
PHYSICAL REVIEW B 83, 054202 (2011)

Magnetic state effect upon the order-disorder phase transition in Fe-Co alloys:
A first-principles study
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We investigate the effect of global magnetization on the effective cluster interactions and order-disorder
phase transition in FexCo1−x alloys. The effective cluster interactions are obtained by the screened generalized
perturbation method as it is implemented in the exact muffin-tin orbitals formalism within the coherent potential
approximation. The ordering transition from the high-temperature disordered body-centered cubic alloy to the
ordered B2 phase is determined by Monte Carlo simulations. The calculated transition temperatures are in
good agreement with the available experimental data for the effective interactions, which correspond to the
experimentally observed magnetization at the order-disorder phase transition.
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I. INTRODUCTION

Fe-Co alloys possess a unique combination of magnetic
and mechanical properties, which make them indispensable
as materials for advanced motors and electrical generators in
aviation and special power applications.1 In particular, they are
characterized by exceptionally high saturation magnetization,
low coercivity, and high Curie temperature (>1093 K). The
elevated Curie temperatures of the alloys make them especially
attractive for various high-temperature applications. However,
at around 1003 K, the disordered body-centered cubic (bcc)
FexCo1−x alloys undergo an ordering phase transition into the
B2 structure (space group Pm3m) in the composition range
∼0.3 � x � 0.7,2–5 which significantly affects their magnetic
and mechanical properties.

There exist numerous investigations of phase equilibria
in the Fe-Co system; in particular, the order-disorder phase
transition.3 This has been observed by Seehra and Silinsky,2

who measured the electrical resistivity in Fe-Co alloys and
found, near Tc = 1006 K, a change in the slope of the
temperature-dependent resistivity curve indicating an order-
disorder phase transition. Oyedele and Collins3 investigated
the order-disorder phase transition in Fe-Co alloys by the
neutron powder diffraction techniques for the concentration
range of 0.3 to 0.7 of Co. Montano and Seehra4 used
Mössbauer spectroscopy to identify the order-disorder phase
transition. They found the transition temperature at about
Tc = 1006 K for the equiatomic composition. Ohnuma et al.6

investigated the phase equilibria in the Fe-Co system both
experimentally, using transmission electron microscopy for
thin-film samples and x-ray and electron diffractometer for
the bulk system, and theoretically by the CALPHAD method,
which was modified by considering chemical interactions
dependent on the magnetic state.

The coupling of magnetism and atomic short-range order
(SRO) in Fe-Co, up to a concentration 0.25 of Co, has been
investigated experimentally by Pierron-Bohnes et al.7–9 using
neutron diffuse scattering and nuclear magnetic resonance
techniques. The influence of the magnetism on the atomic SRO
was clearly evident from an abrupt change in the temperature

dependence of the local order at the Curie temperature. The
theoretical analysis of the coupling between the magnetic
and chemical degrees of freedom based on the mean-field
approximation of a combined Ising-Heisenberg Hamiltonian
was done by Pierron-Bohnes et al.7 They have shown that the
magnetic contribution to the effective interactions should be
roughly proportional to the square of the magnetization.

The Fe-Co system has been theoretically studied by using
a wide variety of phenomenological methods as well as
with first-principles techniques. In an early phenomenological
treatment of the A2-B2 transition, Beinenstock and Lewis10

employed a low-temperature expansion of the Ising model to
calculate a phase diagram with nonmagnetic components. This
phenomenological approach resulted in a B2 phase field sym-
metric about the 50-50 composition and somewhat narrower
than that found experimentally. A real-space renormalization
group was used by Racz and Collins11 to study the slight
asymmetry in the A2-B2 phase boundary. In the context
of a nonmagnetic nearest-neighbor Ising model, they found
that a small three-body interaction could account for the
experimentally observed asymmetry.

