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5Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS and Universite Paris-Sud, UMR 8626,
Bâtiment 100, F-91405 Orsay, France

6Laboratory for Neutron Scattering, ETH Zurich and Paul Scherrer Institute, CH-5232 Villigen, Switzerland
7London Centre for Nanotechnology and Department of Physics and Astronomy, University College London,

London WC1E 6BT, United Kingdom
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10Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
11Laboratoire National des Champs Magnétiques Intenses, CNRS (UPR 3228) Université J. Fourier Grenoble I,
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We investigate weakly coupled spin-1/2 ladders in a magnetic field. The work is motivated by recent
experiments on the compound (C5H12N)2CuBr4 (BPCB). We use a combination of numerical and analytical
methods, in particular, the density-matrix renormalization group (DMRG) technique, to explore the phase
diagram and the excitation spectra of such a system. We give detailed results on the temperature dependence of
the magnetization and the specific heat, and the magnetic-field dependence of the nuclear-magnetic-resonance
relaxation rate of single ladders. For coupled ladders, treating the weak interladder coupling within a mean-field
or quantum Monte Carlo approach, we compute the transition temperature of triplet condensation and its
corresponding antiferromagnetic order parameter. Existing experimental measurements are discussed and
compared to our theoretical results. Furthermore, we compute, using time-dependent DMRG, the dynamical
correlations of a single spin ladder. Our results allow to describe directly the inelastic neutron scattering cross
section up to high energies. We focus on the evolution of the spectra with the magnetic field and compare their
behavior for different couplings. The characteristic features of the spectra are interpreted using different analytical
approaches such as the mapping onto a spin chain, a Luttinger liquid or onto a t-J model. For values of parameters
for which such measurements exist, we compare our results to inelastic neutron scattering experiments on the
compound BPCB and find excellent agreement. We make additional predictions for the high-energy part of the
spectrum that are potentially testable in future experiments.
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I. INTRODUCTION

Many fascinating magnetic properties of solids are related
to quantum effects.1 In particular, due to the Pauli principle, the
interplay between interactions and kinetic energy can induce a
strong antiferromagnetic spin exchange. Such exchange leads
to a remarkable dynamics for the spin degrees of freedom. On
simple structures, the antiferromagnetic exchange can stabilize
an antiferromagnetic order. By variations in dimensionality
and connectivity of the lattice a variety of complex phenomena
can arise.

Recently, among those effects two fascinating situations in
which the interaction strongly favors the formation of dimers
have been explored in detail. The first situation concerns
a high-dimensional system in which the antiferromagnetic
coupling can lead to a spin liquid state made of singlets
along the dimers. In such a spin liquid the application of
a magnetic field leads to the creation of triplons that are
spin-1 excitations. The triplons that behave essentially as
itinerant bosons can condense, leading to a quantum phase

transition that is in the universality class of Bose-Einstein
condensation2–4 (BEC). Such transitions have been explored
experimentally and theoretically in a large variety of materials,
belonging to different structures and dimensionalities.5 On the
other hand, low-dimensional systems behave quite differently.
Quantum fluctuations are extreme, and no ordered state
is usually possible. In many quasi-one-dimensional (1D)
systems, the ground-state properties are described by Luttinger
liquid (LL) physics6,7 that predicts a quasi-long-range order.
The elementary excitations are spin-1/2 excitations (spinons).
They behave essentially as interacting spinless fermions. This
typical behavior can be observed in spin ladder systems in
the presence of a magnetic field. Although such systems
have been studied theoretically intensively for many years
in both zero8–16 and finite magnetic field,2,17–27 a quantitive
description of the LL low-energy physics remained to be
performed specially for a direct comparison with experiments.

Quite recently, the remarkable ladder compound28

(C5H12N)2CuBr4, usually called BPCB [also known as
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(Hpip)2CuBr4], has been investigated. The compound BPCB
has been identified to be a very good realization of weakly
coupled spin ladders. The fact that the interladder coupling
is much smaller than the intraladder coupling leads to a
clear separation of energy scales. Due to this separation, the
compound offers the exciting possibility to study both the
phase with LL properties typical for low-dimensional systems
and the BEC condensed phase typical for high dimensions.
Additionally, the magnetic field required for the realization of
different phases lies for this compound in the experimentally
reachable range. The LL predictions have been quantitatively
tested for magnetization and specific heat,29 nuclear magnetic
resonance30 (NMR), and neutron-diffraction (ND)31 measure-
ments. Additionally, the BEC transition and its corresponding
order parameter have been observed experimentally by NMR30

and ND measurements.31

In addition, the excitations of this compound have re-
cently been observed by inelastic neutron scattering (INS)32,33

experiments. These are directly related to the dynamical
correlations of spin ladders in a magnetic field. These
dynamical correlations hardly have been investigated so far.
The direct investigation of such excitations is of high interest,
because they not only characterize well the spin system, but
the properties of the triplon and spinon excitations are also
closely related to the properties of some itinerant bosonic
and fermionic systems. Indeed, by using such mappings6 of
spin systems to itinerant fermionic or bosonic systems, the
quantum spin systems can be used as quantum simulators to
address some of the issues of itinerant quantum systems. One
of their advantages, compared to regular itinerant systems, is
the fact that the Hamiltonian of a spin system is in general
well characterized, because the spin-exchange constants can
be measured directly. The exchange between the spins would
correspond to short-range interactions, leading to very good
realization of some of the models of itinerant particles, for
which the short range of the interaction is usually only an
approximation. In that respect, quantum spin systems play a
role similar to the one of cold atomic gases,34 in connection
with the question of itinerant interacting systems.

In this paper, we present a detailed calculation of the
properties of weakly coupled spin-1/2 ladders. We focus in
particular on their dynamics and their low-energy physics,
providing a detailed analysis and a quantitative description
necessary for an unbiased comparison with experiments.
More precisely, we explore the phase diagram of such a
system, computing static quantities (magnetization, specific
heat, BEC critical temperature, order parameter) and the
NMR relaxation rate, by using a combination of analytic
[mostly LL theory and a Bethe ansatz (BA)] and numerical
[mostly density-matrix renormalization group (DMRG) and
quantum Monte Carlo (QMC)] techniques. We compare our
results with the various measurements on the compound
BPCB. A short account of some of these results in connection
with measurements on BPCB was previously published in
Refs. 29–31. Here we extend these results and give the details
on how the theoretical results were obtained. Motivated by
recent experimental measurements, we further investigate the
excitation spectra and dynamical correlation functions at high
and intermediate energies, for which a theoretical description
is very challenging. We show how for the low-energy part

of the spectrum it is possible to use the mapping to low-
energy effective theories, such as the LL or to a spin chain,
which can be solved by BA techniques.35,36 Such a technique
does not work, however, for energies of the order of the
magnetic exchange of the system. In this paper we thus
complement such analytical approaches by a DMRG analysis.
We use the recent real-time variant to obtain the dynamics37–40

in real time and the dynamical correlation functions. The
same technique can be used also to obtain finite-temperature
results.41–43 This allows to obtain an accurate computation
of the excitation spectra and correlation functions in the
high-energy regime. We use different analytical approaches
to interpret our numerical results.

The paper is structured as follows. Section II defines the
model of weakly coupled spin ladders. Its basic excitations
and phase diagram are introduced as well as the spin chain
mapping, which proves to be very helpful for the physical
interpretations. Section III briefly recalls the different ana-
lytical (LL, BA) and numerical (DMRG, QMC) techniques
that we used to obtain the results described in the present
paper. Section IV gives a detailed characterization of the
phase diagram, focusing on the static properties and the NMR
relaxation rate. Section V presents the computed dynamical
correlations of a single spin ladder at different magnetic fields
and couplings. The numerical calculations are compared to
previous results (link cluster expansion, spin chain mapping,
weak coupling approach) and analytical descriptions (LL, t-J
model). Section VI compares directly the computed quantities
to experimental measurements. In particular, the theoretical
spectra are compared to the low-energy INS measurements
on the compound BPCB. It also provides predictions for
the high-energy part of the INS cross section. Finally,
Sec. VII summarizes our conclusions and discusses further
perspectives.

II. COUPLED SPIN-1/2 LADDERS

In this section we introduce the theoretical model of weakly
coupled spin-1/2 ladders in a magnetic field. We recall its
low-temperature phase diagram, paying special attention to
the regime of strong coupling along the rungs of the ladder.
This regime is particularly interesting because it is realized
in the spin-ladder compound (C5H12N)2CuBr4, customarily
called BPCB. We discuss briefly the energy scales for BPCB
in the present section, leaving more detailed discussions for
Sec. VI.

A. Model

The Hamiltonian we consider is

H3D =
∑

μ

Hμ + J ′ ∑ Sl,k,μ · Sl′,k′,μ′ . (1)

Here Hμ is the Hamiltonian of the single ladder μ and J ′ is
the strength of the interladder coupling. The operator Sl,k,μ =
(Sx

l,k,μ,S
y

l,k,μ,Sz
l,k,μ) acts at the site l (l = 1,2, . . . ,L) of the

leg k (k = 1,2) of the ladder μ. Often we will omit ladder
indices from the subscripts of the operators (in particular, we
replace Sl,k,μ with Sl,k) to lighten notation. Sα

l,k (α = x,y,z)
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FIG. 1. Single ladder structure: J⊥ (J‖) is the coupling along the
rungs (legs) represented by thick (thin) dashed lines and Sl,k are the
spin operators acting on the site l of the leg k = 1, 2.

are conventional spin-1/2 operators with [Sx
l,k,S

y

l,k] = iSz
l,k and

S±
l,k = Sx

l,k ± iS
y

l,k .
The Hamiltonian Hμ of the spin-1/2 two-leg ladder

illustrated in Fig. 1 is

Hμ = J⊥H⊥ + J‖H‖, (2)

where J⊥ (J‖) is the coupling constant along the rungs (legs)
and

H⊥ =
∑

l

Sl,1 · Sl,2 − hzJ−1
⊥ Mz, (3)

H‖ =
∑
l,k

Sl,k · Sl+1,k. (4)

The magnetic field, hz, is applied in the z direction, and Mz

is the z component of the total spin operator M = ∑
l(Sl,1 +

Sl,2). Since Hμ has the symmetry hz → −hz, Mz → −Mz, we
only consider hz � 0. The relation between hz and the physical
magnetic field in experimental units is given in Eq. (40).

B. Energy scales

In the present paper we focus on the case of spin-1/2
antiferromagnetic ladders that are weakly coupled to one
another. This means that the interladder coupling J ′ > 0 is
much smaller than the intraladder couplings J‖ and J⊥, i.e.,

0 < J ′ � J‖ and J⊥. (5)

As we will show, the model (1) accurately describes the
magnetic properties of the compound BPCB. Its detailed
description is given in Sec. VI. The couplings have been
experimentally determined to be30,31

J ′ ≈ 20–100 mK (6)

and30

J‖ ≈ 3.55 K, J⊥ ≈ 12.6 K. (7)

More details about the determination of the couplings for the
compound BPCB are given in Sec. VI.

C. Spin ladder to spin chain mapping

The physical properties of a single ladder (2) are defined
by the value of the dimensionless coupling

γ = J‖
J⊥

. (8)

In the limit J‖ = 0 (therefore γ = 0), the rungs of the ladder
are decoupled. Hereafter we refer to this as the decoupled
bond limit. The four eigenstates of each decoupled rung are as

FIG. 2. (a) Energy of the triplets |t+〉, |t0〉, |t−〉 (solid lines) and
singlet |s〉 (dashed line) vs the applied magnetic field in the absence of
an interrung coupling (J‖ = 0). The dotted lines represent the limits
of the triplet excitation band when J‖ 	= 0. (b) Phase diagram of
weakly coupled spin ladders: Crossovers (dotted lines) and the phase
transition (solid line) that only exists in the presence of an interladder
coupling are sketched.

follows: the singlet state

|s〉 = |↑↓〉 − |↓↑〉√
2

, (9)

with the energy Es = −3J⊥/4, spin S = 0, and z projection
of the spin Sz = 0, and three triplet states

|t+〉 = |↑↑〉, |t0〉 = |↑↓〉 + |↓↑〉√
2

, |t−〉 = |↓↓〉, (10)

with S = 1, Sz = 1,0,−1, and energies Et+ = J⊥/4 − hz,
Et0 = J⊥/4, Et− = J⊥/4 + hz, respectively. The ground state
is |s〉 below the critical value of the magnetic field, hDBL

c = J⊥,
and |t+〉 above. The dependence of the energies on the
magnetic field is shown in Fig. 2(a).

A small but finite γ > 0 delocalizes triplets and creates
bands of excitations with a bandwidth ∼J‖ for each triplet
branch. This leads to three distinct phases in the ladder
system (2) depending on the magnetic field:

(i) Spin liquid phase (this phase is also called the quantum
disordered phase5), which is characterized by a spin-singlet
ground state (see Sec. IV A) and a gapped excitation spectrum
(see Sec. V B). This phase appears for magnetic fields ranging
from 0 to hc1 .

(ii) Gapless phase, which is characterized by a gapless
excitation spectrum. It occurs between the critical fields hc1 and
hc2 . The ground-state magnetization per rung, mz = 〈Mz〉/L,
increases from 0 to 1 for hz running from hc1 to hc2 . The
low-energy physics can be described by the LL theory (see
Sec. III C).

054407-3



PIERRE BOUILLOT et al. PHYSICAL REVIEW B 83, 054407 (2011)

(iii) Fully polarized phase, which is characterized by the
fully polarized ground state and a gapped excitation spectrum.
This phase appears above hc2.

Besides ladders, the transition between (i) and (ii) can occur
in several other gapped systems such as the Haldane S = 1
chains or frustrated chains.19,44–46 In the gapless phase, the
distance between the ground state and the bands |t0〉 and |t−〉,
which is of the order of J⊥, is much larger than the width of
the band |t+〉 ∼ J‖, because γ � 1.

For small γ the ladder problem can be reduced to a
simpler spin chain problem. The essence of the spin chain
mapping2,17,47,48 is to project out |t0〉 and |t−〉 bands from the
Hilbert space of the model (2). The remaining states |s〉 and
|t+〉 are identified with the spin states

|↓̃〉 = |s〉, |↑̃〉 = |t+〉. (11)

The local spin operators Sl,k therefore can be identified in the
reduced Hilbert space spanned by the states (11) with the new
effective spin-1/2 operators S̃l :

S±
l,k = (−1)k√

2
S̃±

l , Sz
l,k = 1

4

(
1 + 2S̃z

l

)
. (12)

The Hamiltonian (2) reduces to the Hamiltonian of the spin-
1/2 XXZ Heisenberg chain,

HXXZ = J‖
∑

l

(
S̃x

l S̃x
l+1 + S̃

y

l S̃
y

l+1 + �S̃z
l S̃

z
l+1

)
− h̃zM̃z + L

(
−J⊥

4
+ J‖

8
− hz

2

)
. (13)

Here the pseudospin magnetization is M̃z = ∑
l S̃

z
l , the mag-

netic field h̃z = hz − J⊥ − J‖/2, and the anisotropy parameter

� = 1
2 . (14)

Note that the spin chain mapping constitutes a part of a
more general strong coupling expansion of the model (2), as
discussed in Appendix A.

For the compound BPCB the parameter γ is rather small,

γ ≈ 1
3.55 ≈ 0.282, (15)

and the spin chain mapping (13) gives the values of many
observables fairly well. Some important effects are, however,
not captured by this approximation. Examples will be given in
later sections.

D. Role of weak interladder coupling

Let us now turn back to the more general Hamiltonian (1)
and discuss the role of a weak interladder coupling J ′
[couplings ordered as in Eq. (5)]. The spin liquid and fully
polarized phases are almost unaffected by the presence of
J ′ whenever the gap in the excitation spectrum is larger
than J ′ (see, e.g., Ref. 18 for more details). However, a
new three-dimensional (3D) antiferromagnetic order in the
plane perpendicular to hz emerges in the gapless phase for
T � J ′. The corresponding phase, called 3D-ordered, shows
up at low enough temperatures Tc in numerous experimental
systems with reduced dimensionality and a gapless spectrum.5

For the temperature T � J ′ the ladders decouple from each
other and the system undergoes a deconfinement transition

into a LL regime (which will be described in Sec. III C).
For T � J‖ the rungs decouple from each other and the
system becomes a (quantum-disordered) paramagnet. All of
the above-mentioned phases are illustrated in Fig. 2(b).

III. METHODS

In this section, we present the methods used to study the
ladder system and its mean-field extension to the case of
weakly coupled ladders. We first focus on the so-called DMRG
or matrix product state (MPS) methods. These numerical
methods allow us to investigate dynamical correlations at
zero and finite temperature. Additionally, we discuss the BA
used to obtain properties of the system after the spin chain
mapping. Furthermore, we introduce an analytical low-energy
description for the gapless phase, the LL theory. This theory, in
combination with a numerical determination of its parameters
(see Appendix B), gives a quantitative description of the
low-energy physics. Finally, we treat the weak interladder
coupling J ′ by a mean-field approach, both analytically and
numerically, and a QMC technique.

