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Phase diagram of the fully frustrated transverse-field Ising model on the honeycomb lattice
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Motivated by the current interest in the quantum dimer model on the triangular lattice, we investigate the
phase diagram of the closely related fully frustrated transverse-field Ising model on the honeycomb lattice using
classical and semiclassical approximations. We show that, in addition to the fully polarized phase at a large field,
the classical model possesses a multitude of phases that break the translational symmetry which, in the dimer
language, correspond to a plaquette phase and a columnar phase separated by an infinite cascade of mixed phases.
The modification of the phase diagram by quantum fluctuations has been investigated in the context of linear
spin-wave theory. The extrapolation of the semiclassical energies suggests that the plaquette phase extends down
to zero field for spin 1/2, in agreement with the

√
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12 phase of the quantum dimer model on the triangular
lattice with only kinetic energy.
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I. INTRODUCTION

Quantum dimer models have emerged as one of the main
paradigms in the investigation of quantum spin liquids. The
Rokhsar-Kivelson (RK) quantum dimer model (QDM), which
includes a potential interaction of amplitude V between dimers
facing each other and a kinetic term of amplitude t flipping
them around rhombic plaquettes, has recently attracted special
attention. The main reason comes from the presence on the
triangular lattice of a resonating valence bond (RVB) phase
first discovered by Moessner and Sondhi1 and extensively
studied since then using zero-temperature Green’s function
quantum Monte Carlo (GFQMC).2–4 Exact results have been
obtained at the RK point (V/t = 1), where the sum of all
configurations can be proven to be a ground state,1 and at
V > t , where the nonflippable configurations are the ground
states. Analytical results have also been obtained in the limit
V/t → −∞, where columnar states have been shown to be
selected. However, in the intermediate range below the RK
point, most of what is known about the model is based on
numerical simulations.

A closely related model for which a number of analytical
results have already been obtained is the fully frustrated
transverse-field Ising model (FFTFIM) on the honeycomb
lattice defined by the Hamiltonian:

H = − J

S2

∑
〈i,j〉

MijS
z
i S

z
j − �

S

∑
i

Sx
i , (1)

where � > 0 is the transverse magnetic field, J > 0 is the
coupling constant of the Ising interaction term, 〈i,j 〉 denotes
pairs of nearest neighbors on the honeycomb lattice, and
Mij = ±1 is such that for each hexagon of the lattice the
number of antiferromagnetic bonds (Mij = −1) is odd, with
different choices of Mij corresponding to the same model
up to the rotation of some spins by π around the x axis.5

Transverse-field Ising models have been the subject of intense
investigations over the years.6 The relationship between the
FFTFIM on a regular lattice and the QDM on the dual lattice
was first emphasized by Moessner et al.,7 who showed (see also
Ref. 1) that, in the limit �/J → 0, the FFTFIM on the
honeycomb lattice maps to the QDM on the triangular lattice

with t = �2/J and V = 0. For the FFTFIM on the honeycomb
lattice, they also carried out a Landau-Ginzburg analysis and
identified four soft modes that simultaneously become gapless
when �/J decreases, leading to a surprisingly large unit cell
of 48 sites. Details of this calculation have been reported
by Moessner and Sondhi.8 These authors further conjectured
that the translational symmetry-breaking transition out of the
paramagnetic phase coming from large �/J provides a reason-
able description of the transition between the RVB phase and
the intermediate phase of the QDM on the triangular
lattice.1

Building on this conjecture, Misguich and one of the present
authors have carried out a semiclassical investigation of the
paramagnetic phase of the FFTFIM on the honeycomb lattice9

and have shown that the dispersion of the spin waves and their
softening at the transition are in remarkable agreement with the
dispersion of visons in the QDM on the triangular lattice and
their crystallization transition as revealed by quantum Monte
Carlo (QMC) simulations.4 However, the analysis of Ref. 9
has not covered the small �/J parameter range.

In the present paper, we perform a systematic investigation
of the FFTFIM on the honeycomb lattice in the complete
parameter range 0 � �/J < +∞ with classical and semi-
classical approximations. As we shall see, the classical phase
diagram is much richer than expected, with an infinite number
of different crystalline phases below the paramagnetic phase:
a plaquette phase, a cascade of mixed phases, and a highly
degenerate columnar phase. Quantum fluctuations have been
treated within linear spin-wave theory, leading to a partial
lifting of the degeneracy of the columnar phase and to an
increase in the size of the region occupied by the plaquette
phase.

To make contact between the physics of the FFTFIM and
of the QDM, it is useful to introduce a gauge theory defined
on the triangular lattice by the Hamiltonian:

H = −J
∑

l

τ x
l − �

∑
i

∏
l(i)

τ z
l(i), (2)

where i runs over the sites of the dual honeycomb lattice
and l(i) are the three bonds forming the triangular plaquette
around site i. As shown by Moessner et al.,10 the FFTFIM is
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equivalent, up to a twofold degeneracy, to the odd sector of
this gauge theory defined by∏

l[a]

τ x
l[a] = −1, (3)

for all a, where a is a site of the triangular lattice and the
product over l[a] runs over the six links emanating from a.
For a succinct discussion of the correspondence between the
three models, see, e.g., the introduction of Ref. 9.

The discussion of the ordered phases is simpler in the
context of the gauge theory. Indeed, in the FFTFIM language,
the actual orientation of the spins in a given state depends on
the choice of the matrix Mij . In contrast, the dimer operator
of the gauge theory defined by

dl = 1
2

(
1 − τ x

l

)
(4)

translates into

dij = 1

2

(
1 − Mij

Sz
i S

z
j

S2

)
(5)

in the Ising language, and its expectation value does not
depend on the choice of Mij . Another advantage of the
gauge-invariant language is that it allows us to make a
direct comparison with the numerical results obtained on the
QDM since they live on the same lattice and are defined in
terms of the same link operators. So, while all reasonings
and calculations will be performed in the context of the
FFTFIM, the only formulation adapted to the semiclassical
approach, the structures of different ordered phases will also
be described in gauge-invariant terms. Throughout this paper,
we use only gauges in which each hexagon of the lattice
contains exactly one antiferromagnetic bond (with Mij = −1)
and five ferromagnetic bonds (with Mij = +1). Most results
will be presented for the simplest periodic arrangement of
the antiferromagnetic bonds shown in Fig. 1. However, this
choice of gauge does not always lead to the smallest possible
unit cell in terms of the spin representation. Thus, we will also
introduce other gauges whenever this is helpful.

This paper is organized as follows. In Sec. II, we concentrate
on the limit �/J � 1, which has not been considered in
Refs. 1,7–9, and we show that columnar phases reminiscent of
the V → −∞ limit of the QDM are stabilized. In Sec. III, we
revisit the vicinity of the RVB phase. We recover the symmetry
predicted by the Landau-Ginzburg approach of Refs. 7 and 8
and by the spin-wave analysis of Ref. 9, but we find that the
bonds with the largest dimer density form separate four-site

FIG. 1. Sketch of the gauge used in most of this paper. Here and in
other figures antiferromagnetic bonds (with Mij = −1) are shown by
zigzags, with all other bonds being ferromagnetic (with Mij = +1).

rhombic plaquettes instead of having a uniform distribution
inside a 12-site unit cell as reported in Ref. 9. The reasons
for this discrepancy are explained in Sec. III C. In Sec. IV,
we discuss the transition between the plaquette phase and
the columnar phase and show that they are separated by a
region of intermediate phases of mixed character. The stability
of these phases with respect to quantum fluctuations and the
semiclassical phase diagram are discussed in Sec. V. A short
conclusion is given in Sec. VI.

II. COLUMNAR PHASE

In this section we discuss the properties of the model when
�/J is small. The argument proceeds in three steps. First,
we determine the ground-state manifold of the Heisenberg
model with purely Ising-like interactions in the absence of
magnetic field (� = 0). Then, we investigate how the extensive
degeneracy of these ground states is lifted by a small transverse
field. Finally, we discuss the effect of quantum fluctuations in
the context of linear spin-wave theory.