These early phenomenological works did not treat the
magnetic transition and effectively hid the effect of magnetism
by subsuming it into the effective pair interaction. Other
phenomenological works include those by Tahir-Kheli and
Kawasaki,12 Billard et al.,13 Morán-Lopez and Falicov,14

Mejia-Lira et al.,15 Mizial et al.,16 Sanchez and Lin,17 and
Martinez-Herrera et al.18 They also treated the magnetic
transition and demonstrated the interplay between chemical
and magnetic interactions in determining the location of
chemical phase boundaries. However, in such studies, the
chemical interactions for real alloys were obtained from the
fitting of simplified models to the experimental properties in
the ferromagnetic (FM) state and, thus, could not be applied
unambiguously to the nonmagnetic situation. While all of these
approaches are able to reproduce various portions of the Fe-Co
phase diagram, they are all phenomenological and rely on the
thermochemical studies and/or on portions of the experimental
phase diagram to obtain the chemical and magnetic interaction
parameters.
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The method that ideally suits the investigation of the cou-
pling between the chemical and magnetic degrees of freedom
at the atomic scale level is the generalized perturbation method
(GPM).19 This method allows for the calculations of both
the effective chemical interactions of the Ising Hamiltonian
for the atomic configurational degrees of freedom and the
magnetic exchange interaction parameters of the Heisen-
berg Hamiltonian describing magnetic ordering. Bieber and
Gautier20 used this method within an empirical tight-binding
approximation to calculate the effect of magnetism on the
phase stability in random alloys. Later, Sluiter and Kawazoe21

used a first-principles-based tight-binding method to calculate
effective interactions in binary Fe-Co and ternary Fe-Ni-Al
alloys. The calculated order-disorder transition temperature
in Fe-Co in the FM state was 600 K, which was way lower
than the experimental value of 1006 K. The GPM was also
used by Kudrnovský et al.22 in the first-principles calculations
of the effective interactions in Fe-Co alloys, both in the bulk
and on the surface in the FM state. Their calculated transition
temperature in the single-site mean-field approximation was
917 K. Considering the fact that the mean-field approximation
actually overestimates the critical temperature, this result can
not be considered as satisfactory.

Recently, Diaz-Ortiz et al.23,24 have investigated the pos-
sible ground-state structures in Fe-Co alloys using a clus-
ter expansion of the enthalpy of formation determined in
first-principles calculations. By also performing nonmagnetic
calculations, they have demonstrated that the magnetism has
a great impact upon the stability of Fe-Co alloys. As in the
previous theoretical considerations, only the fully ferromag-
netic state has been considered. However, the point, which
still remains missing, is the influence of the finite-temperature
magnetic state on the thermodynamics of ordering in this
system.

This is the main goal of this investigation. It is based on the
partially disordered local moment (PDLM) representation of
the finite-temperature magnetic state of Fe-Co alloys. We shall
carry out first-principles calculations of the effective cluster
interactions and consequently use them in our Monte Carlo
simulations. A similar approach has recently been used by
Ruban et al.25 and Ekholm et al.26 in the study of Fe-Cr and
Fe-Ni alloys, respectively. The main difference, however, is
due to a different treatment of the PDLM state, since both
alloy components, Fe and Co, exhibit more localized behavior
of the magnetic moments.

II. METHODOLOGY

A. Effective cluster interactions for finite magnetization

The PDLM state, which represents the partially ordered
magnetic state for a given global magnetization m, can be
introduced as a straightforward generalization of the disor-
dered local moment27,28 (DLM) model. The magnetic binary
FexCo1−x alloy is described in terms of a four-component
alloy Fe↑

uxFe↓
dxCo↑

u(1−x)Co↓
d(1−x), where u = (1 + m)/2 and

d = (1 − m)/2, respectively. Fe and Co atoms with up and
down spin orientation are distributed randomly relative to one
another on the underlying lattice. In the adiabatic approxi-
mation adopted in this paper, the dynamics of the spins and

its coupling with other types of thermal excitations has been
neglected. One can see that this model gives the ferromagnetic
state for m = 1 and the DLM state for m = 0.

