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The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our
treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d → s electron-scattering process
involved in spin relaxation is the inverse of the s → d process responsible for the anisotropic magnetoresistance
(AMR). As a result, spin-relaxation rate 1/τsr and AMR �ρ are given by similar formulas, and are in a constant
ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have
spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic
materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of
Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted
values of 1/τsr and �ρ are plotted versus resistivity of the sample. These predictions are compared to values of
1/τsr and �ρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.
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I. INTRODUCTION

The accepted theory of spin relaxation in metals and
semiconductors is due to Elliott.1 Because of spin-orbit
interaction, nominally spin-down states of the 3d band acquire
a small spin-up admixture. Then, random electric potentials of
phonons, solutes, or defects can induce spin-flip scattering
events from down to up. A review paper by Yafet2 summarizes
early work on the theory. Experiments and theory in the case
of phonon scattering have been connected successfully3 for
several monovalent and polyvalent nonmagnetic metals. Fulde
and Luther, as well as Tserkovnyak et al. and Skadsem et al.,4

have developed theories of spin relaxation specifically for
ferromagnetic metals, as part of their work on Gilbert damping.

In metallic ferromagnets, the spin-relaxation rate 1/τsr is
important because it influences the Gilbert damping param-
eter α associated with ferromagnetic-resonance linewidths.
Inversely, the value of 1/τsr can be derived from the measured
value of α, as we will see in Sec. V.

The purpose of the present paper is to develop a theory
of spin relaxation in metallic ferromagnets. As in Refs. 4
and 5, the relaxation considered here is that of spin-down
3d electrons. This is different from the s-d exchange model,
where only 4s conduction-electron spins are assumed to relax.
Similarly, our theory does not apply to the phenomenon of
giant magnetoresistance, where spin relaxation is important
but the involved electrons are high-mobility 4s electrons.
Nevertheless, since there are no spin-up 3d electrons at the
Fermi level in the materials considered here (Sec. II), the final
state of the relaxation process is a 4s ↑ state (Fig. 1).

Our theory is based on the two-current model of electrical
transport. In that model,6−8 spin-up and spin-down charge
carriers are assumed to each have unique and well-defined
effective mass and momentum-relaxation rate, different from
the other. Like spin relaxation,1 the existence of the anisotropic
magnetoresistance effect (AMR) depends9 on spin-flip scatter-
ing processes. Both phenomena can be understood within the
two-current model. We will make use of existing experimental
data on AMR to determine the value of parameters of that
model.

II. ELECTRONIC STATES AND SPIN RELAXATION

Band-structure calculations for Ni (Ref. 10) all show that
the spin-up Fermi level is located above the top of the 3d band
(Fig. 1), in a region with the low density of states and high
electron velocity characteristic of 4s electrons. The spin-up
Fermi surface of Ni even has11 necks similar to those of Cu.
This is confirmed by ordinary Hall-effect data12 in fcc Ni-Cu,
Ni-Fe-Cu, and Ni-Co, where the spin-up 3d band is also full.
They show that a small number �0.3 electrons/at. of carriers
carry the majority of the current. It is also confirmed by
deviations from Matthiessen’s rule7,8 in the same kind of
alloys, which indicate a large ratio 3-20 of spin-up to spin-
down conductivities. Despite s-d hybridization, it is these
distinct properties that justify giving the name 4s to these
spin-up electrons at the Fermi level. The same properties
make possible the existence of the giant magnetoresistance
effect used in reading heads, the topic of the 2007 Nobel
Prize in Physics, and the existence of the spin-transfer torque.
Nickel-rich Ni-Fe, Ni-Zn, cobalt, Co-Ni, and cobalt-rich Co-Fe
also belong to that class of materials, which fall on the right-
hand side of the so-called Slater-Pauling curve of saturation
magnetization versus electron concentration.

Alloys such as Ni-Cr, Ni-V, Ni-Mo, Ni-Mn, Co-Cr, and
Co-Mn have7,8 spin-up 3d states at the Fermi level. As
explained at the end of Sec. III, our theory does not apply
to them. With some modifications, it can cover the case of bcc
iron alloys, as shown at that location.

The spin-down Fermi level of Ni or Co alloys is in the
3d band (Fig. 1). The Hamiltonian of itinerant 3d electrons is

H = Hkin + U (r) + gμBsHex + Hso + V (r),

Hso = ξ
[

1
2 (L+s− + L−s+) + Lzsz

]
, (1)

V (r) = �
Nsc
i=1v(r − ri).