A. Zero transverse field

In the absence of a transverse magnetic field (� = 0), we
are left with a model without quantum fluctuations in which the
interaction term couples only the z components of neighboring
spins on the honeycomb lattice. With our choice of gauge, one
bond on each hexagon is antiferromagnetic (Mij = −1), and
the others are ferromagnetic (Mij = 1). Frustration is present
since it is clearly impossible to minimize the energy of all
bonds of a given hexagon.

For Ising spins, i.e., spins that can only point up or down
along the z direction, the best one can do is to satisfy five bonds,
leaving one bond unsatisfied. This can be done in six different
ways according to which bond is not satisfied (“frustrated”),
and the resulting energy is −4J . Up to a global reversal of the
spins, a ground state is characterized by the distribution of frus-
trated bonds such that there is exactly one of them per hexagon.

For three-dimensional vectors of norm S, the situation is
slightly more subtle because the 12 Ising configurations with
all spins parallel or antiparallel to the z axis are not the only
ground states of a single hexagon. To see this, let us consider
a single hexagon and investigate the possibility of a given spin
i not to be directed along z. The variation of the energy of the
hexagon

Ehex = −J

6∑
j=1

Mj,j+1 cos θj cos θj+1 (6)

(where the angle θj parameterizes the deviation of spin j from
the z axis) with respect to θi leads to the condition

Mi−1,i cos θi−1 + Mi,i+1 cos θi+1 = 0. (7)

If this condition is satisfied, the terms in Eq. (6) that depend on
θi drop out, so that one is left with the energy of an open chain
of five spins. In an open chain one can trivially minimize the
energy of each bond by choosing cos θj+1 = Mj,j+1 cos θj =
±1, which leads to E = −4J and to the automatic fulfillment
of condition (7), leaving θi arbitrary. Note that this argument
excludes a deviation from the z axis of more than one spin
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since the energy of a five-spin open chain cannot be as low as
−4J if not all five spins are along z. So, for three-dimensional
spins, the energy of a single hexagon is minimal as soon as
it is minimal for four consecutive bonds, and the spin at the
remaining site can have any direction.

It is natural to ask whether this additional freedom increases
the degeneracy of the ground-state manifold of the continuous
model in comparison with the case of Ising spins. To
demonstrate that this is not the case, let us assume that at site i

the spin is not along z. To minimize simultaneously the energy
of the three hexagons to which it belongs, three conditions of
the form (7) must be fulfilled:

Y1 + Y2 = 0,

Y2 + Y3 = 0, (8)

Y3 + Y1 = 0

where Ya = Mi,ia cos θia = ±1 (with a = 1,2,3) and ia are the
three nearest neighbors of site i. It is evident that the restriction
Ya = ±1 does not allow all three Eqs. (8) to be satisfied
simultaneously. Therefore, it is impossible for any spin not
to point along z, and the ground-state manifold coincides with
that of the frustrated Ising model with the same lattice, i.e.,
it consists of all Ising configurations with one frustrated bond
per hexagon. Each of these states is a local minimum of the
Hamiltonian.

B. Classical ground states in a small transverse field

Let us now switch on a small transverse field and study
how the local minima of the classical Hamiltonian evolve as a
function of the field. Since the field is along x, the spins are
expected to acquire a small x component, and to describe the
spin configuration evolving from a given ground state of the
pure Ising case, we use the parametrization

Sx
i = S sin θi,

(9)
Sz

i = σiS cos θi,

where σi = ±1 is the sign of Sz
i and is determined by the

ground state of the pure Ising case around which we expand.
In terms of the gauge-invariant bond variable τij = Mijσiσj ,
which is equal to −1 (+1) if the bond 〈i,j 〉 is frustrated (not
frustrated), the classical energy can be rewritten as

E = −J
∑
〈i,j〉

τij cos θi cos θj − �
∑

i

sin θi . (10)

In the limit � � J the deviations from the z direction are
small, and the classical energy can be expanded in the variables
θi around θi = 0. To second order, the interaction term in
Eq. (10) decouples: τij cos θi cos θj ≈ τij (1 − θ2

i /2 − θ2
j /2).

Now, for any ground state of the pure Ising case, the set
{τij } is such that only one bond in each hexagon is frustrated.
Therefore, each site belongs at most to one frustrated bond.
If we denote by F (NF) the set of what we call frustrated
(nonfrustrated) sites, namely, the sites belonging to one
frustrated bond (no frustrated bond), the energy up to second

order can be rewritten:

E(2) = E�=0 +
∑
i∈F

(
J

2
θ2
i − �θi

)
+

∑
i∈NF

(
3J

2
θ2
i − �θi

)
.

(11)

Minimizing E(2) with respect to {θi} leads to

θi =
{

�/J for i ∈ F,

�/3J for i ∈ NF.
(12)

Since the number of frustrated and nonfrustrated sites is the
same for all ground states, the energy up to second order in θi

is the same in all ground states. So second-order corrections
do not lift the degeneracy. They only induce a difference in
orientation between the spins that belong to a frustrated bond
and those that do not.

So to lift the degeneracy, we have to push the expansion in
θi to higher orders. To fourth order, it reads

E(4) = E�=0 +
∑
i∈F

[
J

(
θ2
i

2
− θ4

i

4!

)
− �

(
θi − θ3

i

3!

)]

+
∑
i∈NF

[
3J

(
θ2
i

2
− θ4

i

4!

)
− �

(
θi − θ3

i

3!

)]

− J

4

∑
〈i,j〉

τij θ
2
i θ2

j . (13)

From the previous discussion, we know that the values of θi

minimizing the energy to order O(θ2) are given by Eq. (12).
Injecting these solutions into the fourth-order expansion of the
energy, we notice that the terms θ3

i and θ4
i only contribute in

two different ways, depending on the type of site (frustrated
or nonfrustrated). They will thus not lift the degeneracy. In
contrast, the cross terms τij θ

2
i θ2

j contribute in four different
ways, depending on the environment of sites i and j . The four
cases are illustrated in Fig. 2.

The contributions of the fourth-order cross terms to the
energy for the different configurations in units of �4/4J 3

are +1 for Fig. 2(a), − 1
81 for Fig. 2(b), − 1

9 for Fig. 2(c),

(a) (b)

(c) (d)

FIG. 2. (Color online) Local configurations of frustrated bonds
leading to different contributions of the fourth-order cross term
− J

4 τij θ
2
i θ 2

j . (a) The same frustrated bond contains sites i and j ;
(b) No frustrated bond contains i or j ; (c) One frustrated bond
contains either i or j ; (d) One frustrated bond contains i, and another
one contains j .
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(a) first columnar state (b) second columnar state (c) third columnar state (d) fourth columnar state

FIG. 3. (Color online) Examples of columnar states. (a) Columnar state without domain walls; (b) Columnar state with the highest possible
density of horizontal domain walls; (c) Columnar state with the highest possible density of domain walls perpendicular to the frustrated bonds;
(d) Columnar state that differs from the third one by having two times less domain walls. The frustrated bonds are represented as dashed red
lines. In the dimer representation, the bonds of the dual triangular lattice that intersect the frustrated bonds of the honeycomb lattice have the
highest dimer density.

and −1 for Fig. 2(d). Since these energies are not equal,
these cross terms are expected to lift the degeneracy, at
least partially.

For a lattice of Nhex hexagons the total number of bonds
is 3Nhex. The constraint that each hexagon has one frustrated
bond implies that the number of frustrated bonds is equal
to Nhex/2. This fixes the number Na of configurations in
Fig. 2(a) to be equal to Nhex/2. In contrast, the numbers of
configurations of the types depicted in Figs. 2(b), 2(c), and
2(d) (Nb,Nc, and Nd , respectively) depend on the way the
frustrated bonds are arranged on the lattice. However, Nb,Nc,
and Nd are not independent but have to satisfy the following
relations:

Nb + Nc + Nd = 5
2Nhex, (14)

Na = 1
4 (Nc + 2Nd ). (15)

Equation (14) comes from the conservation of the total
number of bonds Na + Nb + Nc + Nd = 3Nhex, whereas the
right-hand side of Eq. (15) comes from counting all frustrated
bonds by looking at how many of them are adjacent to each
of the nonfrustrated bonds. The result of this calculation has
to be divided by 4 because in such a procedure each frustrated
bond is counted four times.

