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Phase structure of the anisotropic antiferromagnetic Heisenberg model on a layered triangular
lattice: Spiral state and deconfined spin liquid
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In the present paper, we study a spin-1/2 antiferromagnetic (AF) Heisenberg model on layered anisotropic
triangular lattice and obtain its phase structure. We use the Schwinger bosons for representing spin operators
and also a coherent-state path integral for calculating physical quantities. Finite-temperature properties of the
system are investigated by means of the numerical Monte-Carlo simulations. A detailed phase diagram of the
system is obtained by calculating internal energy, specific heat, spin correlation functions, etc. There are AF
Néel, paramagnetic, and spiral states. Turning on the plaquette term (i.e., the Maxwell term on a lattice) of an
emergent U(1) gauge field that flips a pair of parallel spin-singlet bonds, we found that there appears a phase
that is regarded as a deconfined spin-liquid state, though “transition” to this phase from the paramagnetic phase
is not of second order but a crossover. In that phase, the emergent gauge boson is a physical gapless excitation
coupled with spinons. These results support our previous study on an AF Heisenberg model on a triangular lattice
at vanishing temperature.
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I. INTRODUCTION

The study of quantum spin models has a long history. In
particular after the discovery of the high-temperature super-
conductors, exotic quantum spin states have been intensively
explored. Among them, the spin-liquid state with a deconfined
spinon has interested many theoretical and experimental
researchers.1 Recently, experiments of the layered anisotropic
triangular antiferromagnet (AF magnet) Cs2CuCl4 revealed
the existence of the incommensurate spiral order at low
temperature (T ) and also spinonlike excitations at intermediate
T .2,3 One may think that this material can be a candidate
for so-called Z2 spin liquid.4 Furthermore, very recently,
evidence for a spin liquid in a layered anisotropic triangular
AF magnet EtMe3Sb[Pd(dmit)2]2 at very low T has been
reported.5

In the previous paper,6 we studied a frustrated AF
Heisenberg model on an anisotropic triangular lattice in two
dimensions (2D) at T = 0. We used the Schwinger bosons
for representing s = 1

2 spin operators and derived an effective
model for low-energy region assuming existence of a short-
range spiral order. Then low-energy excitations are spinons
and an emergent gauge field with local Z2 gauge symmetry.
We studied the effective gauge model for the quantum AF
Heisenberg model by means of Monte Carlo (MC) simulations
and obtained a phase diagram. There exist the spiral state, the
paramagnetic (PM) dimer state, and the spin-liquid state in the
phase diagram. These phases can be also labeled by the gauge
dynamics, that is, Higgs, confinement, and Coulomb phases,
respectively.

In the present paper, we shall continue the study in the
previous work and investigate a closely related model, that
is, an AF Heisenberg model on layered anisotropic triangular
lattice. We are interested mostly in finite-T properties of the
model. By using the Schwinger bosons and CP1 path-integral
methods, direct application of the MC simulations becomes
possible without assuming any kind of (short-range) order. We
discuss an advantage and reliability of the present numerical

methods that are applicable for systems at finite T . Then we
shall clarify the phase diagram of the model. Results obtained
in this paper support the study in the previous paper.6

This paper is organized as follows. In Sec. II, we introduce
models and give a derivation of the effective gauge-theory
model. By using the Schwinger bosons, local U(1) gauge
symmetry naturally appears. Then we discuss possible phases
in the frustrated AF spin systems. Section III is devoted
to numerical studies. We investigated phase structure of the
model by calculating the internal energy, specific heat, spin
correlation functions, etc. These numerical calculations show
that there exist AF, PM, spiral, and spin-liquid phases. Detailed
study on the critical behaviors between these phases is given.
Section IV is devoted to summary and discussion.

II. QUANTUM AF SPIN MODEL, SCHWINGER BOSONS,
CP1 REPRESENTATION, AND GAUGE THEORY

In the present paper we study a spin-1/2 anisotropic AF
Heisenberg model on a layered triangular lattice shown in
Fig. 1. For simplicity, we first consider a 3D cubic lattice
and then add diagonal links in the upper-right direction (1-2
direction) in 2D layers. The quantum Hamiltonian of the spin
system is given as

H = J1

∑
x,μ

Ŝx · Ŝx+μ + J2

∑
x

Ŝx · Ŝx+1+2, (2.1)

where Ŝx is the spin operator at site x and μ(= 1,2,3) is a
direction index and also denotes unit vector in 3D lattice,
whereas 1 and 2 are those of the 2D lattice. Therefore, the
J1 term in Eq. (2.1) is the 3D nearest-neighbor (NN) AF
interaction, whereas the J2 term is the next-nearest-neighbor
(NNN) AF coupling in 2D layers. There exists an AF
Néel order for J1 � J2 at low temperature (T ), and it is
expected that a quantum phase transition takes place as J2 is
increased.