Here, Hkin is the kinetic energy, U (r) is the crystal periodic
potential energy, Hex is the Stoner d-d exchange field, and Hso

is the spin-orbit energy associated with U (r). Also, V (r) is the
total potential energy of scatterers, v(r − ri) is the energy of
a single scatterer at location ri, and Nsc the total number of
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FIG. 1. Band structure of fcc Ni and Ni alloys. The spin-up and
spin-down densities of states D↑ and D↓ are plotted vs energy E.
A d → s spin-relaxation process [Eq. (3)] is shown as a thick solid
near-horizontal line. It goes from a spin-down 3d state, labeled k
and m, to a spin-up 4s state labeled k′. Spin-up admixtures [Eq. (2)],
labeled k and n, to a spin-down 3d state labeled k and m, are indicated
by an oblique dashed line.

scatterers. The +z axis is parallel to the total 3d spin. In a pure
metal, the spin-down eigenstates of Hkin + U + gμBsHex are
Bloch waves χ−(sz)φkm(r), where m = 1–5 is a band index. As
shown by Hodges et al.13 and discussed by Herring,14 there are
4s admixtures to states of the 3d band, but these admixtures
have only a minor effect on the width and structure of that
band. For simplicity, they will be ignored here.

If, in addition, we switch Hso on, the nominally spin-down
eigenstates near the Fermi level, labeled by indices k and
m = 1–5 (Fig. 1), become1

ψ
↓
km � χ−(sz)φkm + �nbkmnχ+(sz)φkn, (2)

where the small dimensionless coefficients bkmn are given by
first-order perturbation theory. These spin-up admixtures to
spin-down states are labeled by indices k and n = 1–5 (Fig. 1),
and are caused by the spin-flip part L+s− + L−s+ of Hso. Since
Hso originates from the periodic potential U (r), it is itself a
periodic operator. Therefore, k commutes with Hso, and only
states of the same k and different n are mixed together by
Hso. The nonflip part Lzsz, only affecting the g factor, will be
ignored.

We consider a spin-relaxation process where the total
3d spin increases toward its equilibrium value, through one-
electron processes. As will be explained in Sec. V in relation to
Gilbert damping, usually only the spin relaxation of states near
the Fermi level matters. Therefore, the important scattering
event, shown as a thick nearly horizontal solid line in Fig. 1,
is from the 3d ↓ state ψ

↓
km to a 4s ↑ state χ+(sz)φ4s

k′ . Using the
first Born approximation, we have

1/τsr = 2π

h̄

∣∣〈ψ↓
km

∣∣V (r)χ+(sz)φ4s
k′

〉∣∣2
D↑(EF ). (3)

The horizontal bar indicates an average over k and k′ at the
Fermi level EF , and D↑(E) is the 4s ↑ density of states. We

have ignored increases of the magnitude of the spin-down
3d wave function at the location of scatterers caused by
3d scattering resonances. We also ignore the effect of Hso

on the 4s ↑ states. We combine Eqs. (2) and (3). In the square
of the matrix element in Eq. (3), the double products coming
from the index i disappear because scatterers are at random
locations. Then

1/τsr = 2π

h̄
|�nb

∗
kmnJ

+
kk′n|2NscD↑(EF ),

(4)
J+

kk′n = 〈
φkn

∣∣v(r)φ4s
k′

〉
.

We see that spin relaxation is made possible1 by the spin-up
admixtures to spin-down 3d states, represented by coefficients
bkmn in Eq. (4).

III. ELECTRICAL CONDUCTION AND AMR

The spin-up and spin-down momentum-relaxation times
τ↑,τ↓ are related to the corresponding zero-field resistivities
ρ↑, ρ↓:

ρ↑ = m↑
e2n↑τ↑

, ρ↓ = m↓
e2n↓τ↓

. (5)

Here, m↑,m↓ and n↑,n↓ are the spin-up and spin-down
effective masses and electron densities. The measured zero-
field resistivity ρ is given by

ρ−1 = ρ−1
↑ + ρ−1

↓ . (6)

The value of τ↑ is limited by s → s scattering processes,
represented by a relaxation time τ ss

↑ . Because of the spin-up
admixtures to spin-down 3d states, already mentioned, s → d

scattering from 4s ↑ states is also possible.7 Using Eq. (2) and
the same ideas as mentioned earlier, we obtain

1/τ↑ = 2π

h̄
|�nb

∗
kmnJ

+
kk′n|2NscD↓(EF ) + 1/τ ss

↑ . (7)

Here, D↓(E) is the spin-down density of states. The first
term of Eq. (7) is very similar to Eq. (4), because the s → d

scattering processes involved in 1/τ↑ are exactly the inverse
(Fig. 1) of the d → s processes responsible for 1/τsr.