The total contribution of the fourth-order cross terms of the
energy can then be written as

−J

4

∑
〈i,j〉

τij θ
2
i θ2

j ≈ J

4

(
�

J

)4 (
Na − Nd − 1

9
Nc − 1

81
Nb

)

≈ J

4

(
�

J

)4 (
22

81
Nhex − 64

81
Nd

)
. (16)

This contribution is a decreasing function of Nd , so the lowest
energy will be reached for the largest possible value of Nd .
Now, since there is only one frustrated bond per hexagon, Nd

cannot exceed the number of frustrated bonds, Na = Nhex/2.
This upper limit is reached for configurations in which all
the frustrated bonds are organized into chains of alternating
frustrated and nonfrustrated bonds (see the examples in Fig. 3).

In what follows we refer to this family of states as columnar
states (see Fig. 3). In columnar states, Eqs. (14) and (15) fix
both Nb and Nc to be equal to Nhex.

So the fourth-order contribution to the energy partially
lifts the degeneracy and selects the family of columnar states.
A priori, higher orders might further lift the degeneracy. That
this is not the case is best seen by constructing the exact
local minima that correspond to columnar states. We start by
rewriting the energy:

E = −
∑
i∈NF

[
J

2
cos θi

(
cos θi1+ cos θi2+ cos θi3

) + � sin θi

]

−
∑
j∈F

[
J

2
cos θj

(− cos θj1+ cos θj2+ cos θj3

)+ � sin θj

]
,

(17)

where i1,i2,i3 (j1,j2,j3) are the three neighbors of site i (j )
and the frustrated bond is taken to be between sites j and j1.
To minimize the energy, the set of angles {θi,θj } must be a
solution of the following equations:

∂E

∂θi

= J sin θi

(
cos θi1+ cos θi2+ cos θi3

)−� cos θi=0,

(18)
∂E

∂θj

= J sin θj

(− cos θj1+ cos θj2+ cos θj3

)−� cos θj=0.

Now, in columnar structures, all frustrated sites have identical
environments (with exactly two frustrated neighbors), and
all unfrustrated sites also have identical environments (with
exactly one frustrated neighbor). So, if angles θ1 and θ2 satisfy
the equations

J sin θ1(2 cos θ1 + cos θ2) − � cos θ1 = 0,
(19)

J sin θ2 cos θ1 − � cos θ2 = 0,

then the set of angles

θi =
{
θ1 for i ∈ NF
θ2 for i ∈ F (20)
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is a solution of Eqs. (18). The nontrivial solutions of Eqs. (19)
describing the evolution of columnar states with the change of
�/J are given by

sin θ1 = sin(β/3)

cos(β)
, sin θ2 = sin(β)

cos(β/3)
, (21)

where tan β = �/J .
Substituting Eq. (20) into Eq. (10) shows that the classical

energy of a columnar state is given by

Ecol = −N
2 [J cos θ1(cos θ1 + cos θ2) + �(sin θ1 + sin θ2)] ,

(22)

where N is the total number of sites. Naturally, the variation
of Ecol with respect to θ1 and θ2 reproduces Eqs. (19), which
we used to find the values of θ1 and θ2. In order to verify
that it never becomes more advantageous to minimize Nd

rather then to maximize it, we have also studied the solutions
with Nd = 0 and checked that for any relation between �

and J they have higher energy than the columnar states
(see the Appendix).

A convenient classification of columnar states can be
introduced by describing them in terms of zero-energy domain
walls formed on the background of the simplest columnar
state, an example of which is shown in Fig. 3(a). We call
it the first columnar state. In this state all frustrated bonds
have the same orientation and form straight columns, as
shown in Fig. 3 by the shading. In terms of Fig. 3 the
walls of the first type are horizontal and take place whenever
the orientation of the frustrated bonds changes from left to
right. The second columnar state [Fig. 3(b)] corresponds to
the configuration having the highest possible density of such
domain walls.

The domain walls of the second type are perpendicular
to the frustrated bonds, and correspond to changing the
orientation not of frustrated bonds but of columns. The third
columnar state [Fig. 3(c)] is the configuration having the
highest possible density of walls of the second type as the
orientation of the columns changes at every frustrated bond.
Other columnar states having the same classical energy can
be obtained by introducing arbitrary sequences of parallel
domain walls either of the first or of the second type separating
domains of the first columnar state. An analogous classification
of columnar states was introduced by Moessner and Sondhi8

in terms of the QDM.
Figure 4(a) presents a plot of the dimer density for the first

columnar state at �/J = 1.5. The bonds of the dual triangular
lattice having the highest dimer densities are organized into a
columnar pattern. Figure 4(b) shows the first columnar state
in the classical spin model. The Sz component of the spin
on frustrated sites [green (dark gray) arrows in Fig. 4(b)] is
smaller than that on nonfrustrated sites.

C. Quantum fluctuations

The effect of quantum fluctuations on the columnar states,
in particular their local stability and their degeneracy, has
been investigated in the context of linear spin-wave theory
(LSWT). It is impossible to perform a LSWT calculation for all
columnar states since the family is infinite and contains many
members that are not periodic. The logic we have followed is

(a) 1st Columnar state:
dimer representation

(b) 1st Columnar state: spin
representation

a

b

FIG. 4. (Color online) (a) Plot of the dimer density dij at
�/J = 1.5 for the first columnar state. The thickness of the bonds is
proportional to dij . The dark blue bonds corresponding to the highest
dimer density are organized into columns. (b) Spin configuration in
the first columnar state in the gauge of Fig. 1 (with the same notation
for antiferromagnetic bonds). The two types of arrows correspond to
the two spin orientations realized in that state. The unit cell is defined
by the two vectors a and b with |b| = √

3|a|.

based on the expectation that the difference in energy between
each pair of states is determined primarily by the difference in
the number of domain walls they contain.

In Sec. II B we established that the structure of columnar
solutions is described by Eqs. (9), where σi = ±1 is deter-
mined by the ground state of the pure Ising case and the
values of the variables θi are given by Eqs. (20) and (21).
It is convenient to start the construction of the Hamiltonian
describing the harmonic fluctuations around these states by
performing a rotation of the spins on each site,

Sx
i = σi cos θiS

x′
i + sin θiS

z′
i ,

S
y

i = S
y′
i , (23)

Sz
i = − sin θiS

x′
i + σi cos θiS

z′
i

in such a way that the Hamiltonian expressed in terms of the
variables Sx′ and Sz′ has a ferromagnetic ground state.

Mapping the new spin operators to Holstein-Primakoff
bosons in the harmonic limit,11

Sz′
i = S − a

†
i ai, Sx ′

i ≈
√

S
2 (ai + a

†
i ), (24)
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then yields the quadratic Hamiltonian:

H = Ecol + γ1

∑
i∈NF

a
†
i ai + γ2

∑
i∈F

a
†
i ai

− J

2S

∑
〈i,j〉

Mij sin θi sin θj [aiaj + a
†
i aj + H.c.], (25)

where

γ1 = (1/S)[J cos θ1(2 cos θ1 + cos θ2) + � sin θ1], (26)

γ2 = (1/S)(J cos θ1 cos θ2 + � sin θ2), (27)

and Ecol is the classical energy of a columnar state. Equa-
tion (25) can be reduced to a gauge-invariant form (with
Mij replaced by τij ) by replacing ai with σiai and a

†
i

with σia
†
i in Eqs. (24). However, we use Eq. (25) in the

following because it allows an easy proof that domain walls
of the first type do not change the energy of the harmonic
fluctuations.