A. DMRG

A numerical method used to determine static and dynamical
quantities at zero and finite temperature of a quasi1D system is
the DMRG. This method was originally introduced by White49

to study static properties of 1D systems. Since usually the
dimension of the total Hilbert space of a many-body quantum
system is too large to be treated exactly, the main idea of
the DMRG algorithm is to describe the important physics by
using a reduced effective space. This reduced effective space is
chosen optimally by using a variational principle. The DMRG
has been proven very successfully in many situations and has
been generalized to compute dynamical properties of quantum
systems by using different approaches in frequency space.50–52

Recently the interest in this method even increased after a
successful generalization to time-dependent phenomena and
finite-temperature situations.37–43 The real-time calculations
give an alternative route to determine dynamical properties
of the system38 that we use in the following. An overview
of the method, its extensions, and its successful applications
to real-time and finite temperature can be found in Refs. 50
and 51. Further details on the method and its technical aspects
are given in Appendix C.

B. Bethe ansatz (BA)

The spin-1/2 XXZ chain (13), which is obtained after the
spin chain mapping of the system is exactly solvable: The so-
called BA technique gives explicit analytic expressions for its
eigenfunctions and spectrum.53,54 To convert this information
into a practical recipe of calculation of the correlation functions
is a highly sophisticated problem. However, a known solution
to this problem (Ref. 35 and references therein) incorporates
involved analytics and numerics, the latter limiting the preci-
sion of the final results to approximately the same extent as
to-date implementations of the DMRG method. Calculation
of the thermodynamic properties of the spin-1/2 XXZ chain
model (13) by the BA technique is a simpler, but still nontrivial,
task, requiring a solution of an infinite set of nonlinear coupled
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integral equations.55 The solution of such equations can be
only found numerically, and already in the 1970s this was
done with a high precision.56

Later on, an alternative to the BA, the quantum transfer-
matrix method, was used to obtain the thermodynamics of
the XXZ chain in a magnetic field.57 Within this approach
the free energy of the system is expressed through the largest
eigenvalue of the transfer matrix. This largest eigenvalue is
given by the solution of a set of nonlinear equations [see
Eq. (66.a) of Ref. 57], which are written in a form very suitable
for solving them iteratively. In the present paper we followed
this route and obtained the results for the specific heat for
all temperatures and various magnetic fields with very high
precision (see Sec. IV B 2).

C. Luttinger liquid (LL)

The LL Hamiltonian governs the dynamics of the
free bosonic excitations with linear spectrum and can be
written as6,7

HLL = 1

2π

∫
dx

{
uK[∂xθ (x)]2 + u

K
[∂xφ(x)]2

}
, (16)

where φ and θ are canonically commuting bosonic fields,
[φ(x),∂yθ (y)] = iπδ(x − y). The dimensionless parameter K

entering Eq. (16) is customarily called the LL parameter, and u

is the propagation velocity of the bosonic excitations (velocity
of sound). Many 1D interacting quantum systems belong to
the LL universality class: The dynamics of their low-energy
excitations is governed by the Hamiltonian (16) and the local
operators are written through the free boson fields θ and φ (the
latter procedure if often called bosonization).

The spin-1/2 XXZ Heisenberg chain, Eq. (13), in the gapless
phase is a well-known example of a model belonging to the
LL universality class. Its local operators are expressed through
the boson fields as follows:6

S̃±(x) = e∓iθ(x){
√

2Ax(−1)x+2
√

Bx cos[2φ(x) − 2πm̃zx]}
(17)

and

S̃z(x) = m̃z − ∂xφ(x)

π
+

√
2Az(−1)x cos[2φ(x) − 2πm̃zx].

(18)
Here the continuous coordinate x = la is given in units of the
lattice spacing a, m̃z = 〈M̃z〉/L is the magnetization per site
of the spin chain, and Ax , Bx , and Az are coefficients that
depend on the parameters of the model (13). How to calculate
K, u, Ax , Bx, and Az is described in Appendix B1.

The Hamiltonian (13) is the leading term in the strong
coupling expansion (the parameter γ = J‖/J⊥ � 1; see Ap-
pendix A) of the model (2). The local operators of the
latter model are bosonized by combining Eqs. (12), (17),
and (18). The analysis of the model (2) suggests2,19,20 that
the bosonization of the local spins can be performed for any
values of J⊥ and J‖ in the gapless regime. We would like
to stress that even for a small γ some parameters out of K,

u, Ax , Bx, and Az show significant numerical differences if
calculated within the spin chain (13) compared to the spin
ladder (2). We discuss this issue in Appendix B1.

D. Mean-field approximation

Up to now, we have presented methods adapted to deal
with 1D systems. In real compounds, an interladder coupling
is typically present. As discussed in Sec. II D, in the incom-
mensurate regime this interladder coupling J ′ [cf. Eq. (1)]
can lead to a new 3D order [3D-ordered phase in Fig. 2(b)]
at temperatures of the order of the coupling J ′. In the case
of BPCB, the interladder coupling is much smaller than the
coupling inside the ladders, i.e., J ′ � J⊥,J‖ (Sec. VI A).
Therefore, unless one is extremely close to hc1 or hc2, one
can treat the interladder coupling with a standard mean-field
approximation. This approach incorporates all the fluctuations
inside a ladder. However, it overestimates the effect of J ′
by neglecting quantum fluctuations between different ladders.
Such effects can be taken partly into account by a suitable
change of the interladder coupling,31 which will be discussed
in Sec. IV D. Close to the critical fields, the interladder
coupling J ′ becomes larger than the effective energy of the
1D system. This forces one to consider a 3D approach from
the start and brings the physics of the system in the universality
class of BEC.2,5 In the following, we consider that we are far
enough (i.e., by an energy of the order of J ′) away from the
critical points so that we can use the mean-field approximation.

Since the single ladder correlation functions along the
magnetic-field direction (z axis) decay faster than the staggered
part of the ones in the perpendicular xy plane [see Eqs. (B2)
and (B3) for the LL exponent K of the ladder shown
in Fig. 23], the 3D order will first occur in this plane.
Thus the dominant order parameter is the q = π staggered
magnetization perpendicular to the applied magnetic field. The
mean-field decoupling of the spin operators of neighboring
ladders thus reads

Sx
l,k

∼= −(−1)l+kmx
a ⇒ mx

a = −(−1)l+k
〈
Sx

l,k

〉
, (19)

Sz
l,k

∼= mz

2
− (−1)l+kmz

a. (20)

We have chosen the xy ordering to be along the x axis, and mz
a

will be very small and therefore neglected.
This approximation applied on the interladder interaction

part of the 3D Hamiltonian H3D [Eq. (1)] leads to

HMF = J‖H‖ + J⊥H⊥ + ncJ
′mz

4

∑
l,k

Sz
l,k

+ ncJ
′mx

a

2

∑
l,k

(−1)l+kSx
l,k. (21)

Here we assume that the coupling is dominated by nc

neighboring ladders, where nc is the rung connectivity (nc = 4
for the case of BPCB; cf. Fig. 18). This mean-field Hamiltonian
corresponds to a single ladder in a site-dependent magnetic
field with a uniform component in the z direction and a
staggered component in the x direction. The ground-state wave
function of the Hamiltonian must be determined, fulfilling the
self-consistency condition for mz and mx

a , by using numerical
or analytical methods. This amounts to minimize the ground-
state energy of some variational Hamiltonian.
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1. Numerical mean field

The order parameters mz and mx
a can be computed

numerically by treating the mean-field Hamiltonian HMF

self-consistently with DMRG. These parameters are evaluated
recursively in the middle of the ladder (to minimize the
boundary effects) starting with mz = 0 and mx

a = 0.5. An
accuracy of <10−3 on these quantities is reached quickly after
a few recursive iterations (typically ∼5) of the DMRG, keeping
a few hundred DMRG states and treating a system of length
L = 150. We verified by keeping as well the alternating part of
the z-order parameter mz

a that this term is negligible (<10−5).

2. Analytical mean field

Using the low-energy LL description of our ladder system
(see Sec. III C), it is possible to treat the mean-field Hamilto-
nian HMF within the bosonization technique. Introducing the
LL operators (17) and (18) in HMF (21) and keeping only the
most relevant terms leads to the Hamiltonian58,59

HSG = 1

2π

∫
dx

{
uK[∂xθ (x)]2 + u

K
[∂xφ(x)]2

}

+
√

AxncJ
′mx

a

∫
dx cos[θ (x)], (22)

where we neglected the mean-field renormalization of hz

in (21). This Hamiltonian differs from the standard LL
Hamiltonian HLL (16) by a cosine term corresponding to
the x-staggered magnetic field in (21). It is known as the
sine-Gordon Hamiltonian.6,60,61 The expectation values of the
fields can be derived from integrability.62 In particular, mx

a can
be determined self-consistently.

E. Quantum Monte Carlo (QMC)

In order to take into account the detailed coupling structure
of the BPCB compound shown in Fig. 18, which is neglected
in the mean-field approximation (Sec. III D), we employ
a stochastic series expansion implementation of the QMC
technique with directed loop updates63 provided with the
Algorithms and Libraries for Physics Simulations (ALPS)
libraries.64,65 Nevertheless, due to the strong anisotropy of
the couplings (5), the temperatures at which the effects of the
interladder coupling J ′ become visible are not reachable with
this method. The QMC results for the transition temperature
of the 3D-ordered phase, Tc, presented in Ref. 31, Sec. IV D 1,
and Appendix D are then computed with a J ′ of ∼3 times
larger than that extracted in Ref. 30 and Sec. IV D 1, making
the 3D effects numerically accessible.

IV. STATIC PROPERTIES AND NMR RELAXATION RATE

We begin our analysis of the different phases of the coupled
spin ladder system [Fig. 2(b)] by computing thermodynamic
quantities, such as the magnetization, the rung state density,
and the specific heat. In particular, we test the LL low-energy
prediction of the latter and evaluate the related crossover to the
quantum critical regime. Furthermore, we discuss the effect
of the 3D interladder coupling by computing the staggered
magnetization in the 3D-ordered phase and its critical tem-
perature. We finally discuss the NMR relaxation rate in the
gapless regime related to the low-energy dynamics. In order

FIG. 3. (Color online) Dependence of the magnetization per rung
mz on the magnetic field hz at zero temperature for the single ladder
with the BPCB couplings (see Sec. VI A) (dashed red line), the spin
chain mapping (dotted blue line) rescaled to fit with the single ladder
critical fields (dashed-dotted blue line), and for the weakly coupled
ladders treated by the mean-field approximation (solid black line).
The insets emphasize the different behavior of the magnetization
curves for the single (dashed red line) and coupled (solid black line)
ladders close to the critical fields, which are indistinguishable in the
main part of the figure. The dotted lines in the insets correspond to
the linear and square-root-like critical behavior.

to compare these physical quantities to the experiments, all of
them are computed for the BPCB parameters (see Sec. VI A).

A. Critical fields

The zero-temperature magnetization contains extremely
useful information. Its behavior gives directly the critical
values of the magnetic fields hc1 and hc2 at which the system
enters and leaves the gapless regime, respectively [Fig. 2(b)].
In Fig. 3 the dependence of the magnetization on the applied
magnetic field is shown for a single ladder and for the weakly
coupled ladders. At low magnetic field, hz < hc1, the system
is in the gapped spin liquid regime with zero magnetization,
and spin singlets on the rungs dominate the behavior of the
system66 (see Fig. 4). At hz = hc1, the Zeemann interaction
closes the spin gap to the rung triplet band |t+〉 (Fig. 2).
Above hz > hc1, the triplet |t+〉 band starts to be populated,
leading to an increase of the magnetization with hz. The lower
critical field in a 13th-order expansion10 in γ is hc1 ≈ 6.73
T for the BPCB parameters. At the same time the singlet
and the high-energy triplet occupation decreases (Fig. 4). For
hz > hc2 = J⊥ + 2J‖ ≈ 13.79 T (for the compound BPCB),
the |t+〉 band is completely filled and the other bands are
depopulated. The system becomes fully polarized (mz = 1)
and gapped. The two critical fields, hc1 and hc2, are closely
related to the two ladder exchange couplings, J⊥ and J‖.
As they are experimentally easily accessible, assuming that
a ladder Hamiltonian is an accurate description of the system,
these critical fields can be used to determine the ladder
couplings.30

Such a general behavior of the magnetization is seen for
both the single ladder and the weakly coupled ladders in
Fig. 3. In particular, the effect of a small coupling J ′ between
the ladders is completely negligible in the central part of the
curve. Only in the vicinity of the critical fields, the single
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FIG. 4. (Color online) Rung state density vs the applied magnetic
field hz at zero temperature for the single ladder with the BPCB
couplings (zero-temperature DMRG calculations averaging on the
central sites of the ladder). The dashed-dotted (black) lines correspond
to the singlet density 〈ρs〉. The triplet densities are represented by the
solid (red) lines for 〈ρ+〉, the dashed (blue) lines for 〈ρ0〉, and the
dotted (green) lines for 〈ρ−〉.

ladder and the coupled ladders show a distinct behavior. The
single ladder behaves as an empty (filled) 1D system of
noninteracting fermions, which leads to a square-root behav-
ior mz ∝ (hz − hc1)1/2 close to the lower critical field and
1 − mz ∝ (hc2 − hz)1/2 close to the upper critical field. In
contrast, in the system of weakly coupled ladders, a 3D-
ordered phase appears at low enough temperatures in the
gapless regime (see Secs. II D and III D). The magnetiza-
tion dependence close to the critical fields becomes linear,
mz ∝ hz − hc1 and 1 − mz ∝ hc2 − hz, respectively.2,46 In
comparison with the single ladder, the critical fields given
above are shifted by a value of the order of J ′. This behavior is
in the universality class of the BEC and is well reproduced by
the mean-field approximation, as shown in the insets of Fig. 3
close to the critical fields.

For comparison, the magnetization of a single ladder
in the spin chain mapping is also plotted in Fig. 3. This
approximation reproduces well the general behavior of the
ladder magnetization discussed above. However, note that for
the exchange coupling constants considered here, the lower
critical field in this approximation is different from the ladder
one. The lower critical field is hXXZ

c1 = J⊥ − J‖ ≈ 6.34 T <

hc1. The upper critical field hXXZ
c2 = J⊥ + 2J‖ = hc2 is the

same as for the ladder. If we rescale hXXZ
c1 and hXXZ

c2 to match

the critical fields hc1 and hc2 [h̃z → (h̃z−hXXZ
c1 ) (hc2−hc1)

hXXZ
c2 −hXXZ

c1
+ hc1],

the magnetization curve gets very close to the one calculated
for a ladder. However, in contrast to the magnetization curve for
the ladder, the corresponding curve in the spin chain mapping

is symmetric with respect to its center at hXXZ
m = hXXZ

c1 +hXXZ
c2

2 =
J⊥ + J‖/2 due to the absence of the high-energy triplets.

B. The LL regime and its crossover to the critical regime

The thermodynamics of the spin-1/2 ladders has been
studied in the past.11,21,22,29 Here we summarize the main
interesting features of the magnetization and the specific
heat, focusing on the crossover between the LL regime and
the quantum critical region, using the BPCB parameters
(Sec. VI A). As the interladder exchange coupling J ′ is very
small compared to the ladder exchange couplings J‖ and J⊥, it
is reasonable to neglect it in this regime far from the 3D phase.
Therefore we focus on a single ladder in the following.

1. Finite-temperature magnetization

We start the description of the temperature dependence
of the magnetization in the two gapped regimes: the spin
liquid phase and the fully polarized phase (not shown;
cf. Refs. 21 and 23). For small magnetic fields hz < hc1, the
magnetization vanishes exponentially at zero temperature and
after a maximum at intermediate temperatures it decreases to
zero for large temperatures. For large magnetic fields hz > hc2,
the magnetization increases exponentially up to mz = 1 at low
temperature and decreases monotonously in the limit of infinite
temperature.

In the gapless regime, the magnetization at low tempera-
ture has a nontrivial behavior that strongly depends on the
applied magnetic field. The temperature dependence of the
magnetization computed with the finite-temperature DMRG
(T-DMRG) (see Appendix C2) is shown in Fig. 5(a) for
different values of the magnetic field in the gapless phase,
hz = 9, 10, and 11 T (hc1 < hz < hc2). In this regime new
extrema appear in the magnetization at low temperature.
This behavior can be understood close to the critical fields,
where the ladder can be described by a 1D fermion model
with negligible interaction between fermions. Indeed, in this
simplified picture6 and in more refined calculations21,22,24

the magnetization has an extremum where the temperature
reaches the chemical potential, i.e., at the temperature at which
the energy of excitations starts to feel the curvature of the
energy band. This specific behavior is illustrated in Fig. 5(a)
with the curve for hz = 11 T (hm = hc1+hc2

2 < hz < hc2). The
low-temperature maximum moves to higher temperature for
hz < hm and goes over to the already discussed maximum for
hz < hc1. Symmetrically with respect to hm, a low-temperature
minimum appears in the curve for hz = 9 T (hc1 < hz < hm).
This minimum slowly disappears for hz → hm (the curve for
hz = 10 T is close to that).

The location of the lowest extremum is a reasonable
criterion to characterize the crossover temperature between the
LL and the quantum critical regime,21,22 because the extremum
occurs at temperatures of the order of the chemical potential.
A plot of this crossover temperature versus the magnetic
field is presented in Fig. 5(c). Following this criterium, the
crossover has a continuous shape far from hm. Nevertheless,
close to hm, both extrema are close to each other (because the
maximum still exists for hz < hm field at which the minimum
appears). The criterium is thus not well defined. It presents
a discontinuity at hm, which is obviously an artefact. In the
vicinity of hm, we thus use another crossover criterium based
on the specific heat (see Sec. IV B 2) that seems to give a more
accurate description. In Ref. 29, both criteria have been applied
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FIG. 5. (Color online) Temperature dependence of the magnetiza-
tion per rung, mz(T ), for (a) the ladder with the BPCB couplings (39)
and (b) the spin chain mapping at different applied magnetic fields
hz = 9 T (solid blue lines), hz = 10 T (dashed-dotted green lines),
and hz = 11 T (dashed red lines). The results were obtained using T-
DMRG. The stars at T = 0 K are the ground-state magnetization per
rung determined by zero-temperature DMRG. The triangles (squares)
mark the low- (high-) energy extrema. (c) Crossover temperature TLL

of the LL to the quantum critical regime vs the applied magnetic field
[blue dots for the extremum in mz(T )|hz criterium and red crosses for
the maximum in c(T )|hz criterium].

on the magnetocaloric effect and specific-heat measurements
on the compound BPCB, and give a crossover temperature in
agreement with the computed ones.

