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Phonon modes and vibrational entropy of disordered alloys with short-range order:
A first-principles calculation
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There has been increasing evidence about the effects of short-range order (or local chemical environment
effects) on the lattice dynamics of alloys, which eventually affect the vibrational entropy difference among
various phases of a compound, and hence their relative stability. In this article, we present an ab initio calculation
of the lattice dynamics and the vibrational entropy of disordered systems with short-range order. The features in
the phonon density of states were found to change systematically with chemical short-range order in the alloy.
Plausible explanations for our smaller value of vibrational entropy of mixing compared to experiment are given
in some detail. A general trend of the magnitude of vibrational entropy of mixing is explained by making a
connection to the phonon lifetime broadening, an intrinsic property of any multiple scattering phenomenon. We
illustrate the method by applying it to a body-centered cubic Fe1−xCrx alloy.
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I. INTRODUCTION

An accurate and reliable estimate of lattice vibrational
effects is a long-standing problem for first-principles calcu-
lations of substitutional alloy thermodynamics. This is mainly
due to the more complicated nature of the phonon problem,
with the existence of an essential off-diagonal disorder in
the dynamical matrix. Moreover, the sum rule obeyed by the
diagonal and off-diagonal parts of the force constants leads to
the so-called environmental disorder.1 The problem becomes
even more difficult if the vibrational properties of the con-
cerned alloy are sensitive to the short-range features of atomic
arrangements. One is then required to provide a conditional
configuration averaging scheme for the disordered alloy which
captures the effect of correlated, and not simply homogeneous,
disorder. Typically, the ranges of interatomic force constants
are not much larger than those of the interatomic distances.
There have been no detailed first-principles investigations
of how the phonon density of states (DOS) depends on
short-range ordering (or local atomic configuration) in alloys.
In addition, since the phonon DOS is a key quantity for any
understanding of vibrational entropy (at least in the harmonic
approximation), such a dependence on short-range ordering
(SRO) is implicitly hidden in the entropy as well. Keeping
in mind a growing effort to understand the reasons behind
the vibrational entropy differences between various states of
materials,2,3 we formulate a new method which can take into
account the effect of the local chemical environment on the lat-
tice dynamics of disordered alloys and hence provide a deeper
insight into the understanding of the origin of such entropy
differences. Within the experimental framework, there have
been several advances made in this direction. The experimental
literature mainly relies on three basic techniques, namely,
differential calorimetry,3,4 inelastic neutron scattering,5 and
nuclear resonant inelastic x-ray scattering.6 Of these the
nuclear resonant scattering experiment seems quite promising.
Some of the applications of this method provide a better

understanding of the microstructure of alloys by assigning
the dependence of the local chemical environment on the
phonon DOS.7 Although there are numerous experimental
studies in this area, a complete theoretical understanding is
still lacking. This situation has motivated a few theoretical
studies,8–10 which have addressed properties that are sensitive
to the presence of short-range ordering in alloys. However,
to our knowledge, these studies are either limited to model
systems or based on the use of a separate ab initio energetics
and interatomic potentials. It is therefore required to have a
direct first-principles calculation of the lattice dynamics and
the vibrational entropy of disordered alloys with short-range
order.

Challenged by this possibility and motivated by a lack
of available knowledge, we present a generalized method
to investigate the vibrational properties of disordered al-
loys with SRO. This method should explicitly take into
account the fluctuation in masses, scattering length (diagonal
disorder), and force constants (off-diagonal disorder). The
generalization should in principle allow the method an extra
capability of capturing the effect of correlated disorder arising
out of SRO. This technique is based on the augmented
space theorem suggested by one of us11 combined with
the recursion method of Haydock et al.12 to obtain the
conditional configuration averaged Green’s function. Unlike
the virtual crystal approximation (VCA) and the coherent
potential approximation (CPA)13 (single-site approximation),
the present formalism can take into account multisite dis-
order effects. Although generalizations of the CPA14 exist
in the literature, most of these either are limited to very
special types of off-diagonal disorder or violate the lattice
translational symmetry and Herglotz analytic properties of
the configuration averaged Green’s function. Of such various
methods, one approach has emerged to be somewhat promis-
ing, namely, the nonlocal coherent potential approximation
(NL-CPA).15
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Keeping in mind the increasing interest in investigating the
role of phonon entropy on the thermodynamic stability of a
compound, we choose a technologically important alloy sys-
tem, Fe-Cr. The phase diagram of Fe-Cr at high temperatures
includes a body-centered cubic (bcc) single-phase region over
a broad range of composition, with a σ -phase region near
equiatomic compositions from 725 to 1103 K. Experimental
observations in the temperature range 675–773 indicate that
chemical unmixing occurs homogeneously by a mechanism
like spinodal decomposition.16 In fact Fe-Cr alloys constitute
the basic ingredient of stainless steel that for a century has
been one of the most important structural materials, and hence
some properties of stainless steel are inherited from this parent
alloy.