It is evident that for θi given by Eq. (20), the expression
on the right-hand side of Eq. (25) is exactly the same for
all columnar states having the same sets of frustrated and
nonfrustrated sites. Since the introduction of domain walls
of the first type interchanges only the positions of frustrated
and nonfrustrated bonds forming straight columns but does not
change the positions of frustrated sites [see Figs. 3(a) and 3(b)],
the expression on the right-hand side of Eq. (25) will be exactly
the same for all columnar states which can be transformed into
one another by introducing some number of domain walls of
the first type. This proves that the contribution of the harmonic
fluctuations to the energy is the same for all members of the
family of columnar states having only domain walls of the first
type.

After partitioning the honeycomb lattice into four sublat-
tices in accordance with the structure of the unit cell shown
in Fig. 4(b) and performing on each sublattice a Fourier
transformation, the quadratic bosonic Hamiltonian of the first
columnar state is reduced to the form

H = Ecol +
∑

q

[a†qĤ (q)aq − (γ1 + γ2)]. (28)

In this expression, aq is an eight-component vector

(a−q,1,a−q,2,a−q,3,a−q,4,a
†
q,1,a

†
q,2,a

†
q,3,a

†
q,4), where aq,n is the

bosonic operator with the wave vector q acting on the nth
sublattice, and Ĥ (q) is an 8 × 8 Hermitian matrix given by

Ĥ (q) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ2 μ 0 δ 0 μ 0 δ

μ� γ2 τ 0 μ� 0 τ 0

0 τ γ1 η� 0 τ 0 η�

δ� 0 η γ1 δ� 0 η 0

0 μ 0 δ γ2 μ 0 δ

μ� 0 τ 0 μ� γ2 τ 0

0 τ 0 η� 0 τ γ1 η�

δ� 0 η 0 δ� 0 η γ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

where

μ ≡ μ(q) = −J sin2 θ2

2S
(−1 + eiqa),

η ≡ η(q) = −J sin2 θ1

2S
(1 + eiqa), (30)

δ ≡ δ(q) = τeiqb, τ = −J sin θ1 sin θ2

2S
.

The vectors a and b are shown in Fig. 4(b).
As discussed, the harmonic Hamiltonian is the same for the

whole family of columnar states constructed by introducing
an arbitrary number of domain walls of the first type. This
family includes, for instance, the second columnar state. In
the harmonic approximation, all these states have the same
quantum corrections to the energy; therefore, to order 1/S

the degeneracy is not lifted. Note, however, that the absence of
degeneracy lifting for this family of states at the harmonic level
is not related to a symmetry of the original Hamiltonian. So we
expect this degeneracy to be removed if one goes beyond the
harmonic approximation, and higher-order terms are expected
to select either the first or the second columnar state depending
on whether the energy of a domain wall of the first type is
positive or negative. However the effect of anharmonicities
has not been investigated in this work. Note that a similar
effect, namely, the incapacity of harmonic fluctuations to fully
lift a well-developed accidental degeneracy of the ground
states, has already been reported for various other models
(in particular, with kagomé,12–14 honeycomb,15 dice,16 and
pyrochlore17 lattices).

In contrast, the third columnar state is described by a
different harmonic Hamiltonian that is not given here explicitly
because the number of sites per unit cell, hence the linear
dimension of the matrix Ĥ (q), is twice as large, so that the
matrix Ĥ (q) is 16 × 16. The energy of zero point fluctuations
in this state turns out to be higher than in the first columnar
state (see Fig. 5). This suggests that domain walls of the second
type have a positive energy.

FIG. 5. (Color online) Energies (per site) of the second (red
crosses), third (green circles), and fourth (orange diamonds) columnar
states calculated in the harmonic approximation, counted with respect
to the energy of the first columnar state and expressed in units of J .
The inset is a plot of the ratio of the energy of the third columnar state
over that of the fourth columnar state.
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a

b

FIG. 6. (Color online) In the polarized state all spins are aligned
along the magnetic field. The unit cell of this state is the same as that
of the first columnar state: It is defined by vectors a and b.

To support this statement, we have applied the same
reasoning as used in Ref. 18 for the investigation of the
frustrated XY model on a triangular lattice and have considered
the fourth columnar state [Fig. 3(d)], which differs from
the third one in that the density of domain walls of the
second type is exactly half as large. Figure 5 compares
the numerically calculated differences between the value of
the quantum corrections to the energies of the second, third,
and fourth columnar states and its value for the first columnar
state. In particular, the inset in Fig. 5 presents the ratio of these
quantities for the third and fourth states. This ratio is very close
to 2, supporting the suggestion that the fluctuation-induced
corrections to the energy are essentially proportional to the
density of domain walls of the second type.

When �/J increases, the classical states remain locally
stable until soft modes appear in the spin-wave dispersion.
For all columnar states without domain walls of the second
type, this takes place at �/J ≈ 2.004, and for the third
columnar state, it takes place at �/J ≈ 2.373. To summarize,
harmonic fluctuations partially lift the degeneracy of the
classical ground-state manifold in favor of the columnar states
having only domain walls of the first type.

III. PLAQUETTE PHASE

A. Soft modes and ground-state periodicity

In the limit J = 0 the Hamiltonian consists simply of a
coupling to the transverse magnetic field �, and the classical
ground state is completely polarized, with all spins aligned
along the magnetic field in the x direction. The same state
minimizes the classical energy for sufficiently large ratio �/J .
With the choice of gauge of Fig. 1, the unit cell of this state
contains four sites (see Fig. 6).

The analysis of Refs. 7–9 indicates that the polarized phase
becomes unstable at � = �c = √

6J . At this value of the
field, soft modes appear in the dispersion relation at momenta
(qx,qz) = ±( π

6|a| ,
π

2|b| ) and (qx,qz) = ±( 5π
6|a| ,

π
2|b| ), triggering a

second-order transition to a new phase whose periodicity can
be determined from the q points corresponding to the soft
modes.

Since any linear combination of these four modes is
invariant under translations by vectors (3a − b) and 4b, a state
associated with them should have the periodicity in real space
imposed by these two vectors that define a unit cell containing

(c) Plaquette phase: the
smallest unit cell in the spin

representation

(a) Plaquette phase:
dimer representation

(b) Plaquette phase:
unit cell in the spin

representation

FIG. 7. (Color online) (a) The dimer density dij in the plaquette
phase at �/J = 2. The thick blue bonds corresponding to the highest
density (dij = 1

2 ) are organized into four-site rhombic plaquettes.
On all other bonds the dimer density satisfies 0 < dij < 1

2 , with
the thickness of the bonds being proportional to dij . (b) The spin
configuration in the same state in the gauge of Fig. 1. The radii of
the circles are proportional to |Sz

i |, while positive and negative values
of Sz

i are represented as full and empty circles. The green dashed
parallelogram shows the 48-site unit cell (3a − b) × 4b. It can be
split into two halves that differ from each other by the sign of Sz.
(c) The same spin configuration in the gauge that leads to a 24-site
unit cell (large hexagon). As before, antiferromagnetic bonds fixing
the gauge are depicted as zigzag bonds. The sites at which the classical
spins have the same values of Sz

i are labeled with the same number.
Note the existence of six sites with Sz

i = 0.

48 sites of the honeycomb lattice [Fig. 7(b)]. Moreover, since
any linear combination of the four soft modes under the
translation by 2b just changes sign, this cell should allow a
division into two halves that in the spin representation differ
from each other only by the reflection of all spins about the
x axis but in terms of gauge-invariant variables are identical.