The temperature dependence of the magnetization of
the spin chain mapping [Fig. 5(b)] exhibits a single low-
temperature maximum if hXXZ

m < hz < hXXZ
c2 (minimum if

hXXZ
c1 < hz < hXXZ

m ). The appearance of a single extremum
and its convergence to mz → 0.5 when T → ∞ is due to the
exact symmetry with respect to the magnetic field hXXZ

m . This
approximation reproduces the main low-energy features of the
ladder but fails to describe the high-energy behavior, which
strongly depends on the high-energy triplets.

2. Specific heat

The specific heat has been investigated for similar param-
eters as the ones considered in this paper in the gapped and
gapless regime in Refs. 21, 23, and 29. Here we concentrate on
the detailed analysis in the gapless regime, in particular, on the
low-temperature behavior and the determination of a crossover
temperature from the first maximum. We show in Fig. 6
the typical temperature dependence of the specific heat for
different values of the magnetic field. Comparisons with actual
experimental data29 for BPCB are excellent [see Fig. 6(b)].
For these comparisons the theoretical data are computed
with g = 2.06 related to the experimental orientation of the
sample with respect to the magnetic field29 (see Sec. VI A)

FIG. 6. (Color online) Specific heat per rung c vs the temperature
T for different applied magnetic fields in the gapless regime. (a) Full
ladder T-DMRG calculations with the BPCB couplings (39) for
hz = 9 T (solid blue line), hz = 10 T (dashed-dotted green line), and
hz = 11 T (dashed red line). Spin chain mapping at hz = 10 T solved
by DMRG (dashed black line) and by BA (dotted black line). Note
that the two lines are hardly distinguishable. The triangles (squares)
mark the low- (high-) energy maxima of the specific heat vs tem-
perature. The vertical dashed line marks the temperature T = 0.4 K
below which the DMRG results are extrapolated (see Appendix C 2).
(b) Comparison between measurements on the compound BPCB
from Ref. 29 (dots) and the T-DMRG calculations67 (solid lines)
at (b1) hz =9 T, (b2) hz = 10 T, and (b3) hz = 11 T.

and rescaled by a factor 0.98, in agreement with the global
experimental uncertainties.67

At low temperatures the specific heat has a contribution
due to the gapless spinon excitations. This results in a peak
T ∼ 1.5 K. This peak is most pronounced for the magnetic-
field values lying midvalue between the two critical fields.
At higher temperatures the contribution of the gapped triplet
excitations leads to a second peak, whose position depends on
the magnetic field. To separate out the contribution from the
low-lying spinon excitations, we compare the specific heat of
the ladder to the results obtained by the spin chain mapping
in which we just keep the lowest two modes of the ladder
(see Sec. II C and Appendix A). The resulting effective
chain model is solved using BA and T-DMRG methods.
The agreement between these methods is excellent, and the
corresponding curves in Fig. 6 are hardly distinguishable.
However, a clear difference with the full spin ladder results
is revealed. While at low temperatures the curves are very
close, the first peak in the spin chain mapping already lacks
some weight, which stems from higher modes of the ladder.

In Fig. 7 the low-temperature region is analyzed in more
detail. At very low temperatures the spinon modes of the ladder
can be described by the LL theory (see Sec. III C), which
predicts a linear rise with temperature inversely proportional
to the spinon velocity,6,68

cLL(T ) = T π

3u
. (23)

In Fig. 7 we compare the results of the LL and the DMRG
(and BA for the effective spin chain). The numerical results
for the adaptive T-DMRG at finite temperature are extrapolated
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FIG. 7. (Color online) Low-temperature dependence of the spe-
cific heat per rung vs the temperature, c(T ), for (a) hz = 9 T, (b) hz =
10 T, and (c) hz = 11 T. The T-DMRG calculations are shown as
red thick lines for the ladder with the BPCB couplings (39) (black
thick lines for the spin chain mapping). The two curves are hardly
distinguishable. Their low-temperature polynomial extrapolation is
plotted in thin lines below T = 0.4 K (represented by a vertical dashed
line). The linear low-temperature behavior of the LL is represented
by dashed lines (red for the ladder, black for the spin chain mapping).
The dashed yellow lines correspond to the BA computation for the
spin chain mapping.

to zero temperature by connecting algebraically to zero-
temperature DMRG results (see Appendix C 2). A very
good agreement between (23) and numerics is found for
low temperatures. However, at higher temperatures, the slope
of the T → 0 LL description slightly changes with respect
to the curves calculated with other methods. This change
of slope reflects the fact that the curvature of the energy
dispersion must be taken into account when computing the
finite-temperature specific heat, even when the temperature is
quite small compared to the effective energy bandwidth of the
system. The effective spin chain and the numerical results for
the ladder agree for higher temperatures (depending on the
magnetic field), before the higher modes of the ladder cause
deviations.

As for the magnetization (Sec. IV B 1), the location of the
low-temperature peak can be interpreted as the crossover of the
LL to the quantum critical regime. Indeed, in a free fermion de-
scription, which is accurate close to the critical fields, this peak
appears at the temperature for which the excitations stem from
the bottom of the energy band. The corresponding temperature
crossover is compared in Fig. 5(c) to the crossover temperature
extracted from the first magnetization extremum (Sec. IV B 1).
The two crossover criteria are complementary due to their
domain of validity. The first specific-heat maximum is well
pronounced only in the center of the gapless phase. In contrast,
in this regime the presence of two extrema close to each other
in the magnetization renders the magnetization criterium very
imprecise (cf. Sec. IV B 1).

C. Spin-lattice relaxation rate

As the spin-lattice relaxation in quantum spin systems
is due to pure magnetic coupling between electronic and
nuclear spins, the NMR spin-lattice relaxation rate T −1

1 is
directly related to the local transverse correlation function69

FIG. 8. (Color online) Magnetic-field dependence of the NMR
relaxation rate, T −1

1 (hz), at T = 250 mK. The solid red line is the
bosonization determination using the ladder LL parameters for the
BPCB couplings (the dashed blue line uses the LL parameters of
the spin chain mapping). The black circles are the measurements
from Ref. 30.

χxx
a (x = 0,t) defined as in Eq. (B6),

T −1
1 = −T γ 2

n A2
⊥

ω0
Im

[∫ ∞

−∞
dt eiω0tχxx

a (x = 0,t)

]
, (24)

where T � ω0 is assumed with the Larmor frequency ω0.
Here γn = 19.3 MHz/T is the nuclear gyromagnetic ratio of
the measured nucleus (14N in Ref. 30 for BPCB) and A⊥ is the
transverse hyperfine coupling constant.

Assuming J‖ � T , the T −1
1 due to the electronic spin

dynamics can be computed in the gapless regime using the
LL low-energy description. Following Ref. 2, we introduce
the LL correlation (B7) into Eq. (24), and obtain

T −1
1 = γ 2A2

⊥Ax cos
(

π
4K

)
u

(
2πT

u

) 1
2K

−1

B

(
1

4K
,1 − 1

2K

)
.

(25)

According to the known LL parameters (Fig. 23) the shape
of T −1

1 (hz) plotted in Fig. 8 at T = 250 mK � Tc is strongly
asymmetric with respect to the middle of the gapless phase.
The only free (scaling) parameter, A⊥ = 0.057 T, is deduced
from the fit of Eq. (25) to the experimental data30 and agrees
with other measurements. For comparison, the T −1

1 obtained
in the spin chain mapping approximation is also plotted in
Fig. 8. As for other physical quantities, this description fails
to reproduce the nonsymmetric shape.

D. Properties of weakly coupled ladders

The interladder coupling J ′ induces a low-temperature
ordered phase [the 3D-ordered phase in Fig. 2(b)]. Using
the mean-field approximation presented in Sec. III D, we
characterize the ordering and compute the critical temperature
and the order parameter related to this phase.

054407-9



PIERRE BOUILLOT et al. PHYSICAL REVIEW B 83, 054407 (2011)

FIG. 9. (Color online) Magnetic-field dependence of the transi-
tion temperature between the gapless regime and the 3D-ordered
phase, Tc(hz), is plotted as a solid red line for the ladder LL parameters
of BPCB (dashed blue line for the LL parameters of the spin chain
mapping). The NMR measurements from Ref. 30 are represented by
black circles and the ND measurements from Ref. 31 are represented
by green dots.

1. 3D-order transition temperature

In order to compute the critical temperature of the 3D
transition, we follow Ref. 2 and treat the staggered part of
the mean-field Hamiltonian HMF (21) perturbatively by using
linear response. The instability of the resulting mean-field
susceptibility, due to the 3D transition, appears at Tc when71

χxx
a (q = 0,ω = 0)|Tc

= − 2

ncJ ′ , (26)

where χxx
a is the transverse staggered retarded correlation

function of an isolated single ladder system (see Ap-
pendix B3). This correlation can be computed analytically
[see Eq. (B8)] by using the LL low-energy description of the
isolated ladder [Eq. (16)] in the gapless regime. Applying
condition (26) to the LL correlation (B8) leads to the critical
temperature,

Tc = u

2π

[
AxJ

′nc sin
(

π
4K

)
B2

(
1

8K
,1 − 1

4K

)
2u

] 2K
4K−1

. (27)

Introducing the computed LL parameters u, K , and Ax

(see Fig. 23) in this expression, we obtain the critical
temperature30 as a function of the magnetic field. This is shown
in Fig. 9 together with the experimental data. This allows us
to extract the mean-field interladder coupling J ′

MF ≈ 20 mK
for the experimental compound BPCB [the only free (scaling)
parameter in Eq. (27)]. The asymmetry of the LL parameters
induces a strong asymmetry of Tc with respect to the middle
of the 3D phase.

As the mean-field approximation neglects the quantum
fluctuations between the ladders, the critical temperature Tc

is overestimated for a given J ′
MF. We thus performed a

QMC determination of this quantity based on the same 3D
lattice structure. Let us note that QMC simulations of the
coupled spin ladder Hamiltonian (1) are possible, because

the 3D lattice structure (see Fig. 18) is unfrustrated. In
Appendix D we present results on how to determine the critical
temperatures for the 3D ordering transition by using QMC.
This determination shows31 that the real critical temperature is
well approximated by the mean-field approximation, but with
a rescaling of the real interladder coupling J ′ ≈ 27 mK =
α−1J ′

MF, with α ≈ 0.74. The rescaling factor α is similar to
the values obtained for other quasi-1D antiferromagnets.71,72

2. Zero-temperature 3D order parameter

The staggered order parameter in the 3D-ordered phase,
mx

a , can be analytically determined at zero temperature
by using the mean-field approximation for the interladder
coupling and the bosonization technique (see Sec. III D). As
mx

a = √
Ax〈cos[θ (x)]〉 in the bosonization description and the

expectation value62 of the operator eiθ(x) is

〈eiθ(x)〉 =
√

AxF (K)

(
π

√
AxncJ

′mx
a

2u

) 1
8K−1

(28)

for the sine-Gordon Hamiltonian HSG (22) with

F (K) =
π2

sin( π
8K−1 )

8K
8K−1

[
(1− 1

8K )
( 1

8K )

] 8K
8K−1

[


(
4K

8K−1

)


(
16K−3
16K−2

) ]2 , (29)

we can extract

mx
a =

√
AxF (K)

8K−1
8K−2

(
πncAxJ

′

2u

) 1
8K−2

. (30)

This can be evaluated in the 3D-ordered phase by introducing
into (30) the LL parameters u, K , and Ax from Fig. 23.
Figure 10 shows the order parameter versus the magnetic
field determined analytically and numerically by DMRG (see
Sec. III D 1). The two curves are almost indistinguishable and
exhibit a strongly asymmetric camel-like shape30 with two
maxima close to the critical fields. The asymmetry of the curve
is again due to the presence of the additional triplet states. This
asymmetry disappears in the spin chain mapping.

V. DYNAMICAL CORRELATIONS OF A SINGLE LADDER

In the next paragraph, we discuss the possible excitations
and the corresponding correlation functions created by the
spin operators. Such dynamical correlations allow us to study
the excitations of our system. They are also directly related
to many experimental measurements (NMR, INS, etc.). We
first focus on the gapped spin liquid and then treat the
gapless regime for fields hc1 < hz < hc2 [see Fig. 2(b)].
All correlations are computed by using the time-dependent
DMRG (t-DMRG) at zero temperature for the single ladder
(Appendix C1), and are compared to analytical results when
such results exist. In particular, we check the overlap with
the LL description at low energy and use a strong coupling
expansion (Appendix A) to qualitatively characterize the
obtained spectra. We start with a discussion of the correlations
for the parameters of the compound BPCB (see Sec. VI A),
and then turn to the evolution of the spectra with the coupling
ratio γ from the weak coupling (γ → ∞) to strong coupling
(γ ≈ 0).
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FIG. 10. (Color online) Magnetic-field dependence of the stag-
gered magnetization per spin, mx

a(hz), in the 3D-ordered phase
determined for the ground state. (a) Its computation with the analytical
bosonization technique for the LL parameters of the compound BPCB
and J ′ = 27 mK is represented by the dashed-dotted red line (dashed
blue line for the LL parameters of the spin chain mapping). The
DMRG result for J ′ = 20 mK(=J ′

MF) is represented by black dots
(as a comparison, the bosonization result for J ′ = 20 mK is plotted as
a solid red line). Note that these two data are almost indistinguishable.
(b) Comparison between NMR measurements (black circles) done at
T = 40 mK from Ref. 30 and scaled on the theoretical results for
J ′ = 27 mK, ND measurements on an absolute scale from Ref. 31
at T = 54 mK (T = 75 mK) [red crosses (black dots)], and the
computation for J ′ = 27 mK [blue line]. Recent ND measurements
as a function of temperature suggest that the data of Ref. 31 was
taken at temperatures ∼10 mK higher than the nominal indicated
temperature.

A. Zero-temperature correlations and excitations

In a ladder system different types of correlations are
possible. We focus here on the quantities

Sαβ
qy

(q,ω) =
∑

l

∫ ∞

−∞
dt

〈
Sα

l,qy
(t)Sβ

0,qy

〉
ei(ωt−ql), (31)

where Sα
l,qy

= Sα
l,1 ± Sα

l,2 are the symmetric (+) and antisym-
metric (−) operators with a rung momentum qy = 0, π and
parity P = +1,−1 respectively, α, β = z, + ,−, Sα

l,qy
(t) =

eiHtSα
l,qy

e−iH t [for a single ladder H corresponds to the
Hamiltonian (2)], and the momentum q is given in reciprocal
lattice units a−1. The rung momentum qy is a good quantum
number. The dynamical correlations are directly related to
INS measurements (see Sec. VI C). They select different types
of rung excitations (as summarized in Table I). Using the
reflection and translation invariance of an infinite-size system
(L → ∞), we can rewrite the considered correlations (31) in

TABLE I. Rung excitations created by the symmetric and anti-
symmetric operators in the decoupled bond limit. P is the parity of
the operators in the rung direction and �Mz is the change of the total
magnetization.

Sz
0 Sz

π S+
0 S+

π S−
0 S−

π

|s〉 0 |t0〉 0 −√
2|t+〉 0

√
2|t−〉

|t+〉 |t+〉 0 0 0
√

2|t0〉 −√
2|s〉

|t0〉 0 |s〉 √
2|t+〉 0

√
2|t−〉 0

|t−〉 −|t−〉 0
√

2|t0〉 √
2|s〉 0 0

P +1 −1 +1 −1 +1 −1
�Mz 0 0 +1 +1 −1 −1

a more explicit form (at zero temperature) (for the considered
correlations Sα† = Sβ ), i.e.,

Sαβ
qy

(q,ω) = 2π

L

∑
λ

∣∣〈λ|Sβ
qy

(q)|0〉∣∣2
δ(ω + E0 − Eλ), (32)

where |0〉 denotes the ground state of H with energy E0,
S

β
qy

(q) = ∑
l e

−iqlS
β

l,qy
and

∑
λ is the sum over all eigenstates

|λ〉 of H with energy Eλ. The form of Eq. (32) clearly shows
that S

αβ
qy

(q,ω) is nonzero if the operator S
β
qy

can create an
excitation |λ〉 of energy E0 + ω and momentum q from the
ground state. The correlations S

αβ
qy

are then direct probes of the
excitations |λ〉 in the system.

Since the experimentally relevant case (compound BPCB)
corresponds to a relatively strong coupling situation [γ �
1, Eq. (8)], we use the decoupled bond limit introduced in
Sec. II C to present the expected excitations |t+〉, |t0〉, |t−〉,
or |s〉. In Table I, we summarize the rung excitations created
by all the operators S

β
qy

and their properties. For example, the
rung parity P is changed by applying an operator with rung
momentum qy = π and the z magnetization is modified by
�Mz = ±1 by applying the operators S±

qy
, respectively.