In this paper, we investigate finite-T properties of the
system (2.1) in detail. To this end, we employ the Schwinger-

054414-11098-0121/2011/83(5)/054414(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.054414


KAZUYA NAKANE, TAKESHI KAMIJO, AND IKUO ICHINOSE PHYSICAL REVIEW B 83, 054414 (2011)

J2

J1
J2

J1

even site

layer

odd site

FIG. 1. (Color online) Three-dimensional layered lattice on
which the spin models (2.1) are defined.

boson representation and the coherent-path-integral methods.7

By means of these methods, numerical study of the system
can be performed straightforwardly. In terms of the Schwinger
bosons at site x, â = (âx↑,âx↓)t (where Ot denotes a transpose
of the vector/matrix O), the spin operator Ŝx is expressed as

Ŝx = 1
2 â

†
x �σ âx, (2.2)

where �σ are the Pauli spin matrices. As the magnitude of the
quantum spin is 1

2 , the physical states of the Schwinger bosons,
|Phys〉, have to satisfy the following constraint at each site x,∑

σ=↑,↓
â†

xσ âxσ |Phys〉 = |Phys〉. (2.3)

We use the coherent-state path integral for the study of
the system (2.1) expressed in terms of the Schwinger bosons.
To this end, we introduce CP1 variables zx = (zx↑,zx↓)t

corresponding to âxσ , which satisfy the constraint∑
σ=↑,↓

z̄xσ zxσ = 1, (2.4)

as required by Eq. (2.3).
Then the partition function Z is given by

Z =
∫

[Dz]CP exp

[∫ β

0
dτA(τ )

]
,

(2.5)
A(τ ) = −

∑
x,σ

z̄xσ ∂τ zxσ − H (z̄,z),

FIG. 2. (Color online) Obtained phase diagram for model S2 with
c2 = 0. There are three phase transition lines, which separate AF, PM
and spiral phases. All phase transitions are of second order. Locations
of phase transition lines are determined by calculations of system size
L = 16.

where τ is the imaginary time, β = 1/(kBT ), [Dz] denotes the
path integral over CP1 variables, and H (z̄,z) is obtained from
Eq. (2.1) by using Eq. (2.2). H (z̄,z) in Eq. (2.5) is explicitly
given as (up to an irrelevant constant)

H (z̄,z) = J1

2

∑
x,μ

|z̄xzx+μ|2 + J2

2

∑
x

|z̄xzx+1+2|2

= −J1

2

∑
x,μ

|z̄x z̃x+μ|2 − J2

2

∑
x

|z̄x z̃x+1+2|2, (2.6)

where z̃x = (z̄x↓, − z̄x↑)t , which is nothing but the time-
reversal spinor of zx , and we have used the fact that zx and z̃x

are an orthogonal and complete set of vectors in the CP1 space.
If one tries to numerically study the system (2.5) by means of
the MC simulations, one immediately encounters difficulties
in the important sampling procedure because the first term in
the action A(τ ) is pure imaginary. For J1 � J2, it is known
that by integrating out the CP1 variables zx at all odd (or even)
sites of the cubic lattice by assuming a short-range AF order,
the resultant action has a quartic form of zxσ (x ∈ even sites)
and has a lower bound.8 This calculation, however, cannot
be applicable for the case J1 ∼ J2 that we are interested in.
Therefore, we take another way to avoid the imaginary term
in A(τ ); that is, we consider finite-T properties of the system
(2.5) and ignore the imaginary-time dependence of variables
zx . The study of finite-T properties of the system is not only
interesting itself but also gives an important insight into low-T
properties of the system as it is expected that an ordered phase
at finite T survives at lower T .9

Physical meaning of the above approximation is clarified
by the following qualitative discussion on system of general
boson field φ�x at finite T . We consider the boson field φ�x with
Hamiltonian HB in the continuum space for simplicity. The
partition function Zφ is given as

Zφ =
∫

[dφ] exp

[∫ β

0
dτAφ(τ )

]
,

(2.7)

Aφ(τ ) = −
∫

dxφ̄�x(τ )∂τφ�x(τ ) − HB(φ̄,φ).