There exists a possibility to make these two halves really
identical in terms of spin representation as well just by
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choosing a different gauge, shown in Fig. 7(c). In this gauge
a state related to the soft modes listed here is periodic with
a 24-site unit cell defined, for example, by vectors (3a − b)
and 2b. However, if one uses the simplest gauge of Fig. 1
and imposes periodic boundary conditions along the x and
z directions, the periodicity dictated by the wave vectors of
the soft modes requires the use a cell of size 12a × 4b that
contains 192 sites of the honeycomb lattice.8

B. Numerical minimization of energy

The minimization of the classical energy using Mathemat-
ica minimization routines for the 192-site system with periodic
boundary conditions has confirmed that the real periodicity of
the classical ground state in the gauge of Fig. 1 is determined
by a 48-site unit cell that can be divided into two halves in
such a way that the second half differs from the first one by
the reflection of all spins about the x axis. Inside the cell one
finds a pattern of six different orientations of the spins as well
as their reflections about the direction of the field.

The structure of the state minimizing the classical energy
is shown in Fig. 7(b). The radii of the circles are proportional
to the absolute value of the z component of the spins |Sz|, and
the different signs of Sz are kept track of by plotting full and
empty circles. Sx is not plotted but is always positive since
the spins tend to align with the magnetic field. The size of
the elementary cell can be reduced to 24 sites by choosing the
gauge depicted in Fig. 7(c) by zigzagged bonds. In this gauge
the sign of Sz is the same for all spins, and the spin pattern is
centered on one of the sites of the honeycomb lattice.

Naturally, it is even more convenient to discuss the structure
of an ordered state in terms of gauge-invariant dimer density
dij , defined by Eq. (5). In the polarized phase (at �/J >

√
6),

Sz
i = 0 for all sites i, so that the dimer density is uniform

and equal to 1
2 on all bonds. Below the critical magnetic

field, �c = √
6J , the dimer density on many bonds becomes

smaller than 1
2 . For the pattern of dij the two halves of the

48-site elementary cell are identical because the dimer pattern
is conserved when reversing the sign of Sz for all spins.
Accordingly, the elementary cell corresponds to 24 sites of
the honeycomb lattice or to 12 sites of the triangular lattice
dual to it. In other terms, the periodicity of the dimer density
pattern is the same as in the

√
12 × √

12 phase found around
V/t = 0 in the QDM on the triangular lattice.1–4

In Fig. 7(a) the elementary cells are represented by the large
hexagons. Since the dimer density is the highest on a pattern
of four-site plaquettes [with three plaquettes inside elementary
cell, see Fig. 7(a)], following the convention adopted in the
QDM literature,19 we refer to this phase as the plaquette phase.
This phase is the analog of the

√
12 × √

12 phase found around
V/t = 0 in the QDM.1

Note that the dimer density plot obtained below �/J = √
6

in our calculation [Fig. 7(a)] differs significantly from the one
presented in Ref. 9. The two plots have the same symmetry,
P 31m, but the pattern of Ref. 9 does not reveal four-site
plaquettes. In fact, the difference can be traced back to the
fact that the solution of Ref. 9 was obtained by a variational
calculation in the subspace of linear combinations of the four
soft modes (which minimize the sum of the second- and

fourth-order contributions to the classical energy), whereas
the present solution was obtained by assuming that the soft
modes dictate only its periodicity. The reason why the two
solutions do not have the same asymptotic form when �/J

tends to
√

6 from below is detailed in Sec. III C, which is
devoted to the analytical investigation of the plaquette state
structure in the vicinity of the phase transition.

The degeneracy of the plaquette phase is equal to 48 in
terms of the spin representation and to 24 in terms of the
dimer representation. Each of the 24 equivalent dimer patterns
[one of which is shown in Fig. 7(a)] corresponds to two spin
configurations that can be transformed into one another by
changing the sign of Sz

i for all spins.
The local stability of the plaquette phase with respect to

quantum fluctuations has been investigated within the gauge
of Fig. 7(c) to reduce the Hermitian matrix of the quadratic
bosonic Hamiltonian to a 48 × 48 matrix. The plaquette phase
has been found to be stable in the domain 1.64 < �

J
<

√
6,

with soft modes appearing at q = 0 when �
J

≈ 1.64.

C. Analytical study of the critical region below �c

In this subsection it will be convenient to use a different
parametrization of the classical spins of norm S instead of
Eqs. (9):

Sx
i = S

√
1 − ρ2

i ,
(31)

Sz
i = Sρi.

In the asymptotic regime where the transverse field �

dominates over nearest-neighbor interactions, we are in the
polarized phase with Sz

i = 0 (ρi = 0). When the transverse
field decreases, the components Sz

i are expected to deviate
from zero. To sixth order in ρi , the classical energy of the
model is given by

E= − J
∑
〈i,j〉

Mi,jρiρj−�
∑

i

(
1−ρ2

i

2
−ρ4

i

8
−ρ6

i

16
− · · ·

)
.

(32)

Let us denote by ρRi ,n = ∑
q ρq,ne

iRiq, with n = 1, . . . ,4, the
values of ρi on the four sublattices (see Fig. 6). Since ρRi ,n is
real, ρq,n = ρ∗

−q,n. The energy per site E is then given by

E = EJ=0 − J

8

∑
n,n′,q

ρ−q,n

[
M̂(q)−�

J
1̂

]
n,n′

ρq,n′

+ �

32

∑
n,q1,q2,q3,q4

(
4∏

i=1

ρqi ,n

)
δq1+q2+q3+q4,G

+ �

64

∑
n,q1,q2,q3,q4,q5,q6

(
6∏

i=1

ρqi ,n

)
δq1+q2+q3+q4+q5+q6,G

+ · · · , (33)
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where G is a vector belonging to the reciprocal lattice of the
lattice defined by the vectors a and b and

M̂(q) =

⎛
⎜⎜⎝

0 −1 + e−iqx |a| 0 e−iqz|b|

−1 + eiqx |a| 0 1 0
0 1 0 1 + eiqx |a|

eiqz|b| 0 1 + e−iqx |a| 0

⎞
⎟⎟⎠

is the Fourier transform of the interaction matrix. The analysis
of the second-order terms in (33) shows7,8 that the paramag-
netic solution ρi = 0 becomes unstable at �/J = √

6 at the
wave vectors qA = ( π

6|a| ,
π

2|b| ), qB = ( 5π
6|a| ,

π
2|b| ), −qA, and −qB ,

indicating a transition to a phase of periodicity (3a − b) × 4b.
The approach of Ref. 9 consists in keeping in the energy

functional (33) only the critical modes with q = ±qA and q =
±qB , whose amplitudes are described by Fourier coefficients

ρqA
= |ρA|eiφAuA, ρqB

= |ρB |eiφB uB, (34)

where

uA = (
1,ei 7π

12 ,F ei 7π
12 ,F e−i 3π

2
)

uB = (
F,Fei 11π

12 ,ei 11π
12 ,e−i 3π

2
) (35)

are the eigenvectors of M̂(qA) and M̂(qB) associated with an
eigenvalue equal to

√
6 and

F = 2 sin
5π

12
= 1 + √

3√
2

. (36)

In the framework of this approach, E (4)
0 , the sum of the

second- and fourth-order contributions to Eq. (33), is given by

E (4)
0 = −1

2
(�c − �)(1 + F 2)

[|ρA|2 + |ρB |2]
+ 3�

2
F 2

[|ρA|2 + |ρB |2]2
(37)

and depends only on |ρA|2 + |ρB |2 as already noticed in Refs. 7
and 8.

The minimum of E (4)
0 is achieved when

|ρA|2 + |ρB |2 = 1 + F 2

6F 2

�c − �

�
, (38)

from which it follows that, to leading order, |ρA| ∼ |ρB | ∼
(�c − �)

1
2 and E (4)

0 ∼ (�c − �)2. However, condition (38)
leaves both the ratio |ρB |/|ρA| and the phases φA and φB

completely undefined. The dependence of E on these quantities
appears if one goes beyond the fourth order and considers
also the sixth-order term in Eq. (33),8,9 which, for the critical
modes, reduces to

E (6)
0 = 5�

8
(1 + F 6)

[|ρA|2 + |ρB |2]3

+ 3�

2
F 3

[|ρA|5|ρB | cos(5φA − φB)

+ |ρB |5|ρA| cos(5φB − φA)
]
. (39)

The general structure of Eq. (39) has been derived in Ref. 8
from the symmetries of the problem.