As stated earlier, the spin-down states χ−(sz)φkm at the
Fermi level are mostly 3d in character, with a high density
of states. Therefore, we can neglect s → s scattering and
spin-orbit interaction when calculating 1/τ↓ to use in Eq. (5).
Nevertheless, one sheet of the spin-down Fermi surface, called
s-d (Ref. 10) and with states χ−(sz)φsd

k , has a smaller effective
mass m↓ than others and may carry most of the spin-down
current. This is confirmed by data of cyclotron resonance for
Ni, discussed in Sec. V, which show m↓ smaller than m↑. Then
we write

1/τ↓ = 2π

h̄
|J−

kk′m|2NscD↓(EF ),
(8)

J−
kk′m = 〈

φkm

∣∣v(r)φsd
k′

〉
.

In experiments of AMR, the resistivities ρ‖,ρ⊥ are mea-
sured in the magnetically saturated state, with current parallel
and perpendicular to the magnetization, respectively. The
AMR is �ρ = ρ‖ − ρ⊥. Similarly, we define spin-up and
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spin-down resistivities ρ
‖
↑,ρ

‖
↓,ρ⊥

↑ ,ρ⊥
↓ in the saturated state.

They obey the following relations:

(ρ‖)−1 = (ρ‖
↑)−1 + (ρ‖

↓)−1, (ρ⊥)−1 = (ρ⊥
↑ )−1 + (ρ⊥

↓ )−1.

(9)

Then, we can define the spin-up and spin-down anisotropies
�ρ↑ = ρ

‖
↑ − ρ⊥

↑ and �ρ↓ = ρ
‖
↓ − ρ⊥

↓ .
We use Eqs. (6) and (9) to derive the Dorleijn-Miedema

relation15 between the various anisotropies:

�ρ = �ρ↑

(
ρ

ρ↑

)2

+ �ρ↓

(
ρ

ρ↓

)2

. (10)

Campbell, Fert, and Jaoul7 have derived the relation �ρ↑ =
−�ρ↓ from the normalization condition for the 3d wave
function. However, Eq. (10) shows that the choice of �ρ↓ has
little effect on the value of �ρ, in the nickel alloys considered
here where ρ↓ 
 ρ↑. Instead, we simply assume �ρ↓ = 0.
Then, Eqs. (10) and (6) give

�ρ = �ρ↑
(1 + ρ↑/ρ↓)2

. (11)

In the AMR theory of Smit,9 �ρ↑ is caused by a corre-
sponding anisotropy �(1/τ↑) of 1/τ↑. Writing in the saturated
state equations similar to Eqs. (5), for current parallel and
perpendicular to the magnetization, we obtain

�ρ↑ = m↑
n↑e2

�(1/τ↑). (12)

Also writing Eq. (7) for current parallel and perpendicular,
we have

�(1/τ↑) = 2π

h̄
NscD↓(EF )�(|�nb

∗
kmnJ

+
kk′n|2). (13)

While the details of the process of averaging over k and k′ in
Eqs. (3), (4), (7), and (8) were not critical, in the case of Eq. (13)
the contribution of each k′ must have a weight proportional
to the square of the cosine of the angle between k′ and the
current. Finally, we combine Eqs. (5)–(8) and (11)–(13),

ρ↑ = δρ↓ + ρss
↑ , ρss

↑ = m↑
n↑e2τ ss

↑
, (14)

�ρ = γρ↓
(1 + ρ↑/ρ↓)2

, δ = m↑/n↑
m↓/n↓

|�nb
∗
kmnJ

+
kk′n|2

|J−
kk′m|2

,

(15)

γ = m↑/n↑
m↓/n↓

�(|�nb
∗
kmnJ

+
kk′n|2)

|J−
kk′m|2

.