Then we Fourier decompose φ�x(τ ) as

φ�x(τ ) =
∞∑

n=−∞
eiωnτφ�x,n, (2.8)

where ωn = 2πn
β

, and∫ β

0
dτ φ̄�x(τ )∂τφ�x(τ ) =

∑
n

(2πni)φ̄�x,nφ�x,n. (2.9)

On the other hand,∫ β

0
dτHB(φ̄�x(τ ),φ�x(τ ))

= βHB(φ̄�x,0,φ�x,0) + βH1(φ̄�x,0,φ�x,0,φ̄�x,n
=0,φ�x,n
=0), (2.10)

where the first term HB(φ̄�x,0,φ�x,0) contains only
the zero modes φ�x,0, whereas the second term
H1(φ̄�x,0,φ�x,0,φ̄�x,n
=0,φ�x,n
=0) represents the interactions
between the zero modes and nonzero modes φ�x,n
=0, as well
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FIG. 3. (Color online) Phase transition from PM to AF phases for d1 = 1.0. E exhibits no anomalous behavior, whereas C has a peak that
develops as the system size is increased. By finite size scaling of C, it is verified that there exists a second-order phase transition at c′

1 � 3.70.

as the spatial derivative term of φ�x,n
=0. The typical form of
H1(φ̄�x,0,φ�x,0,φ̄�x,n
=0,φ�x,n
=0) is like

H1 =
∑
n
=0

∫
dxφ̄�x,0φ�x,0φ̄�x,nφ�x,n + · · · . (2.11)

Effective action of the zero modes is obtained by integrating
out the nonzero modes in Eq. (2.7):∫

[dφ] exp

[∫ β

0
dτAφ(τ )

]

=
∫

[dφ0]e−βHB (φ̄�x,0,φ�x,0)
∫

[dφn
=0] exp

[
−

∑
n
=0

(2πni)

×φ̄�x,nφ�x,n − βH1(φ̄�x,0,φ�x,0,φ̄�x,n
=0,φ�x,n
=0)

]
.

(2.12)

FIG. 4. (Color online) Scaling function φ(x) for the specific heat
shown in Fig. 3. All data are fit by scaling function φ(x).

The Green function of φ�x,n
=0 behaves as

〈φ̄�x,n
=0φ�y,n
=0〉∼ exp

⎡
⎣−

√(
2π |n|T

v

)2

+ m2
φv2|�x − �y|

⎤
⎦ ,

(2.13)

for |�x − �y| → ∞, where v is the speed of bosonic excitation
[for the spin wave v = Ja (a = lattice spacing)] and mφ is
the energy gap of excitation. Equation (2.13) corresponds to
the case of bosons with a relativistic dispersion but similar
exponential damping behavior appears for bosons having non
relativistic dispersion. Then integration over nonzero modes
in Eq. (2.12) renormalizes HB(φ̄�x,0,φ�x,0) but it is expected
that this renormalization does not change drastically the
structure of HB(φ̄�x,0,φ�x,0) because of the behavior of the Green
functions (2.13). At T = 0, the Green functions have only an
algebraic decay in the case mφ = 0, and therefore nonlocal
interactions generated by integration over nonzero modes may
change the phase structure of the system and generate a new
ordered state.10 In any case, the renormalization by the nonzero
modes φ�x,n
=0 is more effective at lower T and it is physically
expected that the renormalization enhances ordered states.
Therefore, an ordered phase at finite T survives at lower T .9

In the above approximation, the partition function is
given as

Z =
∫

[Dz]CP exp(−S0),

S0 = −J1β

2

∑
x,μ

|z̄x z̃x+μ|2 + J2β

2

∑
x

|z̄xzx+1+2|2

(2.14)
= −c1

∑
x,μ

|z̄x z̃x+μ|2 + d1

∑
x

|z̄xzx+1+2|2,
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FIG. 5. (Color online) Spin correlation functions for d1 = 1.0. The results indicate that there exists an AF long-range order at c′ = 4.0 and
4.7, whereas at c′ = 3.6 spin correlation decays quite rapidly because of nonexistence of long-range order. System size L = 24.

where c1 = J1β

2 and d1 = J2β

2 . For later discussion, it is useful
to slightly change the action S0 in Eq. (2.14) as follows. We
first rename CP1 variables at odd sites of the cubic lattice as

zx → z̃x, x ∈ odd site, (2.15)

and introduce a gauge field Uxμ at link (x,μ) for the AF
spin-pair channel. Then

S1 = −c′
1

∑
x,μ

(z̄x+μUxμzx + c.c.) + d1

∑
x

|z̄xzx+1+2|2.

