qα
i } are given by the relations, Q1

i =
(Sx

i )2 − (Sy

i )2, Q2
i = [2(Sz

i )2 − (Sx
i )2 − (Sy

i )2]/
√

3, Q3
i =

Sx
i S

y

i + S
y

i Sx
i , Q4

i = S
y

i Sz
i + Sz

i S
y

i , and Q5
i = Sx

i Sz
i + Sz

i S
x
i .

This reduction formula is a key ingredient in Sec. II.
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