Note that the quantities δ and γ are independent of the
number Nsc of scatterers. For solute scatterers, if the range of
v(r) is the electrostatic shielding length of the Ni matrix, they
will also be independent of the nature of the solutes. Campbell,
Fert, and Jaoul8 have shown experimentally that γ has a value
0.01 for solute scattering in Ni dilute alloys at low temperature.

Campbell, Fert, and Pomeroy6,7 have introduced a coupling
between spin-up and spin-down electron gases, through
collisions with thermal magnons. We will ignore this “spin
mixing” for two reasons. First, such inelastic collisions should
cause a reduction of the Lorenz number. But heat-transport
data show no such reduction.16 Also, measured �ρ values

versus temperature17 in alloys are nearly equal to values versus
thin-film thickness18 for given resistivity. This fact cannot be
explained on the basis of spin mixing, and suggests that spin
mixing is not needed.

Similarly, by combining Eqs. (4), (5), and (8), we obtain

1/τsr = δ
D↑(EF )

D↓(EF )

n↑e2

m↑
ρ↓. (16)

This equation is the main result of the present paper. In the
Elliott theory1 of spin relaxation in nonmagnetic materials,
it was found that 1/τsr was proportional to the electrical
resistivity ρ. In the case of a metallic ferromagnet, our Eq. (16)
shows that 1/τsr is proportional to ρ↓. Note that the latter is
larger than ρ↑ or the measured resistivity ρ, by a factor that
depends on the nature of scatterers and reaches 20 in bulk
Ni-Fe and Ni-Co at low temperature.

Equations (15) and (16) predict that 1/τsr and �ρ remain
in a constant ratio as ρ↓ or the nature of solutes changes, if
we neglect the variation of the factor (1 + ρ↑/ρ↓)2; usually,
that factor is only slightly larger than 1, since ρ↑ 
 ρ↓. This
prediction applies to various dilute solutes such as Cu, Co or
Fe in a Ni matrix, or Ni or Fe in a Co matrix; these solutes
are chosen to keep the spin-up 3d band full. Note that the
prediction holds only for solute scattering at low temperature
(see Secs. V and VI).

The presence7,8 of spin-up 3d states at the Fermi level of
Ni-Cr, Ni-V, Ni-Mn, Co-Cr, and Co-Mn causes changes in the
value of the quantity D↑n↑/(D↓m↑) appearing in Eq. (16).
These changes depend on the nature of the solute. Therefore,
the earlier prediction of 1/τsr and �ρ being in a constant ratio
does not apply to this class of alloys. But, since these alloys fall
below the Slater-Pauling curve, their saturation magnetization
is usually small, and they are not very important as magnetic
materials.

In bcc iron alloys such as Fe-Cr, Fe-V, and iron-rich Fe-Co,
the spin-down Fermi level is pinned in a gap of the 3d band.
As a result,6 we have D↑ � D↓ and ρ↓ � ρ↑. Therefore, the
roles of the spin-up and spin-down 3d bands are interchanged.
The present theory is still valid provided ρ↑ is replaced by ρ↓
everywhere and vice versa. For example, 1/τsr and �ρ are still
in a constant ratio for solute scattering. These iron alloys are
on the left-hand side of the Slater-Pauling curve.

IV. PREDICTED �ρ FOR PERMALLOY WITH TWO
KINDS OF SCATTERERS

In the Ni or Co alloys considered here, solute scattering7,8

gives much larger value of �ρ/ρ than phonon,16 surface,
or grain-boundary19 scattering. Therefore, we will lump
together the spin-up s → s resistivities generated by the
various scatterers of the second class into a quantity ρss

↑g . The
corresponding quantity for solute scattering is ρss

↑sol. We write
Matthiessen’s rule for spin-up s → s scattering as

ρss
↑ = ρss

↑sol + ρss
↑g. (17)

For ρ↓, we also use Matthiessen’s rule and write a sum of two
terms. Because of s → d scattering in the spin-down band,
with D↓ � D↑, each term is a multiple αsol > 1 or αg > 1 of
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the corresponding term of ρss
↑ ,

ρ↓ = αsolρ
ss
↑sol + αgρ

ss
↑g. (18)

Then, we substitute Eqs. (17) and (18) into the first Eq. (14),

ρ↑ = (δαsol + 1)ρss
↑sol + (δαg + 1)ρss

↑g. (19)