In Fe-Cr alloys the dominant disorder is in the dynamical
matrices. The single-site mean-field approaches cannot de-
scribe off-diagonal disorder properly, hence the importance
of the Augmented Space Recursion (ASR) calculation. In
an earlier paper17 we have studied the effect of strong mass
disorder leading to resonances in NiPt alloys. In this paper
we shall focus on strong off-diagonal disorder. The concerned
study is based on the phonon DOS and vibrational entropy of
mixing of bcc Fe-Cr. We also analyze for the effects of SRO
on these lattice dynamical properties, which in turn are related
to the thermodynamics of the alloy.

Various mechanisms have been suggested from time to
time to explain the origin of vibrational entropy differences
in alloys. Some of them are the bond proportion effect,18

the volume effect, the size mismatch effect,19 and so on. The
entropy difference is actually related to the difference in the
phonon DOS between the two concerned states. An intrinsic
quantity from which this phonon DOS is obtained in most
of the theoretical calculations is the phonon dispersion. In
disordered alloys, this dispersion is associated with a full width
at half maximum (FWHM), which provides finite lifetime
broadening to phonon scattering. Considering this quantity
to be one of the most basic quantities in any phonon theory of
disordered alloys, we intuitively connect it to explain a general
trend of the magnitude of vibrational entropy difference.

In contrast to previous semiemperical calculations9 and
experiments,5,20 we found a comparatively smaller value
of the phonon entropy of mixing. We provide plausible
explanations for the comparatively large value of vibrational
entropy difference obtained in previous studies. While this
result does not rule out the possibility that lattice vibrations
play a significant role in other systems, it does point out that
vibrational effects in Fe-Cr may be comparatively smaller than
originally claimed.

In the remainder of this paper, we first describe a gener-
alized formalism (in Sec. II) which can take into account the
effect of SRO on the phonon DOS and vibrational entropy
differences. Although the original augmented space theorem
(related to phonon problem) was quoted in Ref. 17, its
generalization is nontrivial. Section III is devoted to various
computational details. The results of these calculations, de-
scribing the physical origin of unexpected lattice dynamics of
the Fe-Cr alloy, are discussed in Sec. IV. The mechanism we
identify is unlikely to be limited to the Fe-Cr system alone and
points to an important feature that needs to be accounted for
in order to properly model the local chemical environmental

effect in any alloy system to accurately predict vibrational
entropy. Concluding remarks are presented in Sec. V.

II. METHODOLOGY

Since the augmented space method has been described
in great detail in many earlier papers, we introduce here
only those salient points which are of direct relevance to
our generalization to SRO for the phonon problem. Interested
readers are referred to the Refs. 17 and 21 for further details.

In order to maintain consistent notations, we first provide in
brief the mathematics for uncorrelated disorder (or homoge-
neous disorder) and then proceed for the generalization to the
correlated disorder problem (arising out of SRO). For the sake
of visualization, we also explain the corresponding physical
phenomenon, which these theories actually capture, in terms
of the multiple scattering picture.

A. Multiple scattering phenomenon

When a phonon propagates in a random alloy, it encounters
irreducible multiple scatterings both repeatedly off single local
configuration fluctuations and successively off simultaneous
fluctuations on different sites. As mentioned in the Introduc-
tion, being a single-site mean-field approximation CPA takes
into account only the single, local fluctuations. This is shown
in the left panel of Fig. 1, which is a two-dimensional cartoon
diagram of the multiple scattering phenomenon captured by
the CPA. The black circle is a single fluctuation site embedded
in an average medium denoted by light circles. Within the
CPA (diagonal disorder), the irreducible scattering by the
defect is confined to the defect site itself. The (red) box
around the fluctuation site indicates the region of influence
of the perturbation. This is an oversimplified model of
the phonon problem for disordered alloys, since none of
the springs are affected by the presence of this defect and the
force constants are the same everywhere. In other words, the
averaging is done over all possible occupations of single sites
only. The right panel in Fig. 1 illustrates the multiple scattering
phenomenon captured within our augmented space method.