Using the fact that thermally induced fluctuations of the
local magnetic moment orientations are much faster than
the atom-vacancy exchanges associated with equilibrating
the atomic short-range order, one can define “spin-averaged”
effective pair interactions (EPIs) for a binary FexCo1−x alloy
in the PDLM states as29

〈
V Fe-Co

ij

〉 = 1

16

∑

σ1,σ2,σ3,σ4

pσ1pσ2pσ3pσ4 V̄
Feσ1 ,Feσ2 ,Coσ3 ,Coσ4

ij ,

(1)

where the summation is over spin orientation index σ for
each alloy component. It takes on values ↑ and ↓, and
the coefficients pσ = u and d for the corresponding spin
orientations. V̄ Feσ1 Feσ2 Coσ3 Coσ4

ij is the generalized EPI for a
quaternary alloy for i and j sites, which can be expressed
through the ordinary EPIs of binary combinations of the alloy
components as30

V̄ Feσ1 Feσ2 Coσ3 Coσ4

ij

= 1
2

(
V Feσ1 Coσ3

ij + V Feσ2 Coσ4

ij − V Feσ1 Feσ2

ij − V Coσ3 Coσ4

ij

)
. (2)

In the DLM, when u = d = 0.5, Eq. (2) takes a simple form

V Fe-Co−DLM
ij

= 1
4

(
2V Fe↑Co↓

ij + 2V Fe↓Co↑
ij − V Fe↑Fe↓

ij − V Co↑Co↓
ij

)
, (3)

which is rather similar to that of a binary alloy when only one
alloy component is magnetic. The last two terms are exchange
magnetic interactions of Fe and Co in the DLM state.

The higher-order effective cluster interactions (ECIs) can be
determined in a similar way. So, in the end, the configurational
Hamiltonian is reduced to the original form for a binary alloy:

Hconf = 1

2

∑

i,j

V
(2)
ij δciδcj + 1

3

∑

i,j,k

V
(3)
ijk δciδcj δck

+ 1

4

∑

i,j,k,�

V
(4)
ijk� δciδcj δckδc�. (4)

Here, V
(n)
i1,...,in

are the spin average of n-site effective cluster
interactions; δci are the concentration fluctuations at sites i;
and δci = ci − x, where ci is the occupation number at site i,
taking on values 1 or 0 if the site i is occupied by the Fe or
Co atom, respectively. The summation in Eq. (4) is carried out
over all sites.

B. Details of the first-principles calculations

We have used three related first-principles techniques for
our calculations:

(i) the Korringa-Kohn-Rostoker Green’s function method
in the atomic sphere approximation (KKR-ASA),31,32 which
was used for the calculation of the densities of states and
magnetic moments of the alloys at different compositions;

(ii) the locally self-consistent Green’s function (LSGF)
method33,34 based on the KKR-ASA method for the determina-
tion of the on-site and intersite screening constants needed for
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the electrostatic part of the screened generalized perturbation
method (SGPM) effective pair interactions; and

(iii) the exact muffin-tin orbital (EMTO) method within the
full charge density formalism35 for the total energy and cluster
interaction calculations.

Randomness has been treated using the coherent potential
approximation (CPA)32,33,36,37: the KKR-ASA-CPA and the
EMTO-CPA. The local density approximation (LDA)38 has
been used for the exchange-correlation potential.

The KKR-ASA Green’s function and the LSGF methods
have been used to determine the screening constants, which
enter the DFT-CPA formalism in the single-site approximation
(in the so-called isomorphous CPA model). In this formalism,
the on-site screened electrostatic potential V i

scr and energy
Ei

scr are determined as suggested by Ruban and Skriver39 and
Ruban et al.40:

V i
scr = −e2αscr

qi

S
,

(5)

Ei
scr = −e2 1

2
αscrβscr

q2
i

S
.