(2.16)

A one-link integral over the gauge field Uxμ = eiθxμ can be
performed exactly,∫

dθxμ

2π
exp(c′

1z̄x+μUxμzx + c.c.)

= exp(log I0(c′
1|z̄x+μzx |)), (2.17)

where I0 is the modified Bessel function. From the behavior
of the modified Bessel function I0, relation between the
parameters c1 and c′

1 is obtained as follows:

c′
1 ∼

{
c1 for c1 � 1,

(c1)1/2 for c1 � 1.
(2.18)

Action S1 is invariant under the following local gauge
transformation,

zxσ → zxσ ei
x , z̄xσ → z̄xσ e−i
x , Uxμ → ei
x+μUxμe−i
x ,

(2.19)

where 
x is an arbitrary gauge-transformation parameter. In
order to investigate the possibility of the appearance of a spin
liquid with deconfined spinon excitations, study of the gauge
dynamics and behavior of the gauge field Uxμ is important and
necessary. As we show later, the two systems S0 and S1 have
qualitatively the same phase structure.

We also add a plaquette term of the gauge field Uxμ to the
action S1 in Eq. (2.16) as

S2 = −c′
1

∑
x,μ

(z̄x+μUxμzx + c.c.) + d1

∑
x

|z̄xzx+1+2|2

−c2

∑
x,μ>ν

UxμUx+μ,νŪx+ν,μŪxν + c.c., (2.20)

where the last plaquette term is the counterpart of the Maxwell
term of the gauge field θxμ in the continuum. It is obvious that
by setting c2 = 0 in S2 (2.20), S2 reduces to S1 in Eq. (2.16).

FIG. 6. (Color online) Phase transition from PM to spiral states for d1 = 2.0. Total specific heat C has a peak that develops as L is increased.
Finite-size scaling analysis verifies that this peak indicates a second-order phase transition.
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FIG. 7. (Color online) Specific heat of each term in action defined by Eq. (3.4) for d1 = 2.0. Calculation of Cc shows that c1 term in action
fluctuates strongly at phase transition whereas calculation of Cd shows that d1 term does not. This implies that appearance of spiral order
influences NN spin pairs more strongly than pairs in diagonal links as c′

1 is increased.

By integrating out the gauge field Ux,μ as∫ ∏ dθxμ

2π
exp

(
c′

1

∑
x,μ

z̄x+μUxμzx

+ c2

∑
x,μ>ν

UxμUx+μ,νŪx+ν,μŪxν + c.c.

)
, (2.21)

there appear the following terms in the effective action:

(c′
1)4c2(z̄x+μzx)(z̄x+μ+νzx+μ)(z̄x+νzx+μ+ν)(z̄xzx+ν)

+c.c. + · · · ∝ (c′
1)4c2(Ŝx · Ŝx+μ)(Ŝx+ν · Ŝx+μ+ν) + · · · ,

(2.22)

which correspond to the ring-exchange terms of spins. Higher-
order terms of c2 correspond to nonlocal interactions between
spins. Therefore, the action S2 in Eq. (2.20) corresponds to the
AF Heisenberg model with the ring-exchange terms besides
the J1 and J2 terms in Eq. (2.1).

It should be noticed that the plaquette term is defined on
the 3D cubic lattice, and therefore the induced ring-exchange
interaction is 3D. The gauge field Uxμ is related to the original
Schwinger-boson operators as

Uxμ ∼
{

âx+μ↑âx↓ − âx+μ↓âx↑, x ∈ odd site,

â
†
x+μ↑â

†
x↓ − â

†
x+μ↓â

†
x↑, x ∈ even site;

(2.23)

that is, Uxμ corresponds to creation and destruction operators
of spin-singlet bond at sites x and x + μ. Therefore, the c2

terms in the action S2 (2.20) flip pairs of parallel NN spin-
singlet bonds and enhance the appearance of the resonating-
valence-bond (RVB) liquid.11

From the previous studies,6,12 phase structure of the
quantum spin models corresponding to S2 in Eq. (2.20) is
expected as follows.

(i) For d1 = c2 = 0, a phase transition from a PM state to
the Néel state with AF long-range order takes place as c1 is
increased.13 In a gauge-fixed formalism, the AF Néel state
corresponds to the state in which 〈zx〉 
= 0 and 〈Uxμ〉 � 1.

(ii) As the value of d1 is increased in the AF phase, a spiral
state appears at some critical value of d1c(c1).14 In the spiral
state, zx is parameterized as

zx = 1√
2

(eiωxvx + e−iωx ṽx),

where ω is a constant, and the condensation of smoothly
varying field vx takes place, 〈vx〉 
= 0.