B. Excitations in the spin liquid

Using the decoupled bond limit in the spin liquid phase, the
excitations in the system can be pictured as the excitation of
rung singlets to rung triplets. At zero magnetic field hz = 0,
the system is spin rotational symmetric and the different triplet
excitations have the same energy ∼J⊥. It has been seen
previously that in this system both single-triplet excitations
and two-triplet excitations play an important role.12–16 We
discuss these excitations in the following, focusing on the
ones that can be created by the symmetric Sαα

0 = 2S±∓
0 and

the antisymmetric Sαα
π = 2S±∓

π correlations (see Fig. 11) for
the BPCB parameters (39). Note that these correlations are
independent of the direction α = x,y,z due to the spin rotation
symmetry. Our results are in very good agreement to previous
findings.13–16

1. Single-triplet excitations

At hz = 0, the system is in a global spin singlet state1

(S = 0). The qy = π correlation couples then to states with
an odd number of triplet excitations with rung parity P = −1
and total spin S = 1, Mz = ±1,0 (see Table I). Nevertheless,
only single-triplet excitations are numerically resolved. Their
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FIG. 11. (Color online) Momentum-energy-dependent correla-
tion functions at hz = 0. (a) Symmetric part Sαα

0 (q,ω) with α =
x, y, z. The dashed (black) line marks the (q,ω) position of the
two-triplet bound state [Eq. (61b) in Ref. 14]. The dashed-dotted
(white) lines correspond to the boundaries of the two-triplet con-
tinuum. (b) Antisymmetric part Sαα

π (q,ω). The dashed (black) line
corresponds to the predicted dispersion relation of a single-triplet
excitation [Eq. (8) in Ref. 13].

spectral weight is concentrated in a very sharp peak, whose
dispersion relation can be approximated using a strong
coupling expansion in γ . Up to first order it is simply given by
a cosine dispersion,12 i.e., ωt (q)/J⊥ ≈ 1 + γ cos q. Further
corrections up to third order in γ have been determined in
Ref. 13. In Fig. 11(b) we compare the numerical results for
the BPCB parameters (39) to the expression up to third order
in γ . The strong coupling expansion describes very well the
position of the numerically found excitations.

2. Two-triplet excitations

The structure of the qy = 0 correlation is more complex
[Fig. 11(a)]. Due to the rung parity P = 1 of the operators
Sα

0 , the excitations correspond to an even number of triplet
excitations with total spin S = 1, Mz = ±1, 0. We focus here
on the two-triplet excitations that can be resolved numerically.
These can be divided into a broad continuum and a very sharp
triplet (S = 1) bound state of a pair of rung triplets. Since these
excitations stem from the coupling to triplets already present
in the ground state (Fig. 4), their amplitude for the considered
BPCB parameters (39) is considerably smaller than the weight
of the single-triplet excitations.16

The dispersion relation of the bound states has been
calculated using a linked cluster series expansion.14 The first
terms of the expansion have an inverse cosine form and the
bound state only exists in an interval at approximately q = π

(cf. Refs. 14 and 15). The numerical results for the BPCB
parameters (39) agree very well with the analytic form of
the dispersion [Fig. 11(a)]. The upper and lower limits of the
continuum can be determined by considering the boundary
of the continuum formed by two noninteracting triplets. They
are numerically computed using the single-triplet dispersion
[Eq. (8) in Ref. 13] shown in Fig. 11(a). They agree very
well with the numerically found results. The comparison with
the known solutions serves as a check of the quality of our
numerical results.

C. Excitations in the gapless regime

A small applied magnetic field (hz < hc1), at first order,
only smoothly translates the excitations shown in Fig. 11 by
an energy −hzMz due to the Zeeman effect. However, if the
magnetic field exceeds hc1, the system enters into the gapless
regime with a continuum of excitations at low energy. For
small values of γ most features of this low-energy continuum
are qualitatively well described by considering the lowest two
modes of the ladder only. Beside the low-energy continuum, a
complex structure of high-energy excitations exist. Contrarily
to the low-energy sector, this structure crucially depends on the
high-energy triplet modes. In the following, we give a simple
picture for these excitations starting from the decoupled bond
limit.

1. Characterization of the excitations in the decoupled bond limit

The evolution of the spectra for the BPCB parameters with
increasing magnetic field are presented in Fig. 12 for Szz

qy
,

in Fig. 13 for S+−
qy

, and in Fig. 14 for S−+
qy

. Three different
classes of excitations occur: (i) a continuum of excitations
at low energy for Szz

0 and S±∓
π ; (ii) single-triplet excitations

at higher energy with a clear substructure for Szz
π , S+−

0 , and
S+−

π ; and (iii) excitations at higher energy for Szz
0 and S+−

0
and S−+

0 stemming from two-triplet excitations that have their
main weight at approximately q ≈ π .

In the following we summarize some of the characteristic
features of these excitations, before we study them in more
detail in Secs. V C 2–V C 3b.

(i) The continuum at low energy that does not exist in the
spin liquid is a characteristic signature of the gapless regime.
It stems from excitations within the low-energy band that
corresponds to the |s〉 and |t+〉 states in the decoupled bond
limit [cf. Fig. 2(a) and Table I]:

Szz
0 : excitations within the triplet |t+〉 mode;

S∓±
π : excitations between the singlet |s〉 and the triplet

|t+〉 mode.
This continuum is smoothly connected to the spin liquid

spectrum in the case of S−+
π . It originates from the single-triplet

|t+〉 branch (Sec. VB1) when the latter reaches the ground-
state energy due to the Zeeman effect. Since two modes play
the main role in the description of these low-energy features,
many of them already can be explained qualitatively by the spin
chain mapping. The excitations in the chain have been studied
previously by using a BA description and exact diagonalization
calculations in Ref. 73. More recently they were computed in
Ref. 35 due to recent progress in the BA method. In particular,
the boundary of the spectrum at low energy is well described
by this approach, because the LL velocity determining it is
hardly influenced by the higher modes (cf. Fig. 23). However,
a more quantitative description requires to take into account the
higher modes of the system as well. In Sec. V C 2 we compare
in detail our results with the LL theory and the spin chain
mapping, pointing out their corresponding ranges of validity.

(ii) The single high-energy triplet excitations form a
continuum with a clear substructure. In the decoupled bond
limit, these excitations correspond to the following:

Szz
π : single-triplet excitations |t0〉 at energy ∼hz;

S+−
0 : single-triplet excitations |t0〉 at energy ∼hz;

S+−
π : single-triplet excitations |t−〉 at energy ∼2hz.
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FIG. 12. (Color online) Momentum-energy-dependent zz-correl-
ation function (1) at mz = 0.25 (hz = 3.153J‖), (2) at mz = 0.5
(hz = 4.194J‖), and (3) at mz = 0.75 (hz = 5.192J‖). (a) Symmetric
part Szz

0 (q,ω) without Bragg peak at q = 0. The dashed black lines
correspond to the location of the slow divergence at the lower edge
of the continuum predicted by the LL theory. The dashed white
curve corresponds to the predicted two-triplet bound-state location.
(b) Antisymmetric part Szz

π (q,ω). The dashed black lines correspond
to the position of the high-energy divergences or cusps predicted
by the approximate mapping on the t-J model. The vertical white
dashed-dotted lines mark the momenta of the minimum energy of the
high-energy continuum and the black cross is the energy of its lower
edge (Ref. 20) at q = π .

Many of the features of these continua can be understood by
mapping the problem onto a mobile hole in a chain, as pointed
out first in Ref. 74. We detail this mapping in Sec. V C 3 and
Appendix A. It opens the possibility to investigate the behavior
of a single hole in a t-J-like model by using experiments in
pure spin ladder compounds.

(iii) The high-energy continuum, which has almost no
weight close to the Brillouin zone boundary (q = 0,2π ), is
related to two-triplet excitations of the spin liquid (Sec. V B 2).
They are generated from high-energy triplet components of the
ground state. Their weight therefore vanishes for γ → 0 and
the excitations correspond to the following:

S−+
0 : two-triplet excitations. 1√

2
(|t0〉|t+〉 − |t+〉|t0〉) at en-

ergy ∼hz;

FIG. 13. (Color online) Momentum-energy-dependent +− cor-
relation function (1) at mz = 0.25 (hz = 3.153J‖), (2) at mz = 0.5
(hz = 4.194J‖), and (3) at mz = 0.75 (hz = 5.192J‖). (a) Symmetric
part S+−

0 (q,ω). The vertical dashed-dotted white lines mark the
momenta of the minimum energy of the high energy continuum
and the horizontal ones the frequency of its lower edge (Ref. 20)
at q = 0, 2π . The dashed white lines correspond to the position of
the high energy divergences or cusps predicted by the approximate
mapping on the t-J model. The dotted white curve corresponds to the
predicted two-triplet bound-state location. The high-energy excita-
tions at ω = 3hz are hardly visible. (b) Antisymmetric part S+−

π (q,ω).
The dashed and dashed-dotted (dotted) white lines correspond to the
location of the strong divergence (cusp) at the lower edge of the
continuum predicted by the LL theory.

Szz
0 : two-triplet excitations 1√

2
(|t+〉|t−〉 − |t−〉|t+〉) at en-

ergy ∼2hz;
S+−

0 : two-triplet excitations 1√
2
(|t0〉|t−〉 − |t−〉|t0〉) at en-

ergy ∼3hz.

2. Low-energy continuum

In this section we concentrate on the low-energy excitations
of type (i), discussing first their support and then comparing
their spectral weight to the LL prediction.

a. Support of the low-energy excitations. The position
of the soft modes in the low-energy continuum can be
directly obtained from the bosonization representation2,19,20

(see Appendix B2). They can also be understood in a simple
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FIG. 14. (Color online) Momentum-energy-dependent −+ cor-
relation function (1) at mz = 0.25 (hz = 3.153J‖), (2) at mz = 0.5
(hz = 4.194J‖), and (3) at mz = 0.75 (hz = 5.192J‖). (a) Symmetric
part S−+

0 (q,ω). The vertical dashed-dotted white lines correspond
to the momenta at which the minimum energy of the high energy
continuum occurs and the horizontal line to the frequency of its lower
edge (Ref. 20) at q = 0, 2π . The dashed black curve corresponds
to the predicted two-triplet bound-state location. (b) Antisymmetric
part S−+

π (q,ω). The dashed and dashed-dotted (dotted) white lines
correspond to the location of the strong divergence (cusp) at the
lower edge of the continuum predicted by the LL theory.

picture that we outline in the following. The distribution of
the rung state population in the ground state depends on the
magnetic field hz (see Fig. 4). Taking a fermionic point of
view, the magnetic field acts as a chemical potential that
fixes the occupation of the singlet and triplet rung states.
Increasing the magnetic field reduces the number of singlets,
whereas at the same time the number of triplets increases (see
the sketch in Fig. 15). The Fermi level lies at the momenta
q = πmz,π (2 − mz) for the singlet states and at the momenta
q = π (1 − mz), π (1 + mz) for the triplet states. In this picture
the soft modes correspond to excitations at the Fermi levels.
For transitions |t+〉 ↔ |t+〉 the transferred momenta of these
zero-energy excitations are q = 0, 2πmz, 2π (1 − mz). In con-
trast, the interspecies transitions |t+〉 ↔ |s〉 allow the transfer
of q = π (1 − 2mz), π, π (1 + 2mz). Therefore the positions of
the soft modes in the longitudinal correlation Szz

0 , which allows
transitions within the triplet states, shift from the boundaries

of the Brillouin zone inward toward q = π when mz increases
[Fig. 12(a)]. In contrast, the positions of the soft modes in the
transverse correlations S±∓

π , which allow transitions between
the singlets and the triplets, move with increasing magnetic
field outward [Figs. 13(b) and 14(b)].

The top of these low-energy continua are reached when
the excitations reach the boundaries of the energy band. In
particular, the maximum of the higher boundary lies at the
momentum q = π , which is easily understood within the
simple picture drawn above (cf. Fig. 15). A more detailed
description of different parts of these low-energy continua is
given in Ref. 73.

Let us compare the above findings with the predictions of
the LL theory for the dynamical correlations.2,19,20 Details
on the LL description of the correlations are given in
Appendix B2. The LL theory predicts a linear momentum-
frequency dependence of the lower continuum edges with a
slope given by the LL velocity ±u (Fig. 23). The position
of the soft modes are given by the ones outlined above (see
Fig. 24). The predicted support at low energy agrees very well
with the numerical results [Figs. 12(a), 13(b), and 14(b)]. Of
course, when one reaches energies of order J‖ in the spectra,
one cannot rely on the LL theory anymore. This is true in
particular for the upper limit of the spectra.

b. Spectral weight of the excitations. Let us now focus
on the distribution of the spectral weight in the low-energy
continuum. In particular, we compare our numerical findings
to the LL description. Qualitatively, the LL theory predictions
for the low-energy spectra are well reproduced by the DMRG
computations.

The LL predicts typically an algebraic behavior of the
correlations at the low-energy boundaries that can be a
divergence or a cusp.

Szz
0 : The LL predicts peaks at the q = 0,2π branches and

a slow divergence at the lower edge of the incommensurate
branches q = 2πmz, 2π (1 − mz) (with exponent 1 − K ≈
0.2 � 1). In the numerical results [Fig. 12(a)] a slight increase
of the weight toward the lower edge of the incommensurate
branches can be seen.

S+−
π : A strong divergence at the lower edge of the

q = π branch (with exponent 1 − 1/4K ≈ 3/4 � 0) is ob-
tained within the LL description. This is in good qualitative
agreement with the strong increase of the spectral weight
observed in the numerical data. A more interesting behavior
is found close to the momenta q = π (1 ± 2mz) in the incom-
mensurate branches. Here a strong divergence is predicted
for momenta higher (lower) than the soft mode q = π (1 −
2mz) [q = π (1 + 2mz)] with exponent 1 − η− ≈ 3/4 � 0.
In contrast, for momenta lower (higher) than the soft mode

FIG. 15. Fermionic picture for the effect of the magnetic field.
Filling of (a) the singlet band |s〉 and (b) the triplet band |t+〉 in the
gapless phase for a given magnetization mz.
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FIG. 16. (Color online) Cuts at fixed momentum q = π and
magnetization mz = 0.5 of the low-energy spectrum (a) Szz

0 (q = π,ω)
and (b) S−+

π (q = π,ω). The (red) circles and the (black) squares
are the numerical results for the ladder and its spin chain mapping,
respectively. The dashed lines correspond to the LL predictions, and
the solid lines are the latter convolved with the same Gaussian filter
than the numerical data. The DMRG frequency numerical limitation
is of the order of the peak broadening of width δω ≈ 0.1J‖ (see
Appendix C 3).

q = π (1 − 2mz) [q = π (1 + 2mz)], a cusp with exponent
1 − η+ ≈ −5/4 � 0 is expected.75 In the numerical results
[Fig. 13(b)] this very different behavior below and above the
soft modes is evident. The divergence and cusp correspond to
a large and invisible weight, respectively.

S−+
π : The same behavior as S+−

π replacing mz → −mz can
be observed in Fig. 14(b).

To compare quantitatively the predictions of the LL to the
numerical results, in Fig. 16 we show different cuts of the
correlations at fixed momentum q = π and magnetization
mz = 0.5 for the ladder and the spin chain mapping. These
plots show the DMRG results, the LL description, and the
latter convolved with the Gaussian filter. The filter had been
used in the numerical data to avoid effects due to the simulated
finite-time interval (see Appendix C3). Note that the amplitude
of the LL results are inferred from the static correlation
functions, such that the LL curve is fully determined and
no fitting parameter is left. Therefore, the convolved LL
results can directly be compared to the numerical results.
Even though the presented numerical resolution might not be
good enough to resolve the behavior close to the divergences
(cusps), interesting information such as the arising differences
between the spin chain mapping and the full ladder calculations
already can be extracted. In Fig. 16(a), we show a cut
through the correlation at fixed momentum Szz

0 (q = π,ω). The
convolved LL and the numerical results compare very well.

The difference between the real ladder calculations and the
spin chain mapping that neglect the effects of the higher triplet
states |t−〉, |t0〉 is obvious. From the LL description point of
view, the shift of the spin chain correlation compared to the
real ladder curve comes mainly from the prefactor Az and the
algebraic exponent, which are clearly modified by the effects
of the high-energy triplets (see Fig. 23).

For the transverse correlations, the LL theory predicts a
strong divergence (with an exponent 1 − 1/4K ≈ 3/4 � 0) at
the lower boundary of the continuum branch at q = π . A cut
through the low-energy continuum S−+

π (q = π,ω) is shown in
Fig. 16(b). The convolved LL reproduces well the numerical
results.

3. High-energy excitations

a. Weak coupling description of the high-energy excitations.
Before looking in detail at the two kinds of high-energy excita-
tions presented in Sec. V C 1, we compare our computed high-
energy spectra with the weak coupling description (γ � 1). In
this limit information on the spectrum can be extracted from
the bosonization description.2,19,20 In particular, one expects
a power-law singularity at the lower edge continuum with a
minimal position at q = π (1 ± mz) (for Szz

π ), q = πmz, π (2 −
mz) (for S±∓

0 ), and an energy hz at momentum q = π (for Szz
π ),

q = 0 (for S±∓
0 ). Except for S−+

0 , in which the spectral weight
is too low for a good visualization, our computed spectra
reproduces well the predictions for the minimal positions,
even though the coupling strength considered is not in the
weak coupling limit [cf. Figs. 12(b), 13(a), and 14(a)].

b. High-energy single-triplet excitations. The high-energy
single-triplet continua originate from the transition of the
low-energy rung states |s〉 and |t+〉 to the high-energy triplets
|t0〉 and |t−〉. The excitations coming from the singlets |s〉
(in Szz

π and S+−
π ) are already present in the spin liquid phase

(cf. Sec. VB1) in which they have the shape of a sharp peak
centered on the triplet dispersion. The transition between the
gapped spin liquid and the gapless regime is smooth and
consists of a splitting and a broadening of the triplet branch that
generates a broad continuum of new excitations. Contrarily to
the latter, the excitations coming from the low-energy triplets
|t+〉 (in S+−

0 ) are not present in the spin liquid phase. The
corresponding spectral weight appears when hz > hc1.