Here, qi is the net charge of the atomic sphere of the ith
alloy component, S is the Wigner-Seitz radius, and αscr

and βscr are the on-site screening constants. Their values,
which are αscr = 0.81,0.84,0.88 and βscr = 1.15,1.17,1.18,
have been determined from the corresponding supercell LSGF
calculations of random Fe0.3Co0.7, Fe0.5Co0.5, and Fe0.7Co0.3

alloys, respectively.
The screening charge has also been used to determine

the intersite screening constants αscr(R) needed in the cal-
culations of the electrostatic part of the SGPM effective
pair interactions39–41 and the intersite screened Coulomb
interactions for the i and j sites, which in the case of a binary
A-B alloy can be defined as

V scr
ij = e2αscr(Rij )

q2
eff

S
, (6)

where qeff = qA − qB is the effective charge transfer in the
case of a binary alloy and Rij is the vector connecting sites i

and j . The whole SGPM interaction is then

V
(2)
ij = V one-el

ij + V scr
ij , (7)

where V
(2)
ij is the SGPM interaction at the ith coordination

shell and V one-el
ij is the one-electron contribution to the SGPM

interaction.
Experimental lattice parameters5 have been used in the first-

principles calculations of the electronic structure and effective
interactions of FexCo1−x alloys. The Monkhorst-Pack grid,42

with subdivisions along each reciprocal lattice vector 31 ×
31 × 31, has been used for integration over the Brillouin zone
in the LDA self-consistent and SGPM calculations.

III. RESULTS AND DISCUSSION

A. Electronic structure and magnetic properties of Fe-Co alloy

The electronic structure and magnetic properties of Fe-Co
alloys have been calculated previously by MacLaren et al.43 by
the KKR-CPA method. In this paper, we use a similar Green’s
function KKR-ASA-CPA method31,32 for the calculations of

FIG. 1. (Color online) Density of states of bcc Fe, Co, and
ordered-B2 Fe-Co alloy

the electron density of states (DOS) and magnetic moments.
The experimental5 lattice spacing varying with composition
from a = 2.835 to 2.863 Å has been used in our LDA self-
consistent calculations.

In Fig. 1, we show the electronic density of states of pure
body-centered-cubic (bcc) Fe and Co as well as the B2-ordered
Fe-Co alloy calculated for the same lattice parameter a =
2.86 Å. The majority bands of pure Fe and Co are shifted
relative to each other, which is a consequence of the fact that
this band is filled in Co but unoccupied to some degree in Fe.
The completely filled majority d band in Co becomes inert or
nonbonding and moves down with energy closer to the bottom
of the valence band. There is also a substantial difference
in the position of the minority band of Co and Fe, which is
due to the difference in the number of the occupied states in
this band.

What may, however, seem a bit unusual is the fact that the
position and the form of the majority and minority bands of
the ordered-B2 Fe-Co almost coincide with those of bcc Co,
almost up to the Fermi energy. Only approximately 3.67 mRy
below the Fermi energy, the minority band of Fe-Co becomes
different from that of Co by forming an additional valley and
redistributing the states above the Fermi energy. To explain the
electronic structure of the B2 Fe-Co, it is useful to see what
happens with electronic states at the local level, inside atomic
spheres of Fe and Co.

In Fig. 2(a), we show the local DOS of Co and Fe atoms in
the ordered-B2 Fe-Co alloy. The local DOS of the majority Fe
and Co states are practically the same. The difference in the
minority DOS of Fe and Co is more pronounced, although they
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FIG. 2. (Color online) DOS of Fe and Co in ordered-B2 and
random alloys.

still have a similar form and position up to the Fermi energy.
Such a strong similarity of the local Fe and Co bands can be
understood, in its turn, in terms of the average bond model,
proposed by Ruban et al.44

Let us note first that the B2 structure is quite special in
the respect that every Fe atom is completely surrounded by
Co atoms at the first coordination shell and vice versa. In this
case, the Fe and Co nearest neighbors form a common bond
between themselves due to the strong hybridization of the
d states. Since the d states are quite localized, the influence of
more distant coordination shells on the electronic structure is
small, and, thus, the DOS of the ordered alloy is very similar to
that of pure metals, as has been demonstrated by Ruban et al.44

for the case of nonmagnetic 4d metal alloys. The position of
majority and minority states in the B2 Fe-Co can be then
explained by the shift of the majority d band of Fe-Co due
to its complete filling and the consequent hybridization of the
minority band with the majority one.