(iii) Furthermore, as the value of c2 is increased, a spin-
liquid state with a deconfined spinon appears. In the spin-liquid
phase, 〈zx〉 = 〈vx〉 = 0 and the gauge dynamics of Uxμ is
in the Coulomb phase. A gapless gauge boson appears as a
low-energy excitation coupled to spinons.

FIG. 8. (Color online) Spin correlations in PM and spiral states for d1 = 2.0. For c′
1 = 4.1 and 4.2, there is a LRO close to 120◦-Néel order.

On the other hand, calculation for c′
1 = 3.8 indicates that spin correlation exhibits short-range spiral order. We particularly call this state the

tilted-dimer state, though it is a part of PM phase. Please remember that the direction of odd-site spins has been reversed.
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FIG. 9. (Color online) Phase transition from the spiral to AF phases for d1 = 2.0. Total specific heat C for d1 = 2.0 exhibits only weak
anomalous behavior at spiral to AF phase transition c′

1 � 6.65.

In the following section, we show the results of studies on
the phase diagram and physical properties of the models S2 in
Eq. (2.20) and S0 in Eq. (2.14), which support qualitatively
the above expectation. As mentioned in the Introduction,
the experiments for frustrated quantum magnet Cs2CuCl4
observed the spiral state and the deconfined spin-liquid state.2,3

Experimental results suggest a crossover in nature of the exci-
tations from spin-1 spin waves at low energies to deconfined
spin-1/2 spinons at medium to high energies. Furthermore,
EtMe3Sb[Pd(dmit)2]2, which is studied intensively these days,
is closely related to the present model. Therefore, results in this
paper are relevant to these materials.

III. NUMERICAL STUDIES

A. c2 = 0 case

In the previous section, we derived the effective models
of the CP1 + U(1) gauge variables from the AF Heisenberg
model on layered triangular lattice. In this section we show
results of the numerical study of the models obtained by
means of the MC simulations. We employed the free boundary
condition in the 1-2 plane as the system may have an
incommensurate spiral order with the layered structure.

We first consider the case with c2 = 0. We investigated
phase structure of the model S2 by calculating the internal
energy E and the specific heat C for various values of c′

1 and
d1,

E = 1

L3
〈S2〉, C = 1

L3
〈(S2 − 〈S2〉)2〉, (3.1)

where L is the system size of the 3D lattice. In the practical
calculation, we employed the local update by the standard
Metropolis algorithm for the total system with size (2 +
L + 2) × (2 + L + 2) × L and performed measurement of
physical quantities in the central L × L × L subsystem.15

We have found that E exhibits no anomalous behaviors,
whereas C exhibits singular behaviors that indicate the
existence of second-order phase transitions as c′

1 and d1 are
varied. Observed phase transition lines in the d1-c′

1 plane are
shown in Fig. 2.

We first consider the PM-AF phase transition. In Fig. 3,
we show E and C as functions of c′

1 for d1 = 1.0. It is
obvious that E exhibits no anomalous behavior, whereas C

has a peak at c′
1 � 3.75 and the peak develops as the system

size is increased. This behavior of C indicates a second-order
phase transition. To verify this observation, we perfomed the

FIG. 10. (Color online) Specific heat of each term for spiral to AF phases transition for d1 = 2.0. Both Cc and Cd exhibit a sharp peak at
c′

1 � 6.65 as system size is increased.
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FIG. 11. (Color online) Spin correlation in spiral and AF states for d1 = 2.0. It gradually changes from spiral to AF orders as c′
1 is increased.

following finite-size scaling (FSS) analysis for the specific
heat,

CL(ε) = Lσ/νφ(L1/νε), (3.2)

where CL is the specific heat of system size L, and ε ≡ (c′
1 −

c′
1∞)/c′

1∞ with c′
1∞ (the critical coupling for L → ∞), and

we estimated the critical exponents as ν = 1.1 and σ = 0.22
and the critical coupling c′

1∞ = 3.70. The resultant scaling
function φ(x) is shown in Fig. 4.