We treat the case of Permalloy, that is, of Ni100−xFex ,
with x = 15–25 at. %. We start with bulk Permalloy at low
temperature, where ρss

↑g � 0. The need to fit measured values
of ρ and �ρ in the bulk at low temperature constrains the
choice of ρss

↑sol and αsol in Eqs. (18), (19), and (15). We
choose ρss

↑sol = 0.8 × 10−8 � m and αsol = 100. We use the
same γ = 0.01 as mentioned earlier for dilute Ni alloys. Then,
the correction factor (1 + ρ↑/ρ↓)2 takes the value 1.126. And
Eqs. (18), (19), (15), and (6) yield ρ = 3.81 × 10−8 � m and
�ρ = 0.726 × 10−8 � m. These give the extreme left-hand
point of the solid curves in Fig. 2, and are in fair agreement
with corresponding experimental data for bulk Permalloy at 4
or 20 K, also on the left-hand side of Fig. 2.

As we increase T or go to thin films, thus introducing
phonons, grain boundaries, or surfaces, ρss

↑g increases from
zero. The correction factor increases, too. The predicted values
of ρ and �ρ, given by Eqs. (18), (19), (15), and (6), are
plotted as solid lines in Fig. 2, for αg equal to 2 and 4.
Bozorth,20 Van Elst,17 Berger and Rivier,21 and McGuire and
Potter22 have measured ρ and �ρ of bulk Permalloy at various
temperatures. Mitchell18 and Williams and Mitchell23 have
done similar measurements on Permalloy films of variable
thickness, at room temperature. These data sets are shown
as various symbols in Fig. 2. The differences between them
are partly caused by slight Fe concentration differences. We
see that αg = 2 gives a better agreement, at high values of ρ,
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FIG. 2. Anisotropic magnetoresistance �ρ vs resistivity ρ for
Permalloy. The solid curves labeled “alphag:2” and “alphag:4” are
predictions for constant γ = 0.01, with αg = 2 and 4, respectively
(Sec. IV). The solid curve labeled “var.gamma,alphag:4” is the
prediction of the variable-γ theory of Sec. VI with γg = 0.005,γsol =
0.01, and αg = 4. The data points represent measured �ρ values
for bulk samples with variable temperature, and for thin films with
variable thickness.

between predicted and measured values of �ρ in thin films
than αg = 4.

V. PREDICTED 1/τsr FOR PERMALLOY WITH TWO
KINDS OF SCATTERERS

Again, we consider Permalloy. The ratio D↑(EF )/D↓(EF )
in Eq. (16) is the same as the ratio of spin-up and spin-down
electronic specific-heat coefficients γ el

↑ /γ el
↓ . Since γ el

↑ 
 γ el
↓ ,

we have24 γ el
↓ � γ el = 4.2 mJ/mol K2. Since γ el

↑ is not directly
measurable in Permalloy, we start with the experimental value
γ el

↑ = γ el/2 = 0.347 mJ/mol K2 for Cu.25 Band-structure
calculations indicate that D↑(EF ) is larger in Ni (Ref. 10)
than in Cu,26 by a factor 1.44. Applying this correction
factor to the Cu value, we obtain γ el

↑ = 0.500 mJ/mol K2 for
Ni or Permalloy. Thus, finally, D↑(EF )/D↓(EF ) = γ el

↑ /γ el
↓ =

0.119. This procedure allows us to take into account electron-
phonon enhancement effects.

Ordinary Hall-effect measurements12 in Ni-rich Ni-Cu,
Ni-Fe-Cu, and Ni-Co show that fewer than 0.3 electrons
per atom carry most of the current, at low temperature.
We will use a value 0.275 electrons/at., corresponding to
n↑ = 2.51 × 1028 electrons/m3. Cyclotron-resonance27 data
give m↑ = 46.4 × 10−31 kg for the spin-up electron effective
mass in Ni, over the belly of the Fermi surface away from
its necks. We will also use this for m↑ in Permalloy. By its
definition [Eq. (14)], δ must be somewhat larger than γ = 0.01.
Therefore, we choose δ = 0.141.

We calculate ρ↓ versus ρss
↑g by Eq. (18), as in the last section.