An interpretation of the complex structure of these high-
energy continua can be obtained in terms of itinerant quantum
chains. Using a strong coupling expansion of the Hamilto-
nian (2) (Appendix A), it is possible to map the high-energy
single-triplet excitations |t0〉 to a single hole in a system
populated by two types of particles with pseudospin |↑̃〉 =
|t+〉, |↓̃〉 = |s〉 (with the Sec. II C notation).

In this picture the effective Hamiltonian of the J⊥ energy
sector is approximately equivalent to the half-filled anisotropic
1D t-J model with one hole (see Appendix A3b). The effective
Hamiltonian is given by

Ht-J = HXXZ + Ht + Hs-h + ε, (33)

where ε = (J⊥ + hz)/2 is an energy shift and Ht =
J‖/2

∑
l,σ (c†l,σ cl+1,σ + h.c.) is the usual hopping term. Here

c
†
l,σ (cl,σ ) is the creation (annihilation) operator of a fermion

with pseudospin σ = ↑̃, ↓̃ at the site l. Note that although we
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are dealing here with spin states, it is possible to faithfully
represent the three states of each site’s Hilbert space (|s〉, |t+〉,
|t0〉) by using a fermion representation.

Additionally to the usual terms of the t-J model, a nearest-
neighbor interaction term between one of the spins and the
hole arises:

Hs-h = −J‖
4

∑
l

[nl,hnl+1,↑̃ + nl,↑̃nl+1,h]. (34)

Here nl,h is the density operator of the hole on the site l. In this
language the spectral weight of Szz

π and S+−
0 corresponding to

the single high-energy triplet excitations is equivalent to the
single-particle spectral functions of the up-spin and down-spin
particle, respectively:

Szz
π ∝ 〈c†↓̃c↓̃〉 with hole of type |s〉 → |t0〉,

S+−
0 ∝ 〈c†↑̃c↑̃〉 with hole of type |t+〉 → |t0〉. (35)

Here 〈c†σ cσ 〉(q,ω) = ∑
λ |〈λ|cq,σ |0〉|2δ(ω + E0 − Eλ).

For the standard t-J model [for SU(2)-invariant XXX spin
background and without the anisotropic term Hs-h in Eq. (33)],
these spectral functions have been studied in Refs. 76 and 77.
The presence of singularities of the form

〈c†σ cσ 〉(q,ω) ∝ [ω − ωt0 (q − qν)]2Xν (q)−1 (36)

were found. Here ωt0 (q) is the |t0〉 triplet dispersion relation,
qν is the spinon momentum at the Fermi level, and Xν is the
algebraic decay exponent at the singularity. This exponent is
not known in our case and depends on the magnetization mz

and the momentum q. It generates a peak or a cusp at the
energy ω = ωt0 (q − qν). The spinon momentum qν depends
on the type of the rung state before excitation (ν = s,t+). For
an excitation created from a singlet state, qs = ±πmz (for Szz

π ),
and from the triplet state, qt+ = π (1 ± mz) (for S+−

0 ) (Fig. 15).
At hz = 0, a series expansion of ωt0 (q) can be performed
[Eq. (8) in Ref. 13 and denoted ωt (q) in Sec. V B 1]. To extend
it into the gapless phase (hc1 < hz < hc2), we approximate
ωt0 (q) by shifting the value ωt (q) at hz = 0 by the Zeeman
shift, i.e.,

ωt0 (q) = ωt (q) + �E0(hz). (37)

Here we used the shift of the ground-state energy per rung
�E0(hz) = E0(hz) − E0(0). The �E0 was determined by
DMRG calculations [Fig. 25(b) for the BPCB parameters]. The
resulting momentum-frequency positions ω = ωt0 (q − qν) of
the high-energy singularities (cusps or divergencies) are
plotted on the spectrum [see Figs. 12(b) and 13(a)]. They
agree remarkably well with the shape of the computed spectra
in particular for a small magnetic field.78 Neglecting the
additional interaction term Hs-h the t-J model Hamiltonian
would lead to a symmetry of these excitations with respect
to half magnetization. However, in the numerical spectra the
effect of the interaction shows up in a clear asymmetry of
these excitations [Figs. 12(1b) and 13(3a)]. In particular, in the
S+−

0 correlation, some of the weight is seemingly detaching
and pushed toward the upper boundary of the continuum
[Fig. 13(3a)] for large magnetization. A more detailed account
of the spectra can be found in Ref. 79.

A similar mapping can be performed for the single |t−〉
excitation. In contrast to the J⊥ sector, in the 2J⊥ sector not

only the |t−〉 excitation occurs, but the effective Hamiltonian
mixes also |t0〉 triplets into the description. Therefore, the
description by a single hole in a spin-1/2 chain breaks down
and more local degrees of freedom are required. This results
in a more complex structure as seen in Fig. 13(1b). Previously
high-energy excitations in dimerized antiferromagnets have
been described rather generally by a mapping to an x-ray edge
singularity problem.80–82 It is interesting though that in the
present setup these excitations can be understood as t-J hole
spectral functions, which display a much richer structure than
anticipated.

c. High-energy two-triplet excitations. The two-triplet
continua and bound states already discussed in the spin liquid
phase (cf. Sec. V B 2) are still visible in the gapless regime
in the symmetric correlations (Szz

0 and S±∓
0 ). At low magnetic

field the location of their maximal spectral weight can be
approximated by the expression of the bound-state dispersion
at zero field [Eq. (61b) in Ref. 14] shifted by the Zeeman energy
(the Zeeman shift includes both the shift of the ground state
[Fig. 25(b)] and the shift of the excited state). The two-triplet
excitation location obtained in this way agrees to a good
extent with the location found in the numerical calculations
[cf. Figs. 12(1a), 13(1a), and 14(1a)]. Since these excitations
are generated from the high-energy triplet components in the
ground state and these vanish with increasing magnetic field
(cf. Fig. 4), their residual spectral weight slowly disappears
with increasing magnetization.

D. Weak-to-strong coupling evolution

For all the excitation spectra presented above, the intrachain
coupling ratio of BPCB γ = J‖/J⊥ ≈ 1/3.55 � 1 was taken.
For this chosen value of γ , a strong coupling approach gives
a reasonable description of the physics. In this section we
discuss the evolution of the spectra from weak (γ → ∞)
to strong coupling (γ → 0). To illustrate this behavior, we
show in Fig. 17 the symmetric and antisymmetric parts of the
correlations S+−

qy
at mz = 0.25 for different coupling ratios

γ = ∞, 2, 1, 0.5, 0.
At γ → ∞ [Fig. 17(1)], the chains forming the ladder

correspond to two decoupled Heisenberg chains. In this case
the symmetric and antisymmetric correlations are identical,
S+−

0 = S+−
π , and are equivalent to the correlation 2S+− of

the single chain73 with magnetization per spin mz/2 = 0.125.
A complex low-energy continuum exists with zero-energy
branches6,19,73 at momenta q = ±πmz,π , similar to that
discussed in Sec. V C 2. In contrast, in the strong coupling
limit (γ → 0) [Fig. 17(5b)] the symmetric correlations vanish
and the antisymmetric part corresponds to the single chain
correlation 2S+− with anisotropy � = 1/2 and magnetization
per spin mz − 1/2 (see the spin chain mapping in Sec. II C).
The antisymmetric part consists of a low-energy continuum
with branches at momenta q = (1 ± 2mz)π,π (Sec. V C 2).
Note that a bosonization description of the low-energy sectors
of both extreme regimes can be formulated2,19,20 (see Ap-
pendix B2).

In the following we discuss the evolution between these
two limits. In the antisymmetric correlation [cf. Figs. 17(2)–
17(5b)] a low-energy continuum exists at all couplings with
a zero-energy excitation branch at q = π . These low-energy
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FIG. 17. (Color online) Momentum-energy-dependent +− correlations [S+−
qy

(q,ω)] at mz = 0.25 for different ladder couplings (γ =
J‖/J⊥): (1) γ → ∞, (2) γ = 2, (3) γ = 1, (4) γ = 0.5, (5) γ → 0. The symmetric (antisymmetric) correlations with qy = 0 (qy = π ) are
presented in the figures labeled by a (b). In (1), (2a)–(4a) the vertical dashed lines represent the incommensurate momenta of the low-energy
branches of the single spin chain at q = ±πmz = ±π/4 [they also correspond to the predicted momenta of the lowest-energy excitations of
the symmetric correlations (Ref. 20)]. The horizontal solid (dotted) horizontal lines in (2a)–(4a) correspond to the approximate energy J⊥
(3J⊥) of the single-triplet excitations of type (ii) (two-triplet excitations of type (iii)). The horizontal dashed lines in (2b)–(4b) correspond to
the approximate energy 2J⊥ of the excitations of type (ii). The dashed-dotted lines in (1) correspond to the linear low-energy boundaries of the
continuum of excitations given by the LL theory applied on single Heisenberg chains γ → ∞. The dashed-dotted lines in (2b)–(5b) correspond
to the linear low-energy boundaries of the continuum of excitations given by the LL theory on spin ladder with finite γ (see Appendix B 2).

excitations correspond mainly to the excitations with �S =
�Mz = −1. This has been pointed out for the weak coupling
limit.19,73 They become the transitions |t+〉 → |s〉 with the
same quantum numbers in the decoupled bond limit. Addition-
ally, the upper part of the excitation spectrum at weak coupling,
which corresponds mainly to excitations with73 �S = 0, 1
and �Mz = −1, splits from the lower part of the spectrum
and moves to higher energy while increasing the coupling. It
evolves to a high-energy excitation branch, which corresponds
in the decoupled bond limit to the |s〉 → |t−〉 transition,
i.e., single-triplet excitations of type (ii) (see Sec. VC3b)
at ∼2J⊥.83

The properties of the zero-energy excitation branch at
q = π show a smooth transition between the two limits.2,19

For example, the slope of the lower edge continuum, which
is determined by the LL velocity u, decreases smoothly from
its value for the Heisenberg chain to the lower value for the
anisotropic spin chain with � = 1/2 in the strong coupling
limit. In contrast to this smooth change, the presence of a
finite value of J⊥ leads to the formation of a gap in the
incommensurate low-energy branches19 at q = ±πmz. With
increasing coupling strength J⊥, new low-energy branches at
momenta q = π (1 ± 2mz) become visible.2,20 The weight of
these gapless branches is very small for small coupling and
increases with stronger coupling.2

In contrast to the antisymmetric part, the symmetric part
S+−

0 becomes gapped when the interladder coupling J⊥ is
turned on. The lowest-energy excitations remain close to the

momenta q = ±πmz, in agreement with Ref. 20. They connect
to the single-triplet excitations of type (ii) (see Sec. V C3b),
which are approximately at an energy J⊥. During increasing
γ , the higher part of the spectrum starts to separate from the
main part and evolves to a branch of high-energy two-triplet
excitations of type (iii) (see Sec. V C3c). These are located
at ∼3J⊥. Our computed spectra for γ = 2,1,0.5 presented in
Figs. 17(2a)–17(4a) clearly show this behavior. In Fig. 17(4a)
the highest two-triplet excitations cannot be seen anymore
because their spectral weight is too low.

E. Influence of the weak interladder coupling
on the excitation spectrum

Up to now we only discussed the excitations of a single spin
ladder and neglected the weak interladder coupling J ′ usually
present in real compounds.

Deep inside of the spin liquid phase, the correlations for
a single ladder are dominated by high-energy single-triplet
or multi-triplet excitations, as discussed in Sec. V B. The
presence of a small interladder coupling J ′ causes a dispersion
in the interladder direction with an amplitude of order J ′. This
effect can be evaluated for independent triplet excitations using
a single-mode approximation.1 However, for the compound
BPCB, the interladder coupling is so small that present-day
experiments do not resolve this small broadening.32,33

In contrast, in the gapless phase the effect of the interladder
coupling can change considerably the excitations. In particular,
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below the transition temperature to the 3D-ordered phase, a
Bragg peak appears at q = π in the transverse dynamical
functions S±∓

π . As discussed in Ref. 58, this Bragg peak
is surrounded by gapless Goldstone modes, and it has been
measured in the compound BPCB.31 Additional high-energy
modes are predicted to occur in the transverse S±∓

π and
longitudinal Szz

0 .58 It would be interesting to compute the
excitations using a random-phase approximation analogously
to Ref. 58, in combination with the computed dynamical
correlations for the single ladder, in order to investigate the
effect of a weak interladder coupling in more detail. However,
this goes beyond the scope of the present work and will be left
for a future study.

VI. EXPERIMENTAL MEASUREMENTS

In this section we summarize the results of experiments
on the compound BPCB and compare them to the theoretical
predictions. First, we introduce the structure of the BCPB
compound. Then we focus on static and low-energy results of
the system. Finally, we discuss the detection of excitations by
INS32,33 measurements. In particular, we give a prediction of
the INS cross section in a full range of energy and compare its
low-energy part with the measured spectra on the compound
BPCB.

A. Structure of the compound (C5H12N)2CuBr4

The compound (C5H12N)2CuBr4, customarily called
BPCB or (Hpip)2CuBr4, has been intensively investigated
using different experimental methods such as NMR,30

ND,31 INS,32,33 calorimetry,29 magnetometry,84 mag-
netostriction,85,86 and electron-spin-resonance spectro-
scopy87 (ESR).

The magnetic properties of the compound are related to
the unpaired highest-energy orbital of the Cu2+ ions. Thus
the corresponding spin structure (Fig. 18) matches with the
Cu2+ location.28,30,32 The unpaired spins form two types of
inequivalent ladders (Fig. 18) along the a axis (a, b, and c
are the unit cell vectors of BPCB). The directions of the rung
vectors of these ladders are d1,2 = (0.3904,±0.1598,0.4842)
in the primitive vector coordinates [Fig. 18(b)]. As one can
see from the projection of the spin structure onto the bc plane
[Fig. 18(b)], each rung has nc = 4 interladder neighboring
spins.

The BPCB structure has been identified as a good experi-
mental realization of the system of weakly coupled spin-1/2
ladders28 described by the Hamiltonian (1). As we will explain
in the next section, the interladder coupling J ′ has been
experimentally determined to be30,31

J ′ ≈ 20–100 mK. (38)

The intraladder couplings from Eq. (2) were determined
to be J⊥ ≈ 12.6–13.3 K and J‖ ≈ 3.3–3.8 K with differ-
ent experimental techniques and at different experimental
conditions.28–33,84–86 In this paper, we use the values88

J⊥ ≈ 12.6 K, J‖ ≈ 3.55 K. (39)

Recently a slight anisotropy of the order of 5% of J⊥
has been discovered by ESR87 measurements. This anisotropy

FIG. 18. (Color online) Coupling structure of BPCB where the
unpaired electron spins of the Cu2+ atoms in the first (second) type of
ladders are pictured by red (blue) spheres. The J⊥, J‖, and J ′ coupling
paths are represented in turquoise, pink, and green, respectively.
a, b, and c are the three unit-cell vectors of the structure. Gray arrows
are the rung vectors of the two types of ladders d1,2. (a) 3D structure.
(b) Projection of the 3D structure onto the bc plane. (c) Projection of
the 3D structure onto the ac plane. (d) Projection of the 3D structure
onto the ab plane.

could explain the small discrepancies between the couplings
found in different experiments. The magnetic field in Tesla is
related to hz, replacing

hz → gμBhz (40)

in Eq. (2), with μB being the Bohr magneton and g being
the Landé factor of the unpaired copper electron spins. The
latter depends on the orientation of the sample with respect
to the magnetic field. For the orientation chosen in the NMR
measurements,30 it amounts to g ≈ 2.126.88 It can vary up to
∼10% for other experimental setups.28

B. Thermodynamic measurements and low-energy properties

Many interesting thermodynamic measurements have been
performed on BPCB. We select in the following some of these
experiments and compare them to the theoretical predictions.

The longitudinal magnetization that can be measured
very precisely by NMR (see Ref. 30) was shown to agree
remarkably with the one computed using the weakly coupled
ladder model (Fig. 3). Unfortunately, the magnetization is not
very sensitive to the underlying model (see Sec. IV A). Thus it
cannot be used to select between various models, but once the
model is fixed, it can be used to fix precisely the parameters
given the high accuracy of the experimental data. In particular,
the position of the critical fields are very sensitive to the
values of the intraladder couplings (Sec. IV A). The couplings
determined by this method are J⊥ ≈ 12.6 K and J‖ ≈ 3.55 K.