In order to understand the physical meaning of each phase,
we investigated correlation functions of spins that are given as

GS(r) = 1

2

∑
j=1,2

〈nx · nx+jr〉, G′
S(r) = 〈nx · nx+(1+2)r〉,

(3.3)

where nx = (z̄x �σzx). Numerically obtained results are shown
in Fig. 5. At c′

1 = 3.6, the correlation functions have no long-
range order (LRO). On the other hand, at c′

1 = 4.0 and 4.7, they
exhibit AF LRO. (Please recall that we have changed variables
zx → z̃x, x ∈ odd site.) From this result, we conclude that
transition from the PM to AF phases takes place at c′

1 � 3.70.
We turn to the phase transition from the PM to spiral states,

as shown in Fig. 6. For d1 = 2.0, calculation of the total specific
heat C as a function of c′

1 is shown in Fig. 6. We also measured
the specific heat of each term of the action, which is defined

FIG. 12. (Color online) Phase diagram of model S0. There are
three phases, AF, PM, and spiral, as in the model S2. All phase
transition lines are of second order.

similarly to C in Eq. (3.1), in order to see the physical meaning
of the phase transition:

Cc = 1

L3
〈(Sc − 〈Sc〉)2〉,

(3.4)

Cd = 1

L3
〈(Sd − 〈Sd〉)2〉,

where

Sc = −c′
1

∑
x,μ

(z̄x+μUxμzx + c.c.),

(3.5)
Sd = d1

∑
x

|z̄xzx+1+2|2

FIG. 13. (Color online) Spin correlation functions in model S0

for d1 = 3.0.
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FIG. 14. (Color online) Phase diagram in the c2-c′
1 plane for d1 =

2.0. The spin-liquid phase appears in the vicinity of PM (tilted-dimer)
and spiral phases.

(see Fig. 7). From these results, it is obvious that a second-order
phase transition from the PM to spiral states takes place at
c′

1 � 3.9. It is interesting to see that the c′
1 term of the action

tends to fluctuate strongly at the phase transition point but the
d1 term does not.

We measured the spin correlations at c′
1 = 3.8,4.1, and 4.2.

The results are shown in Fig. 8. It is obvious that at c′
1 =

3.8 the spin does not have a LRO, whereas at c′
1 = 4.1 and

4.2 it has a spiral LRO. One should notice, however, that at
c′

1 = 3.8 the spin correlation has a short-range spiral order,

FIG. 15. (Color online) C as a function of c′
1 for c2 = 1.8 and

d1 = 2.0. There are two peaks at c′
1 � 1.4 and 1.8.

FIG. 16. (Color online) Detailed calculation of C as a function of
c′

1 for c2 = 1.8 and d1 = 2.0. A peak does not develop as system size
is increased.

and therefore we call this “phase” a tilted-dimer state, though
there is no sharp phase boundary between the ordinary PM
with short-range AF order (at d1 � 1) and a tilted-dimer state
with short-range spiral order. This observation supports our
previous study of the AF magnets on anisotropic triangular
lattice assuming short-range spiral order.6 We also measured
the spin correlation in the interlayer direction in the spiral state
and found that it has an ordinary AF correlation, as expected.

We calculated the specific heat and spin correlations for
various values of the parameters c′

1 and d1 and have obtained
a phase transition line that separates the PM and spiral phases.

Finally, let us turn to the spiral-AF phase transition (see
Fig. 9). We show calculations of C and the specific heat of c′

1
and d1 terms (see Figs. 9 and 10). It is obvious that the total
specific heat C exhibits only very weak anomalous behavior
but Cc and Cd both show a sharp peak at c′

1 ∼ 6.7 as the
system size is increased. From this result, we conclude that
the transition from the spiral to AF phases is of second order.

It is also interesting to see how the spin correlation changes
from the spiral to AF phases. Results in Figs. 11 show that the
spin correlation gradually changes from the spiral order to the
AF order.

We also numerically studied the original model S0 in
Eq. (2.14) and obtained similar results to those of model S2.
The obtained phase diagram is shown in Fig. 12, and spin
correlation functions in Fig. 13. Phase transitions are of second
order and spin-correlation functions have similar behavior to
those of S2.

Result for the spiral state obtained in the present subsection
obviously means that the 120◦-Néel state is realized in each
layer for the case of the isotropic triangular case J = J ′.
This result is in good agreement with the previous study on
the AF Heisenberg model on isotropic triangular lattice at
T = 0.16 On the other hand, some of the previous study on the
anisotropic AF Heisenberg model on a 2D triangular lattice
at T = 0 suggested the existence of spin-liquid phases.17 In
the present model, which describes physics of AF magnets on
a layered anisotorpic triangular lattice, the results obtained in
this section show that it does not exist. The spatial dimension
of the systems may play an important role for the existence of
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FIG. 17. (Color online) Specific heat of each term in action for c2 = 1.8 and d1 = 2.0. Behaviors of Cc, Cd , and Cc2 indicate the existence
of two phase transitions as c′

1 � 1.8 and c′
1 � 5.5, respectively.

the spin-liquid phase. In order to address the possibility of the
spin-liquid phase in the present 3D model, we study the effect
of the plaquette term of the emergent gauge field Uxμ in the
following section.