It follows from the estimate for |ρA| and |ρB | that to leading
order, E (6)

0 ∼ (�c − �)3. For all values of the amplitudes |ρA|
and |ρB |, the expression on the right-hand side of Eq. (39) is

minimal when both cosines are equal to −1. This selects the
phases

φA = π

6
+ π

12
p, φB = −π

6
+ 5π

12
p, (40)

where p is an integer, yielding 24 independent sets (φA,φB).
The variation of E (6)

0 with respect to |ρA| and |ρB | under
constraints (38) and (40) then selects either |ρB |/|ρA| = F or
|ρB |/|ρA| = F−1. All 48 solutions thus generated correspond
to the same dimer pattern (shifted and/or rotated) found in
Ref. 9, and thus, we recover the 48-fold degeneracy discussed
in Ref. 8.

This approach is based on the assumption that all other
modes would only contribute to the energy expansion to
higher order. We shall now show that, since one has to
push the expansion to order 6 when considering only the
critical modes, this assumption is not valid because some
second- and fourth-order terms involving noncritical modes
also make contributions of order (�c − �)3 that are essential
for determining φA and φB .

The dominant terms coupling the critical modes with
q = ±qA and q = ±qB with extra modes are expected to be
linear in the amplitudes of these extra modes and of the third
order in the amplitudes of critical modes. The conservation of
the total momentum then imposes on the wave vectors of these
extra modes the following condition:

q = mAqA + mBqB, (41)

where mA and mB are integers and mA + mB is odd. In the
first Brillouin zone there are only two wave vectors compatible
with this condition: qC = 2qA − qB and −qC . Let us denote
the Fourier coefficients associated with the modes with q = qC

by ρn = |ρn|eiφn , where n = 1, . . . ,4 refers to the number of
the sublattice. The terms in the energy functional that are linear
and harmonic in ρn are

E (4)
1 = −J

4

∑
n,n′

ρ∗
n

[
M̂(qC) − �

J
1̂

]
n,n′

ρn′

+ �

8

4∑
n=1

(Rnρ̄n + c.c.), (42)

with

Rn = ρ3
A(uA)3

n + 3(ρ∗
A)2(u∗

A)2
nρB(uB)n

+ 3ρA(uA)n(ρ∗
B)2(uB

∗)2
n + ρ3

B(uB)3
n. (43)

The variation of Eq. (42) with respect to ρ∗
n gives

ρ̄n = �

2J

∑
n′

[
M̂(qC) − �

J
1̂

]−1

nn′
R∗

n′ . (44)

Injecting Eq. (44) into Eq. (42), we obtain

E (4)
1 = −�h(�/J )

[|ρA|2 + |ρB |2]3

−�g(�/J )
[|ρA|5|ρB | cos(5φA − φB)

+ |ρA||ρB |5 cos(5φB − φA)
]
, (45)
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where we have introduced the notation

h(γ ) = γ

8(γ 2 − 3)
{γ (1 + F 6) + 6

√
2(3F 2 − 1)},

g(γ ) = 3γF

4(γ 2 − 3)
{4γF 2 + 3

√
2(2F 2 − 1)}.

Eq. (44) proves that ρ̄n scales as

|ρ̄n| ∼ |ρA|3 ∼ |ρB |3 ∼ (�c − �)
3
2 , (46)

leading to E (4)
1 ∼ (�c − �)3. So it is clear that this contribution

cannot be neglected since it is of the same order as E (6)
0 and

that other contributions involving noncritical modes such as,
e.g., sixth-order terms will be of higher order. This means
that the phases of the critical modes have to be determined by
minimizing the sum of E (6)

0 and E (4)
1 . The contribution to this

expression depending on the phases reads

−�

[
g

(
�

J

)
− 3

2
F 3

] [|ρA|5|ρB | cos(5φA − φB)

+ |ρA||ρB |5 cos(5φB − φA)
]
.

Now g(�/J ) − (3/2)F 3 is positive for �/J >
√

3. Therefore,
since we are interested in the domain just below �/J = √

6,
the energy is minimal when both cosines are equal to +1. This
selects the phases

φA = π

12
p, φB = 5π

12
p, (47)

where p is an integer. This leads again to 24 independent sets
(φA,φB). In addition, minimizing E (6)

0 + E (4)
1 with respect to

the amplitudes |ρA| and |ρB | under constraint (38) selects,
as before, either |ρB |/|ρA| = F or |ρB |/|ρA| = F−1. The 48
resulting solutions correspond to the 24 equivalent dimer pat-
terns that can be obtained from the one shown in Fig. 7(a). The
difference between Eqs. (40) and (47) explains the qualitative
difference between the structures of the plaquette phase found
in this work and the solution of Ref. 9, which does not disap-
pear even when the amplitudes of the q = ±qC modes become
negligible as compared to those of the critical modes.

IV. INTERMEDIATE MIXED PHASES

During the numerical minimization of the classical energy
for the 192-site system with periodic boundary conditions,
an additional intermediate phase was found to exist between
the columnar and the plaquette phases. We refer to this
intermediate phase as the mixed phase because in the dimer
representation the bonds with larger dimer densities, dij � 1

2 ,
are arranged in an alternating pattern of plaquettes and
columns [see Fig. 8(a)]. The mixed and plaquette phases have
the same translational symmetries. However, the point-group
symmetries of the gauge-invariant dimer patterns in the two
phases are different: P 31m for the plaquette phase [see
Fig. 7(a)] and Cmm for the mixed phase [see Fig. 8(a)]. The
phase transition between these two phases has to be of the first
order since the symmetry groups are not such that one is a
subgroup of the other.

As in the case of the plaquette phase, the size of a unit cell of
the mixed phase can be reduced from 48 sites for the standard
gauge shown in Fig. 1 to 24 sites in the gauge in Fig. 7(c);

see Fig. 8(b). In this gauge the spin pattern consists of spins
with the same sign of Sz

i having seven different orientations,
one of which is in the direction of the field. In contrast to
the spin pattern in the plaquette phase, which is centered on
one of the sites of the honeycomb lattice [Fig. 7(c)], in the
mixed phase this pattern is centered on one of the bonds of the
lattice [Fig. 8(b)], which explains the difference in symmetry
between the two states.

The degeneracy of the mixed phase is equal to 36 in
terms of the dimer representation and to 72 in terms of the
spin representation. Each of the 36 equivalent dimer patterns
corresponds to two spin configurations that can be transformed
into one another by changing the sign of Sz

i for all spins. The
stability of the mixed state with respect to small fluctuations
has been investigated with LSWT in the gauge producing a
24-site unit cell, and this phase has been found to be stable in
the range 1.394 � �/J � 1.774.

(a) Mixed phase: dimer
representation

(b) Mixed phase: spin
representation

FIG. 8. (Color online) (a) The dimer density dij in the mixed
phase at �/J = 1.72. The thickness of the bonds is proportional
to dij . The dimer densities are also emphasized by the colors of the
bonds ranging from red (light gray) (the lowest densities) to dark blue
(dark gray) (the highest densities, dij > 1

2 ). The bonds with dij � 1
2

are organized in an alternating pattern of plaquettes and columns.
(b) The spin configuration in the same state in the gauge that leads to
a 24-site unit cell (large hexagon). Note the existence of two sites at
which Sz

i = 0.
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FIG. 9. (Color online) Dimer patterns in the mixed states with
n � 3, where n denotes the number of columns separating the
plaquette patterns. The notation is the same as in Figs. 7(a) and
8(a). The bonds with dij � 1

2 are organized in an alternating pattern
of plaquettes and columns. Thin lines show the boundaries between
unit cells.