A more selective test to distinguish between various models
is provided by the specific heat. This is due to the fact that the
specific heat contains information on high-energy excitations
that are characteristic for the underlying model. As shown
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in Fig. 6, the experimental data are remarkably described,
up to an accuracy of a few percent, by a simple Heisenberg
ladder Hamiltonian with the parameters extracted from the
magnetization. In particular, not only the low-temperature
behavior is covered by the ladder description, but also the
higher maxima. This indicates that the ladder Hamiltonian
is an adequate description of the compound. The small dis-
crepancies between the specific-heat data and the calculation,
which is essentially exact, can have various sources. First,
the substraction of the nonmagnetic term in the experimental
data can account for some of the deviations. Furthermore, the
interladder coupling can induce slight changes in the behavior
of the specific heat. Finally, deviations from the simple ladder
Hamiltonian can be present. Small anisotropy of the couplings
can exist and indeed are necessary to interpret recent ESR
experiments.87 Other terms, such as longer-range exchanges
or Dzyaloshinskii-Moryia (DM) terms, might occur along the
legs even if the latter is forbidden by symmetry along the
dominant rung coupling. Clearly all these deviations from the
Heisenberg model cannot be larger than a few percent. They
will not lead to any sizable deviation for the LL parameters
(Fig. 23) in the 1D regime. Close to the critical points they
can, however, play a more important role. It would thus be
interesting in subsequent studies to refine the model to take
such deviations into account.

After having fixed the model and the intraladder couplings
up to a few percent, we use it to compute other experimentally
accessible quantities such as the magnetostriction, thermal
expansion, the NMR relaxation rate, the transition temperature
to the ordered phase, and its order parameter. In Refs. 85
and 86 the magnetostriction and thermal expansion were
compared to the theoretical results by using the described
ladder model. A very good agreement was found in a broad
range of temperatures (not shown here). Note that only a
full ladder model allows a global quantitative description
of the magnetostriction effect, which provides an additional
confirmation of the applicability of the model. The quality of
the determination of the model and its intraladder parameters
becomes even more evident in the comparison of the NMR
data for the relaxation rate T −1

1 with the theoretical results
of the LL theory, as shown in Fig. 8. Only one adjustable
parameter is left, namely, the hyperfine coupling constant
(see Sec. IV C). This parameter allows for a global expansion
of the theoretical curve, but not for a change of its shape.
The agreement between the theory and the experimental data
is very good over the whole range of the magnetic field and
only small deviations can be seen. The compound BPCB thus
allows to quantitatively test the LL universality class. Even
though the LL description is restricted to low energies, in
BPCB its range of validity is rather large. Indeed, at high
energy, its breakdown is approximately signaled by the first
peak of the specific heat29 (see Sec. IV B 2). Here this has a
maximum scale of T ∼ 1.5 K at midpoint between hc1 and
hc2 [see Fig. 5(c)]. Given the low ordering temperature, which
has a maximum at approximately T ∼ 100 mK, this leaves a
rather large LL regime for this compound.

Taking now the coupling between ladders into account, one
can induce a transition to a 3D-ordered phase. The transition
temperature is shown in Fig. 9. Experimentally, it is determined
by NMR30 and ND measurements.31 Theoretically the ladders

are described by LL theory, and their interladder coupling
is treated in a mean-field approximation (see Secs. III C
and III D). As shown in Fig. 9, the LL theory provides
a remarkable description of the transition to the transverse
antiferromagnetic order at low temperatures. The shape of
Tc(hz) is almost perfectly reproduced, in agreement with both
the NMR30 and the ND data.31 The comparison with the
experiments determines the interladder coupling J ′, the only
adjustable parameter. The simple mean-field approximation
would give a value of J ′ ∼ 20 mK. As discussed in Sec. IV D 1,
the mean field tends to underestimate the coupling, and it
should be corrected by an essentially field-independent factor.
Taking this into account, we obtain a coupling of the order of
J ′ = 27 mK.

The order parameter in the antiferromagnetic phase can
be observed also by experiments. It shows a very interesting
shape. At a pure experimental level ND and NMR have some
discrepancies, as shown in Fig. 10. These discrepancies can be
attributed to the different temperatures at which the data has
been taken, and a probable underestimate of the temperature
in the ND experiments.31 Indeed, the order parameter close to
the critical magnetic field hc2 is very sensitive to temperature,
because the transition temperature drops steeply in this regime.
Note that, although the NMR allows clearly for a more precise
measurement of the transverse staggered magnetization, it
cannot give its absolute value. Thus the amplitude of the order
parameter is fixed from the ND measurement. Even though
a good agreement between the theoretical results and the
experimental results is obtained, several questions concerning
the deviations remain to be addressed.

First, the theoretical curve does not fully follow the
shape of the experimental data. Particularly at high fields,
the experimental data shows a stronger decrease. A simple
explanation for this effect most likely comes from the fact
that the calculation is performed at zero temperature, while
the measurement is done at 40 mK. This is not a negligible
temperature with respect to Tc, in particular, at magnetic
fields close to hc2. Extrapolation of the experimental data to
zero temperature30 improves the agreement. However, for a
detailed comparison, either lower-temperature measurements
or a calculation of the transverse staggered magnetization at
finite temperature would be required. Both are quite difficult
to perform and will clearly require further studies.

The second question comes from the amplitude of the
staggered magnetization. Indeed, the experimental data seem
to be slightly above the theoretical curve, even if one uses
the value J ′ = 27 mK for the interladder coupling. This
is surprising because one would expect that going beyond
the mean-field approximation could only reduce the order
parameter. Naively, one would thus need a larger coupling,
perhaps of the order of J ′ ∼ 60–80 mK, to explain the
amplitude of the order parameter. This is a much larger
value than the one extracted from the comparison of Tc.
How to reconcile these two values remains open. The various
anisotropies and additional small perturbations in the ladder
Hamiltonian could resolve part of this discrepancy. However, it
seems unlikely that they result in a correction of J ′ by a factor
of ∼2–3. Another origin might be the presence of some level
of frustration present in the interladder coupling. Clearly more
experimental and theoretical studies are needed on that point.
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FIG. 19. (Color online) Theoretical momentum-energy-depen-
dent INS cross section for BPCB with Q · di = π (i = 1,2) and
q = Q · a at mz = 0.5 in (a) a ladder system and (b) the spin chain
mapping. The horizontal dashed lines correspond to the constant
energy scans at ω = 0.2 and 0.4 meV shown in Fig. 21.

C. Inelastic neutron scattering (INS)

The INS technique is a direct probe for dynamical spin-spin
correlation functions. Measurements have been performed
on the compound BPCB in the spin liquid phase32,33 (low
magnetic field) and in the gapless regime.32 By modeling the
compound BPCB with two inequivalent uncoupled ladders
oriented along the two rung vectors d1,2 (see Fig. 18), the
magnetic INS cross section89 is given by the formula

d2σ

d�dE′ ∝ q ′

q
|F (Q)|2

∑
i=1,2

{
1

2

(
1 + Qz2

Q2

)

× [cos(Q · di) (S+−
21 + S−+

21 ) + S+−
11 + S−+

11 ]

+ 2

(
1 − Qz2

Q2

)[
cos(Q · di)S

zz
21 + Szz

11

]}
. (41)

Here Q = (Qx,Qy,Qz) = q − q′ is the momentum trans-
ferred to the sample (q and q′ are the incident and scattered
neutron momenta, respectively) and ω = E − E′ is the trans-
ferred energy (E and E′ are the incident and scattered neutron
energies, respectively). The correlations S

αβ

ij are understood to
be evaluated at the momentum Q · a and frequency ω, and are

defined by

S
αβ

ij (Q · a,ω) = S
αβ

0 (Q · a,ω) ± Sαβ
π (Q · a,ω)

2
(42)

(the + sign if i = j and the − sign if i 	= j ), with S
αβ
qy

defined
at zero temperature in Eq. (31) and evaluated for a momentum
q = Q · a along the a unit-cell vector (momentum along the
ladder direction). The magnetic form factor F (Q) of the Cu2+
and the ratio q ′/q are corrected in the experimental data.

The INS cross section (41) is directly related to a com-
bination of different correlation functions S

αβ
qy

with weights
depending on the transferred momentum Q and the magnetic-
field orientation. In the model definition (see Sec. II A), the
magnetic field h is pointing along the z direction. Aligning it
to the b unit-cell vector and tuning Q in the a�c� plane (a�,
b�, and c� are the reciprocal vectors of a, b, and c) allows
one to keep constant the prefactors in Eq. (41) scanning the
a� momenta with the condition Q · di = 0 or π to target the
symmetric or antisymmetric part, respectively.

We focus here on the antisymmetric part for which the
low-energy spectra already have been studied experimentally
and theoretically.32 Theoretically, the focus so far lay on the
description by the spin chain mapping. We compute here the
INS cross section (41) for the full ladder at mz = 0.25, 0.5,
and 0.75 by using the correlations presented in Sec. V. The
results are shown in Figs. 19 and 20 and are compared to the
results from the spin chain mapping.

As expected from expression (41), it contains the dif-
ferent excitations present in the spectra of Szz

π and S±∓
π

[cf. Figs. 12(b), 13(b), and 14(b)]:
(a) The low-energy continuum originates from the transver-

sal correlations S±∓
π . It is qualitatively well described by the

spin chain mapping that presents a symmetry with respect to
half magnetization.

(b) The continuum of excitations at energy83 ∼J⊥ comes
from the longitudinal correlation Szz

π and is not present in the
spin chain mapping.

(c) The continuum of excitations at energy83 ∼2J⊥ comes
from the transversal correlation S+−

π and is not present in the
spin chain mapping.

FIG. 20. (Color online) Theoretical momentum-energy-dependent INS cross section for BPCB with Q · di = π (i = 1,2) and q = Q · a
at (a) mz = 0.25, (b) mz = 0.25,0.75 in the spin chain mapping, and (c) mz = 0.75. The horizontal dashed lines correspond to the constant
energy scans at ω = 0.2 and 0.4 meV plotted in Fig. 22.
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FIG. 21. (Color online) INS intensity measured along a� of BPCB
(Ref. 32) with the momentum π in the rung direction (Q · di = π )
at hz = 10.1 T (mz ≈ 0.5) and T = 250 mK after substraction of the
zero-field background. In each panel, fixed energy scans (shown by
white dashed lines in Fig. 19) are plotted: (a) ω = 0.2 meV, (b) ω =
0.4 meV. The circles correspond to the experimental data. The red
(black) solid lines are the mz = 0.5 theoretical data for the ladder (the
spin chain mapping) convolved with the instrumental resolution. The
shaded bands indicate the error bar in the experimental determination
of a single proportionality constant valid for all fields, energies, and
wave vectors. The width of these areas combines the statistics of all
our scans with uncertainties in the exact magnetization values at the
chosen fields and in the convolution procedure.

The main features of the low-energy continuum (a) are
well covered by the spin chain mapping.32 However, slight
differences between the low-energy excitations in the spin
ladder and the spin chain are still visible (cf. also Sec. V C 2).
They can even be distinguished in the experimental data as
shown in Figs. 21 and 22, where some cuts at fixed energy
ω = 0.2 and 0.4 meV are plotted. The INS measured intensity
is directly compared to the theoretical cross section (41)
computed for the ladder and the spin chain mapping at
mz = 0.24, 0.5, and 0.72 convolved with the instrumental
resolution. The amplitude is fixed by fitting one proportionality
constant for all fields, energies, and wave vectors.

These scans at fixed energy present peaks when the lower
edge of the continua (related to the correlations S±∓

π ) is crossed
(see the dashed white lines in Figs. 19 and 20). As one can see,
the theoretical curves for the ladder and the spin chain both
reproduce well the main features in the experimental data and
only small differences are present:

(i) The spectral weight intensity at mz = 0.5 and ω =
0.4 meV [in Fig. 21(b)] is slightly overestimated by the spin
chain mapping.

(ii) The height of the two central peaks at mz = 0.24 and
ω = 0.2 meV [in Fig. 22(c)] is underestimated by the spin
chain mapping.

Whereas the low-energy excitations (a) only showed a
slight asymmetry with respect to the magnetization, a very
different behavior can be seen in the high-energy part (b)
and (c). Indeed, the high-energy part of the INS cross section
(Fig. 20) is very asymmetric with respect to half magnetization.
As we discussed in Sec. V, these excitations are due to the
high-energy triplets that can be excited in Szz

π and S+−
π [see

Figs. 12(b) and 13(b)] and are totally neglected in the spin
chain mapping. Their corresponding spectral weight is of the
same order than the low-energy spectra, and thus should be

FIG. 22. (Color online) INS intensity measured along a� of
BPCB (Ref. 32) with a π momentum in the rungs (Q · di = π ) at
T = 250 mK after substraction of the zero-field background. In each
panel, cuts at fixed energy (shown by white dashed lines in Fig. 20)
are plotted: (a) ω = 0.4 meV and mz = 0.24, (b) ω = 0.4 meV and
mz = 0.72, (c) ω = 0.2 meV and mz = 0.24, and (d) ω = 0.2 meV
and mz = 0.72. The circles correspond to the experimental data. The
solid red (black) curves are the theoretical data for the ladder (the spin
chain mapping) convolved with the instrumental resolution. The
shaded bands indicate the error bar in the experimental determination
of a single proportionality constant valid for all fields, energies, and
wave vectors. The width of these areas combines the statistics of all
our scans with uncertainties in the exact magnetization values at the
chosen fields and in the convolution procedure.

accessible experimentally. It would be very interesting to have
an experimental determination of this part of the spectrum,
because as we have seen it contains characteristic information
on the system itself and is related to itinerant systems via the
various mappings.

VII. CONCLUSIONS

In this paper we have looked at the thermodynamic and
dynamical properties of weakly coupled spin ladders under a
magnetic field. This was done by a combination of analytical
techniques, such as BA, bosonization, and LL theory, and
numerical techniques such as DMRG and QMC. Using this
combination of techniques we were able to explore the physical
properties in the three main regions of the phase diagram of
such spin ladders under a magnetic field, namely, (a) a gapped
spin liquid at low fields, (b) a massless phase at intermediate
fields hc1 < hz < hc2, and (c) a saturated phase at larger
fields. In addition to the theoretical analysis, we compared our
findings to the experimental results on the compound BPCB
[(C5H12N)2CuBr4], which is an excellent realization of such
ladder systems.

For thermodynamics we computed the magnetization and
specific heat of the system as a function of temperature and
magnetic field. The extension of the DMRG technique to
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finite temperature allows us to compute these quantities with
excellent accuracy. In the gapless phase the low-energy part
of the specific heat agrees well with the prediction of the LL
theory, which is the low-energy theory describing most of the
massless 1D systems. At higher temperatures, the numerical
solution is needed to capture the precise structure of the
peaks in the specific heat that reflect the presence of the
excited states in the ladder. Comparison of the theoretical
calculations with the measured magnetization and specific
heat proves to be remarkable. This good agreement confirms
that the ladder model is indeed a faithful description of the
compound BPCB. It also gives direct access, via the maxima
in magnetization and peaks in the specific heat, to the approx-
imate region of applicability of the LL description. For the
low-energy dynamics we used a combination of the numerical
techniques to determine the LL parameters and then the
analytical description based on LL to compute the dynamical
spin-spin correlation functions. This allowed to extract the
NMR relaxation rate and the 1D antiferromagnetic transverse
susceptibility. If the ladders are very weakly coupled, which
is the case in the considered material, the divergence of the
susceptibility leads to a 3D antiferromagnetic order at low
temperatures in the direction transverse to the applied magnetic
field. We computed this transition temperature and the order
parameter at zero temperature. Comparison with the measured
experimental quantities both by NMR and ND proved again to
be remarkable. This excellent agreement between theory and
experiment for these quantities as a function of the magnetic
field allows to quantitatively test the LL theory. Indeed,
it shows that several different correlations are described
totally by the knowledge of the two LL parameters (and
the amplitudes relating the microscopic operators to the field
theory one). This is something that could not be really tested
previously because either the microscopic interactions were
not known in detail, leaving the LL parameters as adjustable
parameters, or only one correlation function could be measured
in a given experiment, not allowing to test for universality of
the description.

We also gave a detailed description of the dynamical
spin-spin correlations, for T = 0 using the t-DMRG method,
for a wide range of energies and all momenta. The excitations
reveal much important information on the system and are well
suited to characterize it. In particular, we show the interesting
evolution of the excitations in the system with the magnetic
field and with different coupling strengths. Quite interestingly,
the intermediate energy part can be related to the excitations
of a t-J model and thereby shows features of itinerant systems.
We also showed that the dynamical correlations of the ladder
posses characteristic high-energy features that are clearly
distinct from the corresponding spectrum for spin chains.

The numerical calculation is efficient for the high- and
intermediate-energy part of the spectrum for which the LL
description cannot be applied. We showed that the two
methods, numerics and LL, have enough overlap, given the
accuracy of our calculation, so that we can have a full
description of the dynamical properties at all energies. This
allowed us to use each of the methods in the regime where it is
efficient. In particular, in the present study we did not push the
numerical calculations to try to obtain the exact behavior at
low energies, but focused on the high- and intermediate-energy

regime. We used the analytical description coupled to the
numerical determination of the LL parameters to obtain a
very accurate low-energy description. We made the connection
between our results and several analytical predictions. In
particular, at intermediate or low energy our calculation agrees
with the LL prediction of incommensurate points and behavior
(divergence and convergence) of the correlations.

We compared our numerical results with existing INS data
on the compound BPCB and found excellent agreement. It
is rewarding to note that the resolution of our dynamical
calculation is, in energy and momentum, at the moment better
than the one of the experiment. The comparison between
theory and experiment is thus essentially free of numerical
error bars. Given the current resolution of the INS experiment,
it is difficult to distinguish in the low-energy part of the
spectrum the difference between the dynamical correlation
of the true ladder and the one of an anisotropic spin-1/2
system, which corresponds to the strong rung exchange limit.
More accurate experiments would be desirable in this respect.
An alternative route is to probe experimentally the high-
energy part of the spectrum, because these high-energy exci-
tations contain many characteristic features of the underlying
model.