B. c2 > 0 case

In this section, we study the effects of the plaquette c2

term in the action S2. For the c2 = 0 case, we found that there
exist three phases, that is, the AF, spiral, and PM phases. It
is expected that the gauge dynamics in both the AF and the
spiral phases is in the Higgs phase as the condensation of
the spinon field zx suppresses fluctuations of the gauge field
Uxμ. Low-energy excitations are gapless spin waves in both
phases. On the other hand, in the PM phase, it is known that
the confinement phase is realized and low-energy excitations
are the bound state of the spinons such as a spin triplet (z̄x �σzx)
because of the strong fluctuations of Uxμ.

As explained in Sec. II, another possible phase in the
quantum spin systems is the spin-liquid phase. In that phase,
there exist no LROs, whereas low-energy excitation is the
deconfined spinon zx . This means that in the spin liquid only
small fluctuations of the gauge field Uxμ are realized and the
gauge dynamics is in the Coulomb phase. Knowledge of the
gauge field theory suggests that such a spin-liquid phase may
be realized by turning on the plaquette c2 term because this
term suppresses large fluctuations of the gauge field.18 In

the previous study on the Z2 gauge model of the spiral and
spin-liquid phases,6 we found that the deconfined spin-liquid
phase is realized in the vicinity of the spiral and tilted-dimer
states. In the present paper, we show the results of study on
the U(1) gauge model S2 in the c′

1-c2 parameter plane with the
value of d1 fixed.

We first show the phase diagram obtained by the MC
simulations for d1 = 2.0 in Fig. 14. The reason for choosing
this value of d1 is that the spiral and tilted-dimer states
appear as the value of c′

1 is varied for c2 = 0. As shown in
Fig. 14, there exists a crossover line emanating from the point
(c2 � 1.5,c1 = 0) in the vertical direction. This crossover
line separates dense and dilute instanton regions, whereas
both regions belong to the confinement phase of the U(1)
gauge model in 3D. Besides the crossover line, there exist
two sharp second-order phase transition lines emanating from
(c2 = 0,c′

1 = 4.2) and (c2 = 0,c′
1 = 5.5). As shown in Fig. 14,

these are the spiral and AF phase transition lines, respectively.
We also found another “transition line” emanating from
(c2 � 1.05,c′

1 � 2.2), which we identify as a crossover to the
spin-liquid phase.

We show the total specific heat C as a function of c′
1 for c2 =

1.8 and d1 = 2.0 in Fig. 15. There are two peaks at c′
1 � 1.4

and 1.8, and the second peak at c′
1 � 1.8 develops as the system

size is increased, indicating a second-order phase transition.
By FSS analysis, the critical exponent ν is estimated as ν =
0.75 and the critical coupling for L → ∞ as c′

1∞ = 1.67.
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FIG. 18. (Color online) Spin correlation function for various
values of c′

1 (c2 = 1.8 and d1 = 2.0).

Calculation of the spin correlation given later shows that it
is the phase transition to the spiral state. On the other hand,
the first peak at c′

1 � 1.4 does not develop as the system size
is increased. More detailed calculation is shown in Fig. 16.
There exists small system-size dependence, but we think that
this size dependence comes from the free-boundary condition
that we took for the calculation.

It is useful to see how specific heat of each term behaves (see
Fig. 17). The specific heat of the c2 term Cc2, which is defined
similarly to Cc and Cd , is a decreasing function of c′

1 and
changes its behavior at c′

1 � 1.4. On the other hand, the specific
heats of the c′

1 term and d1 term both have peaks at c′
1 � 1.8

and c′
1 � 5.5 and these peaks develop as the system size is

increased. This result suggests that there is a second-order
phase transition at c′

1 � 5.5 besides that at c′
1 � 1.8.