The existence of the mixed state whose structure is shown
in Fig. 8 suggests that there can also exist states in which
the straight rows of plaquettes are still equidistant but are
separated not by single columns but by a larger number of
columns, denoted by n (see Fig. 9). From here on, we number
such mixed states by the index n and call the simplest mixed
state discussed in the beginning of this section the first mixed
state.

It is not hard to understand that the unit cell of the second
mixed state (in the optimal gauge in which the sign of Sz is
the same for all spins) has exactly the same symmetry as the
unit cell of the first mixed state and can be obtained from
it by adding eight more sites on each side. The successive
repetition of this procedure allows one to construct the unit cell
for any integer n and to find that it contains 8(2n + 1) sites.
However, due to the symmetry of the unit cell, the number of
nonequivalent sites only increases by four when n increases
by one, which leads to 4n + 3 nonequivalent sites.

For n � 7, we have performed a numerical minimization of
the energy for the unit cells corresponding to such structures,
and we have found that, when �/J decreases, the energy of
the second mixed state first becomes lower than that of the
first mixed state, after which the energy of the third mixed
state becomes lower than that of the second mixed state, and
so on. Table I summarizes the values of �/J at which the
transition between the nth and (n + 1)th mixed states takes

TABLE I. The second column shows �n,n+1
c , the critical fields at

which the transitions between the nth and (n + 1)th mixed states
would take place if there were no other more complex states
(which is not always true). The third column shows the width of
the field intervals in which the nth mixed state has the lowest
energy.

n �n,n+1
c /J ��n/J

1 4.3 × 10−2

1.693 724 794 98
2 1.7 × 10−2

1.676 554 492 42
3 4.2 × 10−4

1.676 136 664 86
4 8.6 × 10−6

1.676 128 026 59
5 1.6 × 10−7

1.676 127 865 51
6 2.8 × 10−9

1.676 127 862 67
7 · · · · · ·

place and reports the width of the region in which the nth
mixed state has the lowest energy. It can be seen that for
n > 1 this width is scaled down by a factor of the order
of 50 each time n increases by 1. This means that �n,n+1

c

approaches a finite limit exponentially fast. The extrapolation
shows that the accumulation point of �n,n+1

c at n → ∞ is
�∞

c /J = 1.676 127 862 61. Below this field columnar states
have the lowest classical energy.

Note that it was impossible to discover any of the mixed
states with n > 1 during the minimization of the energy
for the 192-site cell (with periodic boundary conditions and
the standard gauge of Fig. 1) which was instrumental in
discovering the n = 1 mixed state. The reason is very simple:
The periodicity of all the states with n > 1 is incompatible
with the periodic boundary conditions implemented in this
192-site cell.

The existence of such a sequence of phase transitions
suggests that the main contribution to the energy of the nth
mixed phase (counted off from the energy of a columnar state)
is proportional to the density of linear defects (vertical rows
of plaquettes) whose energy can be considered as linearly
dependent on �, whereas the main correction to this energy
comes from the repulsion of nearest defects, which decreases
exponentially fast with the distance between them. This was
checked at � = �∞

c , where the proper energy of a linear defect
changes sign, and, indeed, we have found that the energies of
different states are compatible with an interaction of linear
defects that is exponential in the distance between them. This
makes us confident that the narrow region above �∞

c has to
contain an infinite sequence of mixed phases with all integer
indices n.

It is well known that in a system consisting of a sequence of
linear defects there can also exist phases with more complex
structures, in which the linear defects are not equidistant. In
terms of our problem such phases would correspond to a
regular alternation of, for example, n and n + 1 columns or
of n, n and n + 1 columns, etc., leading to what is known
as a devil’s staircase.20 Usually, such phases appear in a
phase diagram if the interaction of more distant defects is
also repulsive, whereas when the interaction between next-
to-nearest defects is attractive, one gets a direct transition
from the nth to the (n + 1)th phase without the presence of
an intermediate (n,n + 1) phase.

We have verified numerically that in our system the energy
of the (1,2) mixed state is never lower than either the energy
of the first state or that of the second mixed state, which
means that it cannot be present in the phase diagram. Quite
surprisingly, the situation with the (2,3) phase is different, and
in a narrow interval around �2,3

c (from �2,3
c − 1.3 × 10−9 to

�2,3
c + 1.9 × 10−9), its energy is lower than the energies of

the second and third mixed states. One can estimate that even
if some other complex phases do exist, the field range where
any of them minimizes the energy will be at least a couple of
orders of magnitude smaller than the already extremely narrow
interval of the existence of the (2,3) state, so we decided not
to pursue the investigation of this point any further since it
cannot be of much relevance.

A more important question is whether the plaquette and
the first mixed states may be separated by a region where
mixed states of a different type appear, in which the density
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of columns is lower than in the first mixed state, so that the
neighboring columns are separated by domains of the plaquette
state. Such a scenario seems to us to be impossible, however,
for the following reasons.

The comparison of Fig. 7(c) with Fig. 8(b) suggests that
the structure of the first mixed state is very close to what
one would obtain by constructing the superposition of two
plaquette states centered on neighboring sites of the lattice (and
letting this superposition relax). Therefore, one can interpret
these two states as different manifestations of a unique state
that can move around in a complex periodic potential with
minima both at the positions corresponding to lattice sites and
at the positions corresponding to the middles of lattice bonds.
For � > �0,1

c = 1.736 908 301 84J , the minima located at
lattice sites are the lowest, whereas for � < �0,1

c , the minima
located at the middle of lattice bonds are the lowest. Exactly at
� = �0,1

c all these minima have equal depths. This idea can be
confirmed by constructing a family of states that continuously
interpolates between the plaquette and the first mixed state,
which allows a numerical analysis of the effective potential
discussed here. This analysis reveals that at � = �0,1

c the
barrier separating unequivalent (but equal) minima is very
low (∼1.07 × 10−5J per site). Nonetheless, any attempt to
construct a state that looks like the plaquette state in some
places and like the first mixed state in other places would
force the system to overcome this barrier in the intermediate
regions. This would increase its energy in comparison with
that of the plaquette or of the first mixed state.

The numerical evidence in favor of this conclusion comes
from observing that the state that would differ from the first
mixed state by having half its density of columns has a
periodicity that is compatible with the 192-site cell used in
our numerical energy minimization. Therefore, if at � = �0,1

c

the energy of this state was lower than that of the plaquette
and of the first mixed states, this state would be accessible
during this minimization procedure. To be on the safe side, we
have also performed a minimization of the energy for the cell
whose periodicity, in addition to the formation of the plaquette
and of the first mixed states, allows for the appearance of the
states that differ from the first mixed state by keeping only
one column out of three (or two out of three), but this has not

allowed us to find any state with energy lower than that of
the plaquette or of the first mixed state. This gives additional
evidence in favor of our conclusion that the phase transition
between the plaquette and the first mixed states should be
a direct one without any intermediate phases with a more
complex structure.

V. PHASE DIAGRAM

A. Classical phase diagram

The classical phase diagram consists of four regions: (i) the
columnar phase, which is highly degenerate since all columnar
states have the same energy and which extends up to �/J ≈
1.676, (ii) the region of mixed states with columnar patterns
separated by straight rows of plaquettes in the interval 1.676 �
�/J � 1.737, (iii) the plaquette phase, with a 24-site unit cell,
in the range 1.737 � �/J �

√
6 ≈ 2.45, and (iv) the fully

polarized phase with all spins pointing in the direction of the
field for �/J >

√
6. The transition from the fully polarized

phase to the plaquette phase is a second-order one, with all
other transitions being of the first order. These results are
summarized in Fig. 10.

B. Quantum fluctuations

Quantum fluctuations can a priori modify this phase
diagram in two main ways. First of all, if the degeneracy
of the classical ground states is accidental (that is, not related
to symmetry), they can select some of these states. This is,
indeed, the case in the columnar phase, where the columnar
states with domain walls of only the first type are selected
already at the level of harmonic fluctuations.