Such a coherent behavior of the local DOS of Fe and Co
appears to be disturbed by the randomness in random alloys,
which can be clearly seen in Fig. 2(b), where we present the
local DOS of a random Fe0.5Co0.5 alloy. The positions of the
peaks of the local DOS of Fe and Co atoms are shifted relative
to each other, which is a manifestation of the fact the they
have, on average, an equal number of Fe and Co atoms at the
first coordination shell. In particular, the minority DOS of Co
strongly increases at the Fermi energy, as it should be when Co
atoms have Co nearest neighbors at the first coordination shell
(see the DOS of pure Co in the bcc structure in Fig. 1). This
makes such an atomic configuration unfavorable compared to
the ordered B2 structure, and this is the main source origin of
the ordering behavior of Fe-Co alloys.

Now, it is easy to understand the reason for the changes of
the DOS with variations of the composition of random alloys,
which is shown in Figs. 2(c) and 2(d) for Fe0.25Co0.75 and
Fe0.75Co0.25 alloys, respectively. In the case of the Fe0.25Co0.75

alloy Fig. 2(c), the average number of Fe atoms surrounding

each Fe atom decreases, and the local DOS of Fe mainly
follows that of Co, especially in the case of the majority band.
At the same time, the average number of Co atoms surrounding
each Co atom increases, and this again leads to the increase
of the Co minority DOS at the Fermi energy. Conversely, in
the case of the Fe0.75Co0.25 alloy, the effective number of Fe
atoms at the first coordination shell increases, thereby pushing
the Fe majority band to the Fermi energy as in pure bcc Fe (see
Fig. 1 for Fe). At the same time, Co atoms become surrounded
mostly by Fe atoms and this makes it possible to rearrange
their minority band in a way to have a valley at the Fermi
energy similar to the case of the B2 phase.

The concentration dependence of the average magnetic
moment of Fe-Co alloys exhibits the Slater-Pauling behavior
and it was discussed in detail by MacLaren et al.43 In Fig. 3,
we compare our results for the average and local magnetic
moments in Fe-Co random alloys with the first-principles
calculations by MacLaren et al.43 and experimental data.45

One can see that our results follow the same trend as MacLaren
et al.,43 but closer to the experimental data. The difference
arises due to the use of different lattice spacings, since
we have used experimental data. Our calculated magnetic
moments are a bit lower than the experimental data. The
reason for this discrepancy is most probably related to atomic
short-range order effects neglected in our single-site CPA
calculations, and which may exist and be pronounced in the
experimental samples. Let us also note that Co-rich Fe-Co
alloys are not good candidates for neutron experiments,47

first, because of their higher neutron absorption cross section
and also because of their high magnetic anisotropy. Fe-Co

FIG. 3. (Color online) Magnetic moments of FeCo alloys. The
experimental data have taken from Bardos (Ref. 46) and Collins and
Forsythe (Ref. 45), and the theoretical data have been taken from
MacLaren et al. (Ref. 43).
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alloys exhibit the weakest environment effects compared to
other Fe-based alloys. In addition, Co has small but significant
orbital magnetism that makes the system more complicated.

According to the neutron-diffraction studies.45 the complete
occupation of the majority band of Fe by the addition of Co
leads to a maximum mean magnetic moment 2.45 μB per
atom at the composition cCo = 0.3. Figure 3 shows that our
the KKR-CPA calculations reproduce well the experimental
trend of magnetization with composition. One can notice quite
a peculiar behavior of the local magnetic moments. The local
moment on the Co atom remains nearly the same in the whole
concentration range. At the same time, the local magnetic
moment of Fe increases with increasing Co concentration from
2.2 μB in bcc Fe to the unusually large magnitude of about
2.62 μB at cCo = 0.5 and then remains almost constant. The
addition of Co to Fe leads to a redistribution of the electrons
such that the total system becomes a strong ferromagnet. The
local moment of Fe is environment dependent. It increases with
the number of Co nearest neighbors and takes its maximum
value when all eight nearest-neighbor sites have been occupied
by Co. This happens in the B2 structure.