On the conceptual side and also in connection with the
compound BPCB, several points remain to be investigated. An
extension of the dynamical results to finite temperature would
be desirable. This could be used to study different effects such
as the interesting shifts and damping of the triplet modes with
temperature that have been observed in 3D gapped systems.90

A second important step would be to improve the description
of the quasi-1D systems, by including in a mean-field way
the effect of the other ladders in the numerical study. This
is something we already partly performed, but the extension
to the dynamical quantities remains to be done. This is
specially important close to the quantum critical points hc1 and
hc2, where the interladder coupling becomes crucial and the
system undergoes a dimensional crossover between a 1D and
a higher-dimensional (3D typically) behavior. Understanding
such a crossover is a particularly challenging question because
the system goes from a description for which an image of
essentially free fermions applies (in the 1D regime) to one for
which a description in terms of essentially free bosons (the 3D
regime) applies.

One step further would be the extension of the investigation
of the combined numerical–analytical methods we used here
to other systems, including ladder systems with certain
asymmetries or in the presence of disorder.
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APPENDIX A: STRONG COUPLING EXPANSION
OF A SINGLE SPIN LADDER

In this Appendix we show how the spin ladder Hamil-
tonian (2) at strong coupling (γ � 1) can be expressed
in bosonic operators acting on single bonds introduced in
Ref. 91. This representation allows a classification of the
excitations due to their position in energy. We first derive
perturbatively an effective system based on this Hilbert space
organization by energy sectors. We introduce the Schrieffer-
Wolff transformation that maps the physical system to the
effective system, and approximate it by using a strong coupling
expansion. Thus, we evaluate the rung densities of the ground
state in the spin liquid, and derive an effective theory for the
gapless regime. Furthermore, we evaluate the deviation of the
LL parameters from the spin chain mapping.

1. Strong coupling expansion

The four-dimensional Hilbert space on each rung l is
spanned by the states |s〉, |t+〉, |t0〉, and |t−〉 [cf. Eqs. (9)
and (10)], obtained by applying the boson creation operators
s
†
l , t

†
l,+, t

†
l,0, and t

†
l,− to a vacuum state. A hardcore boson

constraint applies on each rung l, i.e.,

�l,s + �l,+ + �l,0 + �l,− = 1, (A1)

where �l,s = s
†
l sl and �l,k = t

†
l,ktl,k , k = ±, 0.

While the Hamiltonian on the rung H⊥ (3) is quadratic in
the boson operators,

H⊥ =
L∑

l=1

[(1 − hz/J⊥)�l,+ + �l,0 + (1 + hz/J⊥)�l,−] − 3

4
L,

(A2)

the chain Hamiltonian H‖ (4) is quartic, and its structure is
quite complex. The advantage of the boson representation is
revealed when considering the case of small γ . In that case we
perform a Schrieffer-Wolff transformation of the spin ladder
Hamiltonian (2),

Heff = eiγAHe−iγA. (A3)

The Hermitian operator A can be expanded in powers of γ ,

A = A1 + γA2 + · · · . (A4)

Thus Heff can be written in orders of γ as

J−1
⊥ Heff = H⊥ + γH (1) + γ 2H (2) + · · · , (A5)

where

H (1) = H‖ + i[A1,H⊥], (A6)

H (2) = i[A2,H⊥] − 1
2 [A1,[A1,H⊥]] + i[A1,H‖], (A7)

etc. Through this expansion, the unitary transform eiγA can be
perturbatively determined by computing the Ak recursively in
order to eliminate the transitions between the energy sectors
of excitations in Heff . Since the first term J⊥H⊥ in Eq. (A5)
leads to a separation of excitations on the order of the energy
scale J⊥ [cf. Fig. 2(a)], the decoupled bond limit provides the
effective Hilbert space that contributes to each energy sector.
The second term J‖H (1) causes broadening of these bands on
the order of J‖ and can induce a complex structure within the

energy bands. To obtain the desired expansion up to the first
order in γ , we choose

A1 = i

4

∑
l

s
†
l s

†
l+1(tl,0tl+1,0 − tl,+tl+1,− − tl,−tl+1,+) + H.c.,

(A8)
where H.c. stands for the Hermitian conjugation.

2. Rung state density in the spin liquid

In the spin liquid phase, the decoupled bond limit provides
the effective ground state |0eff〉 = |s · · · s〉, which is related to
the physical ground state by

|0〉 = e−iγA|0eff〉. (A9)

So the triplet density of the ground state 〈ρk〉 (with k = ±,0)
is given by

〈ρk〉 = 〈�l,k〉 = 〈s · · · s|eiγA�l,ke
−iγA|s · · · s〉. (A10)

Using Eq. (A8), and keeping only the nonvanishing corre-
sponding terms in (A10) up to second order, we get

〈ρk〉 ∼= γ 2〈s · · · s|A1�l,kA1|s · · · s〉 = γ 2

8
. (A11)

In the case of the compound BPCB (see Sec. VI A) this
expansion gives 〈ρk〉 ∼= 0.01, and due to the hardcore boson
constraint [Eq. (A1)] 〈ρs〉 = 〈�l,s〉 ∼= 0.97. Even though we
took into account only the first-order term for A in Eq. (A4),
this approximation of the triplet density differs from the direct
numerical computations (in Fig. 4) of only ∼20%.

3. Effective Hamiltonian in the gapless regime

The first-order term H (1) of the effective Hamiltonian (A5)
is computed by substituting (A8) into (A6). This leads to H (1)

in the form

H (1) =
4∑

k=0

1

2

∑
l

H(1)
k,l︸ ︷︷ ︸

=H
(1)
k

, (A12)

where

H(1)
0,l = s

†
l+1t

†
l,+tl+1,+sl + 1

2�l+1,+�l,+ + H.c., (A13)

H(1)
1,l = s

†
l+1t

†
l,0tl+1,0sl + t

†
l+1,+t

†
l,0tl+1,0tl,+ + H.c., (A14)

H(1)
2,l = s

†
l+1t

†
l,−tl+1,−sl − 1

2 (�l+1,+�l,− + �l+1,−�l,+)

+ t
†
l+1,0t

†
l,0tl+1,−tl,+ + t

†
l+1,0t

†
l,0tl+1,+tl,− + H.c.,

(A15)

H(1)
3,l = t

†
l+1,0t

†
l,−tl+1,−tl,0 + H.c., (A16)

and

H(1)
4,l = �l+1,−�l,−. (A17)

Here we regrouped the terms such that each J⊥H
(1)
k acts on

the corresponding energy sector kJ⊥, k = 0,1, . . . ,4 in the
gapless regime. Note that in each sector A1 = 0 such that to
the considered order in γ the Hamiltonian (2) corresponds to
the effective Hamiltonian.
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a. Low-energy sector

When focusing on the low-energy sector, the |s〉 and the |t+〉
modes dominate the behavior and we can assume a vanishing
density of |t0〉 and |t−〉 triplets. Thus the hardcore boson
constraint (A1) simplifies to

�l,s + �l,+ = 1 (A18)

and the rung Hamiltonian (A2) simplifies to

H⊥ = (1 − hz/J⊥)
∑

l

�l,+ − 3

4
L. (A19)

Further, the only contribution to the first-order term in γ comes
from H

(1)
0 . Taking this into account, we obtain from Eq. (A5)

for the Hamiltonian (2) in the lowest energy sector

H = J⊥H⊥ + J‖H
(1)
0 , (A20)

where H⊥ is given by Eq. (A19) and H
(1)
0 by Eq. (A13).

Following Ref. 17, we map the two low-energy modes on the
two states of a pseudospin [Eq. (11)], and replace the boson
operators s† and t

†
+ with the spin-1/2 operators,

S̃+
l = t

†
l,+sl, S̃−

l = s
†
l tl,+, S̃z

l = �l,+ − 1
2 . (A21)

The effective Hamiltonian is the spin-1/2 XXZ Heisenberg
Hamiltonian, Eq. (13).

b. Sector of energy J⊥

The effective Hilbert space of the J⊥ energy sector
corresponds to a single |t0〉 triplet excitation lying in a sea
of singlets |s〉 and triplets |t+〉. The effective Hamiltonian up
to first order in γ is given by

H = J⊥H⊥ + J‖
[
H

(1)
0 + H

(1)
1

]
. (A22)

The excitation |t0〉 can be interpreted as a single hole excitation
in a spin chain formed by |s〉 and |t+〉. Each rung state of this
sector is identified with

|↓̃〉 = |s〉, |↑̃〉 = |t+〉, |0〉 = |t0〉. (A23)

In this picture the Hamiltonian (A22) can be mapped onto
the anisotropic t-J model,

Ht−J = HXXZ + Ht + Hs-h + ε, (A24)

where ε = (J⊥ + hz)/2 is an energy shift.
The hopping term

Ht = J‖
2

∑
l,σ

(c†l,σ cl+1,σ + c
†
l+1,σ cl,σ ) (A25)

stems from the term J‖H
(1)
1 in Eq. (A22). Here c

†
l,σ (cl,σ ) is the

creation (annihilation) operator of a fermion with pseudospin
σ = ↑̃,↓̃ at the site l. Note that, although here we are dealing
with spin states, it is possible to represent faithfully the three
states of each site’s Hilbert space (|s〉, |t+〉, |t0〉) using a
fermion representation.

Additionally, a nearest-neighbor density-density term be-
tween the up spin and the hole arises:

Hs-h = −J‖
4

∑
l

(nl,hnl+1,↑̃ + nl,↑̃nl+1,h). (A26)

Here nl,h is the density operator of the hole at site l. This
term stems from the nearest-neighbor interaction between the
|t+〉 triplets, i.e., the second term in Eq. (A13). Mapping this
term onto a spin chain in the presence of a hole leads to an
interaction term between the hole and the spin-up state. Note
that this is in contrast to the usual mapping on a spin chain
without a hole, in which case it would only cause a shift in
energy.

4. Second-order perturbation and LL parameters

The second-order term H (2) (A7) of the expansion (A5)
contains a huge amount of terms. Nevertheless, considering
the low-energy sector, only the following terms,

H
(2)
0 = −3

8

∑
l

�l,s�l+1,s

− 1

8

∑
l

(tl−1,+s
†
l−1�l,s t

†
l+1,+sl+1 + H.c.), (A27)

are important. The first term in Eq. (A27) is a singlet density-
density interaction that can be absorbed into the coupling of the
XXZ chain, and the second term is a conditionnal hopping.92

In order to study the effects of H
(2)
0 on the LL parameters u

and K (see Fig. 23), we first replace the boson operators with
the spin-1/2 operators [Eq. (A21)]. So the Hamiltonian (2) in
the low-energy sector becomes

H = HXXZ − 1

8

∑
l

[
S̃−

l−1

(
1

2
− S̃z

l

)
S̃+

l+1 + H.c.

]
+ const,

(A28)

where HXXZ is the XXZ Heisenberg chain Hamiltonian
[Eq. (13)] with the corrected parameters

�(2) = 1
2 − 3

8γ, h̃z(2) = h̃z − 3
8J⊥γ 2, (A29)

up to the second order in γ . For the BPCB parameters
[Eq. (15)] �(2) ∼= 0.4 instead of � = 0.5 for the spin chain
mapping (first-order approximation). The LL parameters u,
K , and Ax of HXXZ with the anisotropy �(2) are computed,
and we treat the three-terms interaction (conditional hopping)
by approximating 1/2 − S̃z

l
∼= 1/2 − m̃z (mean-field approx-

imation). The remaining term is then bosonized using the
expression (17) for S̃±(x = l). It leads to the corrected LL
parameter ũ and K̃ of the Hamiltonian (A28) through the
relations

ũK̃ = uK + 2πγ 2J⊥Ax(1/2 − m̃z), ũ/K̃ = u/K.

(A30)
The corrected ũ and K̃ are plotted in Fig. 23 and clearly show
the asymmetric signature of the full ladder parameters induced
by the conditional hopping term in (A28). Note that the lack of
convergence K → 1 when mz = m̃z + 1/2 → 0 is obviously
an artefact of the mean-field approximation 1/2 − S̃z

l
∼=

1/2 − m̃z and the large sensitivity in the K determination with
the ratio of Eq. (A30).

APPENDIX B: LUTTINGER LIQUID

In the following, we present several properties of the LL,
providing a quantitative description of the low-energy physics
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FIG. 23. (Color online) LL parameters u, K , and the prefactors
of the spin operators Ax , Bx , and Az vs the magnetization per rung
mz computed for a spin ladder with the BPCB couplings (39) (red
crosses) and for the spin chain mapping (blue stars). The strong
coupling expansion of u and K up to the second order in γ (discussed
in Appendix A 4) is plotted as black dashed lines.

of the gapless regime in the spin ladder model (2) and the spin
chain mapping (13). We start with the determination of the
parameters that characterize totally the LL description. Then
we summarize the spin-spin correlation functions deduced
from the LL theory at zero and finite temperature.

1. LL parameter determination

In this section we detail the determination of the LL
parameters u and K , and the prefactors Ax , Bx , and Az [see
Eqs. (16), (17), and (18), respectively]. The parameters K , Ax ,
Bx , and Az and their dependence on the magnetic field have
been determined previously in Refs. 25, 26, and 93 for different
values of the couplings than considered here. We obtain these
parameters in two steps:30,94

(i) We determine the ratio u/K from its relation to the static
susceptibility [Eq. (B1)], which is a quantity numerically easily
accessible with DMRG or BA (for the spin chain only).

(ii) The parameters K and the prefactors Ax , Bx , and
Az are extracted by fitting numerical results for the static
correlation functions obtained by DMRG with their analytical
LL expression. For the spin chain, it is also possible to deduce
the product uK from the magnetic stiffness computed by
BA.6,95

We give the relations used for the spin chains only, because
from these the relations for the spin ladders can be inferred
easily by using the following relations:

mz → m̃z + 1

2
,

∂mz

∂hz
→ ∂m̃z

∂h̃z
,

〈
Sx

l,πSx
l′,π

〉 → 2
〈
S̃x

l S̃x
l′
〉
,

〈
Sz

l,0〉 → 〈S̃z
l

〉 + 1

2
,

〈
Sz

l,0S
z
l,0′

〉 → 〈
S̃z

l S̃
z
l′
〉 + 1

2

(〈
S̃z

l

〉 + 〈
S̃z

l′
〉) + 1

4
.

a. Susceptibility and u/K

The LL theory predicts that the static susceptibility ∂m̃z

∂h̃z is
related to the ratio u/K through the relation6,95

u

K
= 1

π ∂m̃z

∂h̃z

. (B1)

We numerically compute the static susceptibility by using
DMRG or BA (for the spin chain only) and infer the ratio
u/K with a negligible error.

b. Static correlation functions

For the extraction of the parameters K , Ax , Bx , and Az,
we fit numerical DMRG results for the correlation functions
〈S̃x

l S̃x
l′ 〉, 〈S̃z

l S̃
z
l′ 〉, and the local magnetization 〈S̃z

l 〉 with their
analytical expression for finite system size, Eqs. (11), (12), and
(13) in Ref. 26, respectively. In the limit of infinite system size
and far from the boundaries, these LL correlations simplify to
the well-known power-law decay

〈
S̃x

l S̃x
l′
〉 = Ax

(−1)l−l′

|l − l′| 1
2K

− Bx(−1)l−l′ cos[q(l − l′)]

|l − l′|2K+ 1
2K

, (B2)

〈
S̃z

l S̃
z
l′
〉 = m̃z 2 + Az(−1)l−l′ cos[q(l − l′)]

|l − l′|2K
− K

2π2|l − l′|2 ,

(B3)

and the local magnetization becomes constant, 〈S̃z
l 〉 = m̃z.

We first fit the transverse correlation (xx-correlation
〈S̃x

l S̃x
l′ 〉) to extract the parameters K , Ax , and Bx . Then we

use the previously extracted value for K to fit the longitudinal
correlation (zz-correlation 〈S̃z

l S̃
z
l′ 〉) and the magnetization,

〈S̃z
l 〉, which allow us to determine Az. The values determined

by both fits are very close, and in Fig. 23 the average value of
both is shown.

All the results presented in Fig. 23 were done for L = 200
and several hundred DMRG states after an average on the
four sets of used data points in the fit 10 < l,l′ < 170, 30 <

l,l′ < 170, 10 < l,l′ < 190, and 30 < l,l′ < 190. The error
bars correspond to the maximum discrepancy of these four
fits from the average. We further checked that different system
lengths lead to similar results.

The LL parameters of the ladder system (2) for the BPCB
couplings (39) are presented in Fig. 23 as a function of the
magnetization per rung. Additionally, we show the parameters
of the spin chain mapping [computed for the spin chain Hamil-
tonian (13)] for comparison. When the ladder is just getting
magnetized, or when the ladder is almost fully polarized,
K → 1 (free fermion limit) and u → 0 (because of the low
density of triplets in the first case, and low density of singlets
in the second case). For the spin chain mapping, the reflection
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symmetry at mz = 0.5 arises from the symmetry under π

rotation around the x or y axis of the spin chain. This symmetry
has no reason to be present in the original ladder model, and is
an artefact of the strong coupling limit, when truncated to the
lowest-order term as shown in Appendix A. The values for the
spin ladder with the compound BPCB parameters can deviate
strongly from this symmetry. The velocity u and the prefactor
Bx remain very close to the values for the spin chain mapping.
In contrast, the prefactors Az, Ax , and the exponent K deviate
considerably, and Ax and K become strongly asymmetric. The
origin of the asymmetry lies in the contribution of the higher
triplet states,2 and can be understood by using a strong coupling
expansion of the Hamiltonian (2) up to the second order in γ

(see Appendix A4). This asymmetry has consequences for
many experimentally relevant quantities, and it was found
to cause, for example, strong asymmetries in the 3D order
parameter, its transition temperature, and the NMR relaxation
rate (see Figs. 10, 9, and 8, respectively).