Then, Eq. (16) gives 1/τsr. Also, we find ρ by Eqs. (18), (19),
and (6), as done earlier. The 1/τsr values are plotted versus
ρ in Fig. 3 as solid lines for the same parameters as before,
αsol = 100 and αg equal to 2 and 4.

Now, we compare these predicted 1/τsr to those derived
from the measured Gilbert constant α. There are two different
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FIG. 3. Spin-relaxation rate 1/τsr vs resistivity ρ for Permalloy.
The solid curves labeled “alphag.2” and “alphag.4” are predictions by
the theory of Secs. IV and V with two kinds of scatterers, for αg = 2
and 4, respectively. The data points represent values of 1/τsr derived
from measurements of the Gilbert damping constant for thin-film
samples with variable temperature and with variable thickness.
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kinds of electron mechanisms for Gilbert damping.28 In one
of them,29 α decreases with increasing ρ. In the other,4,5,30 it
increases with increasing ρ. Measurements of α in Permalloy
films of variable thickness by Ingvarsson et al.31 and by
Counil et al.32 show that the second kind of mechanism is
dominant in this material, except possibly at the lowest ρ

values. As mentioned in the introduction, we are interested
in the spin relaxation of 3d electrons. Therefore, we interpret
the α data with the so-called d-d model,4,5 not with the s-d
exchange model.30 The latter is more complex and, illogically,
attributes spin relaxation to 4s electrons only. The d-d model
yields4,5

α = 1

ωdτsr
, (20)

where ωd = JddS/h̄ is the precession frequency of itinerant
3delectrons in the Stoner exchange field, Jdd = 0.5 eV is the
d-d exchange integral, and S � 0.47 is the average atomic
spin in Permalloy. Our unpublished quantum-mechanical
derivation of Eq. (20) from the d-d model indicates that
the net electron-spin relaxation rate 1/τsr vanishes except for
states near the Fermi level. This is a consequence of the Pauli
exclusion principle, and manifests itself by factors df/dE in
the expression for the 1/τsr appearing in Eq. (20). Here, f is the
Fermi-Dirac occupation number of an electron state of energy
E. Such factors vanish away from the Fermi level. The same
factors appear, for the same reasons, in quantum treatments30

of Gilbert damping based on the s-d exchange model.
Ponce, Bhagat, and Lubitz33 measured α on a Permalloy

film of thickness 270.7 nm, between 4 and 300 K. The
parameter G that they used is related to α by G = γMsα,
where γ = (g/2) × 1.76 × 107 rad/s Oe, g = 2.10, and Ms �
800 emu/cm3. Although they did not measure ρ, it can be
roughly estimated from existing data for similar bulk and
thin-film samples. Values of 1/τsr are obtained from these
α values by solving Eq. (20). The α and ρ data by Ingvarsson
et al.31 and by Counil et al.32 for Permalloy films of variable
thickness are also used to obtain 1/τsr versus ρ. These
“experimental” values of 1/τsr are shown as various kinds
of data points in Fig. 3.

Over the whole range of ρ (Fig. 3), the best overall
agreement between the Ingvarsson data and two-scatterer
theory [Eqs. (16) and (18)] is obtained for αsol = 100 and
αg = 4. The data show more curvature than the theory. We
give less importance to the Counil data (Fig. 3), because they
extend over a much smaller range of ρ; but, because of their
fast increasing slope (Fig. 3), they would probably yield an
αg value even larger than 4 if they were extended to higher ρ

values.
This differs from the conclusion of the preceding section,

where αg = 2 gave the best fit between theory and data for
�ρ. The next section will show how this contradiction can be
resolved.

VI. VARIABLE-γ THEORY

In his theory of AMR,9 Smit already suggested that phonon
or defect scattering would be intrinsically less anisotropic than
solute scattering. In other words, the quantity γ of Eq. (15)
may depend on the nature of the scatterer. But this idea was

ignored by Campbell, Fert, and Pomeroy,6,7 who introduced
spin mixing instead. If various scatterers contribute additively
to �ρ, a variable γ will have the following form:

γ = γsolαsolρ
ss
↑sol + γgαgρ

ss
↑g

αsolρ
ss
↑sol + αgρ

ss
↑g

, (21)

where γsol and γg are two constants. We already know8

that γsol � 0.01 in dilute Ni alloys. Unpublished calculations
with a simple Einstein model of lattice vibrations yield
γg � 0.7γsol � 0.007.