B. Effective cluster interactions and ordering energies
in the FM state

The effective cluster interactions in this work have been
determined by the SGPM method. This method yields only
a chemical contribution to the effective interactions, which
determine the configurational energetics on a fixed ideal lattice.
The contribution related to the possible local lattice relaxations
should, however, be small in the Fe-Co alloys due to the small
atomic-size mismatch of Fe and Co. We have also ignored
contributions from lattice vibrations, which we expect to be
insignificant in this system, at least relative to quite large
chemical interactions.

The SGPM interactions are concentration and volume
dependent. In Fig. 4, we show the EPI for three different
alloy compositions: Fe0.3Co0.7, Fe0.5Co0.5, and Fe0.7Co0.3

FIG. 4. (Color online) Composition variation of EPIs for the FM
state FexCo1−x alloys.

FIG. 5. (Color online) Three-site ECI for the Fe0.5Co0.5 alloy in
the FM state.

in the FM state. As one can see, the strongest EPI is at
the first coordination shell for all the alloy compositions.
Other significant interactions are at the first five coordination
shells and at the 11th coordination shell, which is in the
closed-packed [111] direction. One can also notice that the
nearest-neighbor EPI is changing almost by a factor of ∼1.68
in the concentration range of 0.3 < cCo < 0.7, decreasing for
Co-rich alloys. It is clear that such a dependence should affect
the order-disorder transition temperature too.

We have also calculated the three- and four-site interactions.
In Figs. 5 and 6 we show some of the strongest multisite
interactions in the Fe0.5Co0.5 alloy in the ferromagnetic state.

FIG. 6. (Color online) Four-site ECI for the Fe0.5Co0.5 alloy in
the FM state.
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TABLE I. The ordering energy calculated from the SGPM ECI
and from the direct total energy calculations.

Structure SGPM (mRy) Total Energy (mRy)

A11 −0.231 −0.639
B11 0.200 0.649
B2 −5.051 −4.614
B32 0.634 0.509

The interaction index is given by the coordination shell
numbers of the sides of the corresponding cluster. In the
case of the four-site interactions, the order of indexes matters,
so the choice is the following: the first four indexes are the
coordination shells of the sides of a closed loop through all
the four sites, and the last two are the coordination shells
of remaining sides of the cluster. It is clear that many-body
interactions do not vary systematically; however, in most cases,
the strongest multisite interactions are along the line in the
close-packed direction such as, for instance, V

(3)
1−1−5 in the

case of three-site interactions and V
(4)

1−5−11−1−5−1 in the case of
four-site interactions. The discussion of the trends for multisite
ECI can be found in Ref. 48.

In order to check the validity of the SGPM effective cluster
interactions, we have calculated the ordering energy of a set
of ordered structures α, determined as the difference of the
total energies of the ordered random alloys �Eα

ord = Eord
tot −

Erandom
tot from both the direct total energy calculations using this

formula as well as from the SGPM interactions. In Table I, we
show the ordering energies of Fe-Co for four different ordered
phases: A11, B11, B2, and B32. The agreement seems to be
quite good, especially taking into consideration the fact that
the SGPM interactions are obtained in the random state, where
the magnetic state, including, for instance, the local magnetic
moments of Fe and Co atoms, is different from those in the
ordered structures.

C. Order-disorder phase transition in the reduced
ferromagnetic state

Accurate phase equilibria calculations in magnetic systems
become highly nontrivial at temperatures close to the point
of a phase transition when magnetic and configurational
interactions are of the same order, i.e., when magnetic and con-
figurational degrees of freedom become strongly coupled and
complexly interconnected. In Fe-Co alloys, the order-disorder
phase transition is only 100 ◦C below the magnetic phase
transition, which means that magnetic thermal excitations
should affect the order-disorder phase transition.