2. Dynamical LL correlations

In this section we summarize previous results of the LL de-
scription of the dynamical correlation functions19,20,96 at zero
temperature. Note that the weak and strong coupling limits,
which have been studied separately,19,20 can be connected.2

The expression of the correlations in the whole regime is given
by75

Szz
0 (q,ω) = (2πmz)2δ(q)δ(ω) + π2Az

u(K)2

(
�(ω − u|q − 2πmz|)

[
4u2

ω2 − u2(q − 2πmz)2

]1−K

+�(ω − u|q − 2π (1 − mz)|)
{

4u2

ω2 − u2[q − 2π (1 − mz)]2

}1−K)
+ Kω

u
�(ω)[δ(ω − uq) + δ(ω + uq)], (B4)

S+−
π (q,ω) = 8π2Ax

u(1/4K)2
�(ω − u|q − π |)

[
4u2

ω2 − u2(q − π )2

]1−1/4K

+ 4π2Bx

u(η+)(η−)

(
�(ω − u|q − π (1 − 2mz)|)

{
2u

ω − u[q − π (1 − 2mz)]

}1−η−{
2u

ω + u[q − π (1 − 2mz)]

}1−η+

+�(ω − u|q − π (1 + 2mz)|)
{

2u

ω − u[q − π (1 + 2mz)]

}1−η+{
2u

ω + u[q − π (1 + 2mz)]

}1−η−)
, (B5)

with the Heaviside function �(x) and η± = 1/4K ± 1 + K .
The correlation S−+

π is obtained by replacing mz → −mz in
the S+−

π expression, Eq. (B5).

FIG. 24. (Color online) Map of the momentum-frequency low-
energy correlations of the LL model, where the white areas represent
the continuum of excitations. In the striped areas no excitations
are possible. (a) Szz

0 (q,ω): The dashed-dotted lines (blue) are the
excitation peaks close to q = 0,2π and the dashed lines (red) are the
continuum lower boundary with the edge exponent 1 − K close to
q = 2πmz, 2π (1 − mz). (b) S+−

π (q,ω), (c) S−+
π (q,ω): The continuum

lower boundary close to q = π,π (1 ± 2mz) is represented by solid
lines (black) (edge exponent 1 − 1/4K), dashed lines (red) (edge
exponent 1 − η− = 2 − 1/4K − K), and dashed-dotted lines (blue)
(edge exponent 1 − η+ = −1/4K − K).

Equations (B4) and (B5) exhibit the typical behavior of
the frequency-momentum LL correlations: A continuum of
low-energy excitations exists with a linear dispersion with a
slope given by the LL velocity ±u. The spectral weight at
the lower boundary of the continuum displays an algebraic
singularity with the exponents related to the LL parameter K .
A summary of this behavior is sketched in Fig. 24. For the
considered system, the longitudinal correlation Szz

0 is predicted
to diverge with the exponent 1 − K at its lower edge. As
shown in Fig. 25(a1) the exponent of this divergence is very
weak < 0.2 for the parameters of BCPB. The transverse
correlations S±∓

π exhibit a distinct behavior depending on the
considered soft mode. Close to q = π the weight diverges
with an exponent given by 1 − 1/4K . This divergence is
strong for the considered parameters [1 − 1/4K ≈ 3/4 � 0
in Fig. 25(a2)]. In contrast, at the soft mode q = π (1 −
2mz),π (1 + 2mz), a divergence (cusp) is predicted at the lower
edge with the exponent 2 − 1/4K − K ≈ 3/4 in Fig. 25(a2)
[−1/4K − K ≈ −5/4 in Fig. 25(a3)].

3. Finite-temperature transverse staggered LL correlation

The determination of the relaxation time T −1
1 (see

Sec. IV C) and of the transition temperature Tc to the
3D-ordered phase (see Sec. IV D 1) requires the staggered
transverse retarded correlation function

χxx
a (x,t) = −i�(t) (−1)x〈[S̃x(x,t),S̃x(0,0)]〉, (B6)
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FIG. 25. (Color online) (a) Different exponents that appear in the
LL correlation functions, Eqs. (B4) and (B5), vs the magnetization
mz. The solid (dashed) lines are determined from the ladder (spin
chain mapping) exponent K in Fig. 23. The exponent 1 − K of the
Szz

0 correlations is shown in (a1), and the exponent 1 − 1/4K of
the S±∓

π correlations at the q = π branch is shown in (a2) (lower
red curves). The exponents 1 − η− = 2 − 1/4K − K (upper black
curves) in (a2) and 1 − η+ = −1/4K − K in (a3) correspond to
both sides of the incommensurate branches of the S±∓

π (see Fig. 24).
(b) Shift of the ground-state energy per rung vs the magnetization
�E0(mz) = E0(0) − E0(mz).

written in term of the spin chain mapping operators (12), with
�(t) the Heaviside function. In the gapless regime, using the
bosonization formalism (17), and taking into account only the
most relevant term, we can compute it as described in Ref. 6
for the LL Hamiltonian (16),

χxx
a (x,t) = −�(t)�(ut − x)�(ut + x)

(
π

βu

) 1
2K

× 2Ax sin
(

π
4K

)
∣∣ sinh

[
π
β

(
x
u

+ t
)]

sinh
[

π
β

(
x
u

− t
)]∣∣ 1

4K

, (B7)

and its Fourier transform,

χxx
a (q,ω) = −Ax sin

(
π

4K

)
u

(
2π

βu

) 1
2K

−2

×B

[
−i

β(ω − uq)

4π
+ 1

8K
,1 − 1

4K

]

×B

[
−i

β(ω + uq)

4π
+ 1

8K
,1 − 1

4K

]
, (B8)

where B(x,y) = (x)(y)
(x+y) .

APPENDIX C: DMRG METHOD

In this Appendix, we describe first the t-DMRG method and
its extension to finite temperature. Then we give the technical
details related to the computation of the momentum-frequency
correlations.

1. Time-dependent DMRG

The time-dependent DMRG37–40 (t-DMRG) method is
based on the principle of the original DMRG to choose an
effective reduced Hilbert space to describe the physics one
is interested in. Instead of choosing only once the effective
description for the evolution of the state, the t-DMRG adapts
its effective description at each time step. The implementation
of this idea can be performed using different time-evolution
algorithms. Here we use the second-order Trotter-Suzuki
expansion for the time-evolution operator by using a rung as
a unit.38,39 The errors arising in this method are the so-called
truncation error and the Trotter-Suzuki error. Both are very
well controlled (see Ref. 97 for a detailed discussion).

2. Finite-temperature DMRG

The main idea of the finite-temperature DMRG41–43

(T-DMRG) is to represent the density matrix of the physical
state as a pure state in an artificially enlarged Hilbert space.
The auxiliary system is constructed by simply doubling
the physical system. Starting from the infinite-temperature
limit, the finite temperature is reached evolving down in
imaginary time. The infinite-temperature state in this auxiliary
system corresponds to the totally mixed Bell state |ψ(0)〉 =

1
Nλ

L/2

∏L
l=1

∑
λl

|λlλl〉, where |λlλl〉 is the state at the bond l of
the auxiliary system that has the same value λl on the two sites
of the bond (physical and its copy). The sum

∑
λl

is done on
all these Nλ states |λl〉. We evolve the physical part of |ψ(0)〉
in imaginary time to obtain

|ψ(β)〉 = e−βH/2|ψ(0)〉 (C1)

by using the t-DMRG algorithm presented in Appendix C1
with imaginary time. We renormalize this state at each step of
the imaginary time evolution. Thus the expectation value of an
operator O acting in the physical system with respect to the
normalized state |ψ(β)〉is directly related to its thermodynamic
average, i.e.,

〈O〉β = Tr[Oe−βH ]

Tr[e−βH ]
= 〈ψ(β)|O|ψ(β)〉, (C2)

at the temperature T = 1/β. We use this method to compute
the average value of the local rung magnetization mz(T ) and
energy per rung E(T ) in the center of the system. Additionally,
we extract the specific heat c(T ) by

c(β + δβ/2) ≈ − (β + δβ/2)2

2δβ
(〈E〉β+δβ − 〈E〉β ), (C3)

where δβ is the imaginary time step used in the T-DMRG.
To reach very low temperatures T → 0 for the specific heat,

we approximate the energy by its expansion in T ,

E(T ) ≈ E0 +
n∑

i=2

αiT
i, (C4)

up to n = 4. The energy at zero temperature E0 is determined
by a standard T = 0 DMRG method. Since E(T ) has a
minimum at T = 0, the linear term in the expansion (C4)
does not exist. The numbers αi (i = 2,3,4) are obtained by
fitting the expansion on the low T values of the numerically
computed E(T ).
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Typical system lengths used for the finite-temperature
calculations are L = 80 (L = 100 for the spin chain map-
ping) keeping a few hundred DMRG states and choosing a
temperature step of δβ = 0.02 K−1 (δβ = 0.01 K−1 for the
spin chain mapping).

Let us note that recently a new method has been developed
to treat finite temperatures,98,99 which is very promising to
reach even lower temperatures.

3. Momentum-frequency correlation functions

To obtain the desired frequency-momentum spin-spin cor-
relations [Sαβ

qy
(q,ω) in (31)], we first compute the correlations

in space and time,

S
αβ

l,k (tn) = 〈0|eitnH Sα
l+L/2,ke

−itnH S
β

L/2,1|0〉, (C5)

with l = −L/2 + 1, − L/2 + 2, . . . , L/2, k = 1, 2, and tn =
nδt (n = 0,1, . . . ,Nt ) is the discrete time used. These cor-
relations are calculated by time evolving the ground state
|ψ0〉 = |0〉 and the excited state |ψ1〉 = S

β

L/2,1|0〉 by using the
t-DMRG (see Appendix C1).

Afterward the overlap of Sα
l+L/2,k|ψ1(t)〉 and |ψ0(t)〉 is

evaluated to obtain the correlation function (C5).
In an infinite system reflection symmetry would be fulfilled.

To minimize the finite system corrections and to recover the
reflection symmetry of the correlations, we average them:

1
2

[
S

αβ

−l,k(tn) + S
αβ

l,k (tn)
] → S

αβ

l,k (tn). (C6)

We then compute the symmetric (antisymmetric) correlations
(upon leg exchange) (see Sec. V A),

S
αβ

l,qy
(tn) = 2

[
S

αβ

l,1 (tn) ± S
αβ

l,2 (tn)
]
, (C7)

with the rung momentum qy = 0, π , respectively. Finally, we
perform a numerical Fourier transform,100

Sαβ
qy

(q,ω) ≈ δt

Nt∑
n=−Nt+1

L/2∑
l=−L/2+1

ei(ωtn−ql)S
αβ

l,qy
(tn), (C8)

for discrete momenta q = 2πk/L (k = 0,1, . . . ,L − 1) and
frequencies ω.101 The momentum q has the reciprocal units
of the interrung spacing a (a = 1 is used if not mentioned
otherwise). Due to the finite time step δt , our computed
S

αβ
qy

(q,ω) are limited to the frequencies from −π/δt to
π/δt . The finite calculation time tf = Ntδt induces artificial
oscillations of frequency 2π/tf in S

αβ
qy

(q,ω). To eliminate
these artefacts and reduce the effects of the finite system
length, we apply a filter to the time-space correlations before
the numerical Fourier transform (C8), i.e.,

S
αβ

l,qy
(tn)f (l,tn) → S

αβ

l,qy
(tn). (C9)

We tried different functional forms for the filter f (l,tn) (cf.
Ref. 38 as well). In the following, the results are obtained
by a Gaussian filter, f (l,tn) = e−(4l/L)2−(2tn/tf )2

, if not stated
otherwise. As the effect of this filtering on the momentum-
energy correlations consists to convolve them by a Gaussian
function f (q,ω) = tf L/(32π )e−(ωtf /4)2−(qL/8)2

, it minimizes
the numerical artefacts but further reduces the momentum-
frequency resolution.

Typical values we used in the simulations are system
lengths of up to L = 160 sites while keeping a few hundreds
DMRG states. We limited the final time tf to be smaller
than the time necessary for the excitations to reach the
boundaries (tf ∼ L/2u with u the LL velocity in Fig. 23)
in order to minimize the boundary effects. The computations
for the BPCB parameters, Eq. (39), were typically done
with a time step of δt = 0.0355J‖−1 up to tf = 71J‖−1 (but
calculating the correlations only every second time step).
The momentum-frequency limitations are then δω ≈ 0.11J‖
and δq ≈ 0.1a−1. Concerning the other couplings and the
spin chain calculations, we used a time step δt = 0.1J‖−1

up to tf = 100J‖−1 (also with the correlation evaluations
every second time steps) for a momentum-frequency precision
δω ≈ 0.08J‖ and δq ≈ 0.1a−1.

Different techniques of extrapolation in time (by using
linear prediction or fitting the long-time evolution with a guess
asymptotic form; cf. Refs. 102 and 103) were recently used to
improve the frequency resolution of the computed correlations.
Nevertheless, as none of them can be apply systematically for
our ladder system due to the presence of the high-energy triplet
excitations (which result in very-high-frequency oscillations),
we decided not to use them.

APPENDIX D: QMC DETERMINATION OF THE
3D-ORDERING TRANSITION Tc

The 3D network of couplings of the coupled ladder
Hamiltonian Eq. (1) and shown in Fig. 18 is not frustrated,
and can therefore be simulated by using QMC algorithms.
We employ a stochastic series expansion implementation with
directed loop updates63 provided with the ALPS libraries.64,65

This numerical exact approach is complementary to mean-field
approaches, because the latter tend not to be quantitatively
accurate due to the neglect of quantum fluctuations in the
interladder coupling.

FIG. 26. (Color online) QMC simulation results for the spin
stiffness scaling (upper panel), and the order parameter scaling (lower
panel). The vertical dashed line denotes the coinciding estimate of Tc

from the crossing curves in both panels.
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In order to detect the transition temperature we measure the
spin stiffness ρs based on winding numbers in the three spatial
directions. As pointed out in Ref. 104, when plotting Lρs for
different system sizes L, the different curves cross at Tc. Al-
ternatively, we measured the squared order parameter m2

x . The
quantity L1+ηm2

x (assuming the 3D XY universality class value
of η ≈ 0.04) also crosses at Tc when plotted for different L.

Previously the 3D ordering temperatures of coupled spin
ladders in a magnetic field have been determined by using
a specific feature of the magnetization m(T ).22 It turns out
that while the feature in m(T ) indeed locates Tc accurately for
simple coupled dimer systems,105 the same does not hold for
coupled ladders. In the ladder case one has to resort to the spin
stiffness crossing or order parameter measurements to locate
Tc accurately.

When simulating the coupled ladder Hamiltonian, a suit-
able finite-size sample setup is required. due to the spatial
anisotropies in the problem—the ladder direction being
singled out over the two transverse spatial directions—an
appropriate aspect ratio needs to be kept.71 In our simulations
we chose an aspect ratio of ∼12, i.e., the samples were 12

times longer along the ladder direction than in the transverse
directions.

In Fig. 26 we show simulation results for one particular set
of couplings: The rung and leg couplings were set to J⊥ =
12.9 K and J‖ = 3.3 K, respectively, the g factor was 2.17, the
magnetic field amounted to 8.9 T, and the interladder coupling
J ′ was set to 80 mK. These couplings are identical to those
used in Ref. 31. In the upper panel we show the rescaled
spin stiffness Lρs for two different system sizes (768 spins
versus 6144 spins). One locates a crossing at 210 mK for this
observable. In the lower panel we show the rescaled squared
order parameter L1+ηm2

x , which also exhibits a crossing at the
same temperature. These matching estimates for the critical
temperature render us confident that we accurately locate the
critical temperature.

Based on this and subsequent simulations either with an
identical J ′ but a higher magnetic field of 11.9 T, or the same
field and a smaller J ′ = 50 mK, we are able to determine and
verify the use of a single rescaling factor α = 0.74(1) relating
the real and effective mean-field interladder coupling,71 as
presented in Sec. IV D 1.
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4C. Rüegg, N. Cavadini, A. Furrer, H.-U. Güdel, K. Krämer,
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Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer,
P. Werner, and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007).

66The perturbative expression of the ground state in the spin liquid
regime and the corresponding singlet and triplet densities are given
in Appendix A.

67An additional scaling factor 7.47 mJ/gK has to be applied on the
theoretical specific heat (per rung) to convert to the experimental
units.

68S. Suga, J. Phys. Soc. Jpn. 77, 074717 (2008).
69C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin,

1980).
70D. J. Scalapino, Y. Imry, and P. Pincus, Phys. Rev. B 11, 2042

(1975).

71C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer,
and H. Takayama, Phys. Rev. Lett. 94, 217201 (2005).

72S. Todo and A. Shibasaki, Phys. Rev. B 78, 224411 (2008).
73G. Müller, H. Thomas, H. Beck, and J. C. Bonner, Phys. Rev. B

24, 1429 (1981).
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and K. Krämer, Phys. Rev. B 77, 235113 (2008).

86T. Lorenz, O. Heyer, M. Garst, F. Anfuso, A. Rosch, C. Rüegg,
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