ASR(Multisite Mass & Force Const. Disorder)CPA (Single site Mass Disorder)

Fluctuation site (or defect site) Sites in the average medium

FIG. 1. (Color online) Multiple scattering picture for the single-
site CPA, and the multisite ASR. The black circles indicate the
fluctuation site and the red square box around them indicates the
region of influence. Within the CPA the effect of fluctuation is limited
to the single site itself; however ASR takes into account the influence
of neighboring sites as well.
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One can easily see the difference as compared to the CPA. In
this picture, the main difference is the region of perturbation
which is not only the site of fluctuation but also its neighboring
environment. The box around the dark circles shows the
region of influence, which is an example of a model including
the effect of the second nearest neighbor environment. One
can perform calculations for further extended neighbors as
well. During the process of propagation, the phonon at the
fluctuation site scatters from all of its neighbors, and their force
constants also undergo fluctuations (indicated by thick spring
lines in contrast to the thin ones for the average medium).
In fact, the whole cluster of atoms [within the red box]
undergoes fluctuations both in masses (diagonal disorder) and
force constants (off-diagonal disorder). This is an example
of homogeneous disorder. Another thing to notice is the way
scattering is spread all over the lattice, although the strength of
scattering decreases with distance because of the short-range
nature of phonon interaction. Apart from the fluctuations in
masses and force constants, the scattering lengths of the alloy
components might be very different from one another. For the
sake of completeness, we have also included fluctuations in
scattering lengths.

B. Phonons with short-range order

The augmented space formalism for correlated disorder has
been derived and discussed before for the electronic problem.22

In this section, we present a generalization of the same to the
phonon problem and hence relate it to the phonon DOS and
vibrational entropy. We first present the salient features of
the method for homogeneous disorder and then discuss its
generalization to correlated disorder.

The basic idea behind the augmented space method for
configuration averaging is to extend the usual real Hilbert space
H to include a configuration space �. Disorder fluctuations
are described in �. Suppose {nR} to be a collection of
discrete independent random variables and F ({nR}) to be
some function of these variables. If each random variables
nR takes on values {m1,m2, . . . ,mr, . . .} one can decompose
the joint probability distribution function of these variables
P ({nR}) as

P (n1,n2 . . . ,nr , . . .) = p1(n1) p2(n2) . . . pr (nr ) . . .

Each pi is positive definite and has finite moments to all orders.
A Hilbert space �R (spanned by the states of nR) is constructed
for each density pR , and the full system configuration space is
defined as � = ∏⊗

R �R . A self-adjoint operator NR ∈ �R is
associated with each random variable nR , such that

pR(nR) = − 1

π
lim
δ→0

�m
〈
νR

0

∣∣ [(nR + iδ)I − NR]−1
∣∣νR

0

〉
, (1)

where |νR
0 〉 = ∑α

j=1 wj |mR
j 〉 is a specific member of �R . The

ground state |ν0〉 in the full product space � is defined as
|ν0〉 = ∏⊗

R |νR
0 〉.

According to augmented space theorem, the configuration
average of F ({nR}) is

〈〈F 〉〉 = 〈ν0| F̃ (Ñ (1),Ñ (2), . . . ,Ñ (r), . . .)|ν0〉,

where

Ñ (R) = I ⊗ · · · ⊗ NR · · · ⊗ I ⊗ · · · (2)

and F̃ is the same function of Ñ (R) as F was of nRs. The
calculation of the configuration average 〈〈F 〉〉 thus reduces to
the problem of obtaining the above expectation value.

However if the random variables {nR} are correlated
(instead of being independent), then the joint probability
distribution should be decomposed as

P (n1,n2 . . . ,nr , . . .) = p1(n1) p2(n2|n1) p3(n3|n1,n2) . . .

(3)
And in general for a correlated variable nR , one has an
associated operator,

Ñ (R)
corr =

∑
l1

· · ·
∑
lR−1

P
l1
1 ⊗ P

l2
2 ⊗ · · · ⊗ N

l1,...,lR−1
R ⊗ I ⊗ · · · ,

(4)
where the operator N

l1,...,li−1
R is associated with the condi-

tional probability density pi(ni |n1,n2, . . . ,ni−1) and P
li
i are

projection operators on a specific state li . The elegance of the
formulation is that the basic augmented space theorem still
holds rigorously, but Ñ (R), instead being of the form given by
Eq. (2), now has the form of Eq. (4).

For a binary alloy, the macroscopic state of order is
described in terms of the Warren-Cowley short-range order
parameter,

αAB
R = 1 − PR(B|A)

y
,

where the center of the Rth shell is occupied by A atom, y

denotes the macroscopic concentration of species B, and PR

is the probability of finding a B atom anywhere in the Rth
shell centered around an A atom.