By combining Eqs. (15), (21), and (18), we have �ρ =
(γsolαsolρ

ss
↑sol + γgαgρ

ss
↑g)/(1 + ρ↑/ρ↓)2. Except for the slow-

varying correction factor (1 + ρ↑/ρ↓)2, this shows that the rate
of variation of �ρ depends only on the product γgαg . Indeed,
Fig. 2 shows that a variable γ with αg = 4,γg = 0.005,γsol =
0.01 gives almost the same �ρ curve as the constant γ of
Sec. IV with αg = 2,γg = 0.01 = γsol. Of course, the value of
γg has no effect on 1/τsr.

Thus, the use of a variable γ [Eq. (21)] removes the
contradiction encountered in Sec. V, allowing us to fit both
�ρ and 1/τsr data with the same value αg = 4 (Figs. 2 and 3).

Hall-effect experiments show12 an increase of n↑ when
solute scattering is replaced by phonon scattering in Ni-Cu,
Ni-Fe-Cu, and Ni-Co alloys. In turn, this causes an increase of
1/τsr in Eq. (16). This might provide an alternate explanation
for the discrepancies between �ρ and 1/τsr discussed here,
provided this n↑ increase also exists for surface and grain-
boundary scattering. Finally, the saturation magnetization
Ms and other magnetic properties of very thin Permalloy
films of the highest resistivity (Fig. 3) have been found34 to
deviate from their normal values. This may give still another
explanation. The severity of this effect is probably less with
modern deposition techniques.

VII. EFFECT OF SPIN-ORBIT INTERACTION
GENERATED BY THE SCATTERING

POTENTIAL V (r)

So far, we used the spin-orbit interaction Hso associated
with the periodic potential U (r) [Eqs. (1)]. But the random
potential V (r) generates2 a different kind of spin-orbit inter-
action, which we call HV

so . The spin-relaxation rates caused by
the two interactions are of the same order of magnitude. Like
Hso, HV

so causes an AMR �ρ, ignored by Smit9 and Fert,6−8

which is also proportional to ρ↓ [Eq. (15)], and is also in a
nearly fixed ratio to the corresponding 1/τsr. Although the
value of that ratio is not quite the same as before, the main
conclusions of the present paper are not changed.

VIII. CONCLUSIONS

The two-current model, used by Campbell, Fert, and
Jaoul6−8 for their AMR theory, is also useful to understand
spin relaxation. Both AMR and spin relaxation are based on
the spin-flip part of spin-orbit interaction [Eqs. (1)]. AMR �ρ

and relaxation rate 1/τsr are predicted to be in a constant ratio
as the concentration or nature of solute scatterers is changed
[Eqs. (15) and (16)]. Our theory covers nickel- and cobalt-
based alloys which do not have spin-up 3d states at the Fermi
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level. This category includes many of the important magnetic
materials. With appropriate modifications, our treatment also
applies to bcc iron-based alloys. We treat in detail the case of
Permalloy at T > 0 or in thin-film form, where two different
kinds of scatterers exist. Parameters of the two-current model
are partly determined from existing AMR data (Sec. IV
and Fig. 2). The spin-relaxation rate 1/τsr is predicted to
increase linearly with increasing resistivity as temperature or
film thickness is varied (Sec. V and Fig. 3). This prediction
is compatible with spin-relaxation rates derived from FMR
linewidth experiments in Permalloy (Fig. 3).

Our theory of spin relaxation in ferromagnetic metals differs
in several respects from those of Fulde and Luther and of
Tserkovnyak et al.4 mentioned in the introduction. First, we

recognize the fact that the spin-up Fermi level is located outside
the 3d band (Fig. 1) in many important materials. Also, we
take into account the degeneracy of the 3d band explicitly
(Sec. II) through the index n = 1–5. Finally, we use the two-
current model6−8 (Sec. IV), in which the spin-up and spin-
down resistivities are different by a factor that can reach 20 in
Ni-Fe and Ni-Co.

As was explained before Eq. (20), the d-d model4,5 is
simpler and more logical than the s-d exchange model to
treat Gilbert damping. Nevertheless, the s-d exchange model
may well35 be more reasonable and realistic for the problem of
current-induced torques on domain walls. This comes35 from
the dominant role of high-mobility 4s ↑ electrons in electrical
transport.
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