Unfortunately, there is no simple and accurate first-
principles-based approach to the description of the thermally
excited ferromagnetic state of the itinerant magnets, such as
Fe-Co alloys. Thus, the only way to proceed is to use a
simplified model, hopefully not too simple, to describe the
magnetic state. As has been mentioned above, we use the
PDLM model for treating the alloy in the ferromagnetic state
with a reduced magnetization. Since the magnetic excitations
are much faster than atomic configuration, which is connected
to the quite slow process of the atomic diffusion, we can
separate out the magnetic degree of freedom. In the single-site

FIG. 7. (Color online) The magnetization-dependent EPIs of
Fe0.3Co0.7 (upper panel) and Fe0.5Co0.5 (lower panel) alloys.

mean-field consideration adopted in this work, the magnetic
state is given by the reduced magnetization m.

The variation of the EPI with magnetization from the DLM
state (m = 0) to the FM state is shown in Fig. 7 for two
different alloy compositions. It is clear that the mostly affected
EPIs are for the first and second coordination shells. This is
so because the connection between interactions in different
magnetic states is roughly determined by the magnetic
exchange interaction parameters, which have approximately
the same hierarchy as the chemical interactions.20 One can also
see that the nearest-neighbor EPI changes nonmonotonically
with magnetization. The most dramatic change with the
magnetization is, however, for the next-nearest-neighbor EPI:
it changes the sign from negative in the FM state to positive
in the DLM state. In fact, this change in the EPI for the
next nearest neighbor affects very strongly the order-disorder
transition temperature.

The order-disorder transition temperatures in Fe-Co alloys
in the concentration range of 0.3 < cCo < 0.7 have been
determined in the Monte Carlo simulations. The following ECI
have been used in this case: The EPI at the first 30 coordination
shells, 13 for three-site and 10 for four-site strongest ECI.
In Fig. 8, we show the calculated order-disorder transition
temperature of Fe0.5Co0.5 as a function of magnetization
together with the EPI at the first five coordination shells. It
is clear that transition temperature is very sensitive to the
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FIG. 8. (Color online) The order-disorder transition temperature
(upper panel) and EPIs (lower panel) of the Fe0.5Co0.5 alloy as a
function of magnetization.

magnetization. One can also see that the dependence of the
transition temperature from the magnetic state is not entirely
related to the magnetization dependence of the EPI at the
first coordination shell. In fact, a very strong increase of the
transition temperature close to the FM state is also related
to the decrease of the EPI at the second coordination shell.
This is so because the second coordination shell in the B2
structure consists of the atoms of the same type and, therefore,
negative interaction at this coordination shell is stabilizing the
B2 structure.

Finally, in Fig. 9, we show the calculated order-disorder
transition temperature for several values of magnetization as
function of alloy composition together with the experimental
data.3 The experimental transition temperature is close to the
theoretical prediction for magnetization m = 0.8. There are
very few experimental data for the magnetization close to the
ordering transition. According an early experimental study
by Clegg and Buckley,49 and a Mössbauer study by Montano

FIG. 9. (Color online) Concentration dependence of the transition
temperature for different magnetizations.

and Seehra,4 the magnetization at the temperature of the
ordering transition is m � 0.83 for the equiatomic alloy
composition. Thus, one can conclude that our results are in
very good agreement with experimental data.

Of course, such agreement can, to some degree, be
fortuitous, and further investigations are apparently needed
concerning the description of the magnetic state and probably
some other contributions, which were neglected in this work.
In particular, a drawback of our model is that it neglects
longitudinal spin fluctuations expected to be important for
Co-rich alloys. However, it is clear that our calculations
confirm a quite strong dependence of the ordering effects on
the degree of magnetization, similar to the cases of fcc Fe-Ni
(Ref. 26) and bcc Fe-Cr alloys25 considered lately.
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