Second, quantum fluctuations can shift the phase bound-
aries. When one takes into account only the harmonic
fluctuations, this applies only to first-order transitions. Indeed,
at a first-order transition, the classical energy is the same for
the two competing configurations, but the spectra of harmonic
fluctuations are different, and one phase will, in general,
be stabilized over the other by zero-point fluctuations. A
convenient way to keep track of the stability of the various
phases with respect to quantum fluctuations is to draw a phase

FIG. 10. (Color online) Classical phase diagram (top) in the dimer language and (bottom) in the spin language. In the dimer representation
the thickness of the bonds is proportional to the dimer density. Thick blue bonds correspond to the highest dimer density. In the spin
representation the radii of the circles are proportional to Sz

i , and arrows indicate the orientation of the classical spins.
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FIG. 11. Semiclassical phase diagram zoomed for values of the
field close to the accumulation point of mixed states. Mn with n ∈
{1,2,4} denote first, second, and fourth mixed states.

diagram in the (�/J ,1/S) plane (see Fig. 11), showing which
phase has the lowest total energy.

The resulting phase diagram can be quite involved when
there are many phases in competition, and this is clearly
the case here since, for 1/S = 0, there exists an infinite
sequence of mixed phases. However, it turns out that for 1/S

greater than 10−3, only three of them survive, as is shown in
Fig. 11. All other mixed phases exist only for 1/S � 10−4 in
a very narrow range of transverse magnetic field of width
�10−4J . They are thus invisible on the scale of Fig. 11,
which has been adjusted to properly describe the competition
between the two main phases (plaquette and columnar). On that
scale, the phase diagram consists of six phases: the polarized
phase; the plaquette phase; the first, second, and fourth mixed
states; and the columnar phase. The general trend is that the
plaquette phase is stabilized by quantum fluctuations over the
mixed phases as well as over the columnar phase.

Note that the transition between the plaquette and the
columnar phases cannot be followed below �/J = 1.64 at
this level of approximation because the plaquette phase is no
longer locally stable with respect to harmonic fluctuations.
The continuation of this boundary by a dashed line in
Fig. 11 is just a guide to the eye. To follow this line further
would require to go beyond the harmonic approximation.
The transition between the plaquette and polarized phases
being of the second order, the boundary has to start ver-
tically since, at the transition, both states have the same
quantum corrections in the harmonic approximation. This is
indicated by a vertical dashed line in Fig. 11. To find the
curvature of this line would require going beyond the harmonic
approximation.

In view of the very strong modification of these phase
boundaries with decreasing S, it is legitimate to question the
fate of the columnar and mixed phases for S = 1/2, for which
the model can be mapped onto the QDM in the limit �/J → 0.
The results presented here suggest that the mixed phases have
absolutely no chance of extending to S = 1

2 .
Regarding the competition between the columnar and the

plaquette phases, we can get an estimate of the critical value of
the spin at which the boundary between them crosses the axis
� = 0 by looking at the linear 1/S corrections, starting from
the point where the two phases have the same classical energy, a
point that does not appear on the phase diagram of Fig. 11 since

it lies inside the first mixed phase. This leads to the conclusion
that the columnar phase disappears above 1/S ≈ 0.67, i.e.,
below S ≈ 1.49. Note that this should probably be considered
as a lower bound in terms of S since the boundary is slightly
concave. So, for S = 1/2, the semiclassical calculation at the
harmonic level predicts only two phases: a plaquette phase up
to �/J = √

6 and a polarized phase above that. The fact that
we find the point �/J = 0 to be in the region of stability of the
plaquette phase is in good agreement with the QDM, which
has been found by QMC to be in the

√
12 × √

12 phase at
V/t = 0.1,2

VI. CONCLUSIONS

In conclusion, we have investigated the classical phase
diagram of the FFTFIM on the honeycomb lattice and how
it is modified by the semiclassical corrections induced by
harmonic fluctuations. Compared to what has been already
known about the model, namely, that the paramagnetic phase
is unstable at �/J = √

6 toward a crystalline phase with a
large unit cell, the classical phase diagram turns out to be
surprisingly rich, with a multitude of additional phases: a
columnar phase at a small transverse field and an infinite
cascade of phases of mixed columnar and plaquette character.
The phase toward which the paramagnetic phase is unstable
at �/J = √

6 has been found to have the same symmetry and
periodicity as the state proposed in Ref. 9, but with a different
structure. Both are characterized by a 24-site unit cell in the
spin language and by a 12-site cell on the dual lattice in the
dimer language, but the state we have found has a plaquette
structure. At the classical level, the columnar phase is fully
degenerate, with all columnar states having rigorously the
same classical energy.

Quantum fluctuations have been found to modify this phase
diagram in two important respects. First of all, harmonic
fluctuations have been shown to partially lift the degeneracy of
the columnar phase in favor of the columnar states with only
one type of domain walls. Since the remaining degeneracy
is not related to a symmetry of the model, anharmonic
corrections are expected to lift this degeneracy further. Second,
they strongly modify the phase boundaries, and for the
ultraquantum limit, S = 1/2, they predict that the plaquette
phase survives down to � → 0.

Going back to the original motivation for this investigation,
namely, the properties of the QDM on the triangular lattice,
a number of comments should be made about these results.
First of all, our semiclassical approximation predicts that the
phase that is the analog of the

√
12 × √

12 phase of the QDM
has a four-site plaquette structure. This reopens the issue of
the nature of the

√
12 × √

12 phase of the QDM. According
to the results of GFQMC simulations,3 possible structures
are constrained by a quasiextinction of the dimer density
correlation function at the corner of the Brillouin zone. This
has been shown to be consistent with a uniform distribution of
dimer density inside the interior part of the 12-site hexagonal
unit cell, a conclusion somehow supported by the conclusions
of Ref. 9 regarding the nature of the phase close to the param-
agnetic phase. Now that we know that this phase is, in fact, a
plaquette phase, it would be interesting to revisit the GFQMC
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results to see to what extent a plaquette phase of this type might
be consistent with the quasiextinction at the zone corner.

It is also inspiring that a columnar phase appears in the
classical solution of the FFTFIM since a similar phase is
present in the QDM for attractive interactions between dimers.
We did not manage to find a convincing connection between
large S in the FFTFIM and negative V in the QDM, but since
we found intermediate phases between the columnar phase and
the plaquette phase in the FFTFIM, it is tempting to speculate
that such phases may also exist in the QDM.
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APPENDIX: COMPARISON OF COLUMNAR AND
STAGGERED STATES

Columnar states are the states that maximize Nd , the
number of pairs of frustrated bonds situated at the smallest
possible distance from each other [as shown in Fig. 2(d)]. In
this Appendix we want to compare the classical energy of these
states with the energy of the states in which Nd is minimal,
that is, equal to zero. In terms of dimer models such states are

usually called staggered or nonflippable states1 because they
do not contain flippable pairs of dimers.

Since in a staggered state all frustrated sites have identical
environments (with exactly one frustrated neighbor) and all
nonfrustrated sites also have identical environments (with
exactly two frustrated neighbors), such a state can be described
by the same two variables θ1 and θ2 introduced in Sec. II B for
the description of a columnar state. In terms of θ1 and θ2 the
energy of a staggered state can be written as

Est = −N

2

[
J

2
(cos2 θ1 + 4 cos θ1 cos θ2 − cos2 θ2)

+�(sin θ1 + sin θ2)

]
. (A1)

Even without minimizing Est with respect to θ1 and θ2, one
can note that for any θ1 and θ2

Est(θ1,θ2) − Ecol(θ1,θ2) = (JN/4)(cos θ1 − cos θ2)2 � 0,

(A2)

and therefore, the energy of a staggered state [the minimum of
Est(θ1,θ2)] has to be higher than the energy of a columnar state
[the minimum of Ecol(θ1,θ2) achieved when cos θ1 �= cos θ2].
This proves that the maximization of Nd is always a better
strategy than its minimization, even when the ratio �/J is not
small.
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