It is important to see how the spin correlation function
behaves and to verify properties of each phase observed by
the measurement of C. Obtained results of the spin correlation
for c2 = 1.8,d1 = 2.0 are shown in Fig. 18. At c′

1 = 1.0 and
1.5, there exists no LRO, whereas at c′

1 = 2.4,4.0, and 5.0 the
LR spiral order appears. Furthermore, at c′

1 = 6.0, the spin
correlation shows the AF LRO. All the above results verify the
phase diagram shown in Fig. 14

In order to investigate the gauge dynamics, it is useful
to study instanton (monopole) density ρ, which measures
magnitude of topologically nontrivial fluctuations of the gauge
field Uxμ. ρ(x) is defined as follows for the gauge field
configuration Ux,μ = eiθx,μ .12,19 First we consider the magnetic
flux �x,μν penetrating plaquette (x,x + μ,x + μ + ν,x + ν):

�x,μν = θx,μ + θx+μ,ν − θx+ν,μ − θx,ν,

(−4π � �x,μν � 4π ). (3.6)

We decompose �x,μν into its integer part nx,μν , which
represents the Dirac string (vortex line), and the remaining
part �̃x,μν ,

�x,μν = 2πnx,μν + �̃x,μν, (−π < �̃x,μν � π ). (3.7)

Then instanton density ρ(x) at the cube around the site
x + 1̂

2 + 2̂
2 + 3̂

2 of the dual lattice is defined as

ρ(x) = −1

2

∑
μνλ

εμνλ(nx+μ,νλ − nx,νλ)

FIG. 19. (Color online) Instanton density as a function of c′
1 (c2 =

1.8 and d1 = 2.0). Arrows indicate location of crossover observed by
calculation of C. Small value of ρ means that fluctuations of gauge
field Ux,μ are suppressed.

= 1

4π

∑
μνλ

εμνλ(�̃x+μ,νλ − �̃x,νλ), (3.8)

where εμνλ is the antisymmetric tensor.
In Fig. 19, we show the calculation of

ρ = 1

L3

∑
x

|ρ(x)|.

As the gauge dynamics is already in the dilute-instanton region
of the confinement phase for c′

1 = 0, the value of ρ is small,
but it decreases at c′

1 � 1.4, and its behavior becomes clear
as the system size is increased. This result indicates that the
region between two peaks at c′

1 = 1.4 and 1.8 corresponds to
the “deconfined Coulomb phase.” In this phase, the gapless
gauge boson θxμ appears as a low-energy excitation besides
the deconfined spinons.

The global phase diagram in Fig. 14 is consistent with that
of the Z2 spin-liquid model obtained in Ref. 6. In the Z2 model,
however, the phase transition from spiral phase to PM phase is
of first order and there exists a sharp phase boundary between
spin-liquid and PM phases. Anyway, results obtained in this
paper support discussions in term of Z2 models for frustrated
quantum AF magnets at T = 0.

FIG. 20. (Color online) Circled region of the phase diagram was
studied in the previous paper in terms of gauge theories with local
Z2 gauge symmetry (see Ref. 6). The results obtained in Ref. 6 and
the present paper show that there exist the PM-tilted-dimer, spiral,
and deconfined spin-liquid phases in the AF magnets on a triangular
lattice at low T .
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IV. SUMMARY

In this paper we have studied the phase structure of the
AF spin model on a layered anisotropic triangular lattice. We
used the Schwinger bosons for representing quantum spins and
also employed the coherent-state path integral methods. We
focused on finite-T phase diagram and investigated it by means
of the MC simulations. We calculated the internal energy,
specific heat, and spin correlation functions. In the absence
of the c2 term, we found that there exist three phases, that is,
AF, PM, and spiral phases. All phase transitions between them
are of second order.

Then we turned on the c2 term and investigated if the
deconfined spin-liquid phase appears. Calculations of the
specific heat and instanton density show that there exists
deconfined spin liquid in the vicinity of the spiral and tilted
dimer states. This result is in good agreement with the results
of our previous study6 in which we assumed a short-range
spiral order and focused on the region in the phase diagram
shown in Fig. 20. However, the present study indicates that
there is not a sharp phase boundary between the tilted-dimer
state and spin liquid; that is, this “transition” is a crossover.
At very low T , it is possible that this crossover changes to a

genuine phase transition as the imaginary time plays a role of
another dimension.

It is intriguing to notice that all of the observed phases in
the present model exist in an effective field theory of U(1)
Chern-Simons gauge fields that describe frustrated quantum
AF magnets in 2D and at T = 0.20 In that field theory,
quasiexcitations are spinons and visons, which have mutual
semionic statistics. Chern-Simon theory is quite useful to
describe these excitations in 2D. Though there is no direct
connection between Chern-Simons theory and the present 3D
model, it is interesting to investigate possible relations between
them.

It is also very interesting to study how hole doping changes
the observed phase diagrams and how doped holes behaves in
various magnetic phases. This problem is under study and we
hope to report the results in a future publication.
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