In terms of the above-defined SRO parameter, the probabil-
ity densities associated with the sites belonging to first nearest
neighbor shell are given by

p
(
nR2

∣∣nR1 = 1
) = (x + αy)δ

(
nR2 − 1

) + (1 − α)yδ
(
nR2

)
,

(5)
p
(
nR2

∣∣nR1 = 0
) = (y + αx)δ

(
nR2

) + (1 − α)xδ
(
nR2 − 1

)
,

where nR1 is the variable associated with the central atom.
Also α = αAB

1 and x + y = 1.
The construction of the operator corresponding to the

conditional probability density for the occupation variable
has been discussed in detail in a previous article.22 Here we
mention only the final form of augmented space operators
associated with the conditional probability density given by
Eq. (4) as

Ñ (R)
corr = xp0

1 ⊗ p0
R + yp0

1 ⊗ p1
R + X1 p1

1 ⊗ p0
R + X2 p1

1 ⊗ p1
R

+U1 p0
1 ⊗ (

τ 01
R + τ 10

R

) + U2 p1
1 ⊗ (

τ 01
R + τ 10

R

)
+U3

(
τ 01

1 + τ 10
1

) ⊗ p0
R + U4

(
τ 01

1 + τ 10
1

) ⊗ p1
R

+U5
(
τ 01

1 + τ 10
1

) ⊗ (
τ 01
R + τ 10

R

)
, (6)

where p0
k and p1

k denote the projection operators and τ 01
k and

τ 10
k are the transfer operators. The constants are defined as

X1 = x − α(x − y), X2 = y + α(x − y),

U1 = x
√

(1 − α)y(x + αy) + y
√

(1 − α)x(y + αx),
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U2 = y
√

(1 − α)y(x + αy) + x
√

(1 − α)x(y + αx),

U3 = α
√

xy, U4 = −α
√

xy,

U5 = √
xy[

√
(1 − α)y(x + αy) −

√
(1 − α)x(y + αx)].

We should also mention at this point that the augmented space
operator Ñ (R) associated with independent probability density
pR(nR) is

Ñ (R) = x p0
R + y p1

R + √
xy

(
τ 01
R + τ 10

R

)
. (7)

The next step is to use these operators and the central
theorem for correlated random variables to set up an effective
Hamiltonian in augmented space for the phonon problem. For
the phonon problem, Fourier transform of the configuration
averaged Green’s function for a disordered binary alloy is
given by

Ḡ(k,w2) = 1

N

∑
R R′

eik·(R−R′)〈〈R|(Mw2 − D)−1|R′〉〉, (8)

where

M =
∑
R

mRPR , mR = mAnR + mB(1 − nR),

D =
∑
R

	RRPR +
∑

R,R′ 
=R

	RR′TRR′ ,

along with the sum rule,

	RR = −
∑
R′ 
=R

	RR′ ,

and in terms of random variables,

	RR′ = 	AA
RR′nRnR′ + 	BB

RR′(1 − nR)(1 − nR′ )

+	AB
RR′ {nR(1 − nR′ ) + (1 − nR)nR′ }. (9)

Here R and R′ refer to lattice positions. PR is the projection
operator |R〉〈R| and TRR′ is the transfer operator |R〉〈R′| in
the space spanned by the basis {|R〉}. M and D are the mass
and dynamical matrices in vibrational mode space.

The notation on the left side of Eq. (8) requires expla-
nation. The Fourier transform of G(R,R′,ω2) = 〈R|(Mω2 −
D)−1|R′〉 (for a given configuration) can only be defined after

we configuration average and restore lattice translation sym-
metry. Ḡ(k,ω2) is the Fourier transform of the configuration
average and not the average of the Fourier transform. This is
explicit in the right side of Eq. (8).

A convenient way of representing states in the configuration
space � = ∏⊗

R �R is the use of the cardinality sequence,
which is basically the sequence of sites {C} at which one
has an atom of type B corresponding to the value of random
variable nR = 1. In the language of the Ising model, we denote
such a state by a ↓ configuration and those sites occupied
by an atom of type A by ↑. For example, for the state
{C} = |{↓2 , ↓5 , ↓7 , . . .}〉, the site numbers 2,5,7, . . . are
occupied by B atoms. If we define |{↑ , ↑ , . . . , ↑ , . . .}〉 as
the reference configuration, then the cardinality sequence of
this configuration is a null sequence {∅}.

According to the augmented space theorem,

Ḡ(k,w2) = 〈k ⊗ {∅}|(M̃w2 − D̃)−1|k ⊗ {∅}〉, (10)

where the augmented k-space basis has the form

|k ⊗ {∅}〉 = 1√
N

∑
R

e−ik.R|R ⊗ {∅}〉.

That configuration averaging restores lattice translation
symmtery is reflected in the fact that in the subspace of
augmented space spanned by the cardinality sequence {∅} we
do have lattice translational symmetry. This has been discussed
earlier by Mookerjee.21

The augmented space operators M̃ and D̃ are constructed
from the original random operators [Eq. (9)] by replacing all
the random variables {nR} associated with correlated disorder
(i.e., nR corresponding to the sites in the nearest neighbor shell
of the central site) by ÑR

corr [given by Eq. (6)] and all the other
variables {nR} associated with uncorrelated disorder by ÑR

[given by Eq. (7)]. M̃ and D̃ are the operators in the enlarged
augmented space � = H ⊗ �, which contains the information
about both the real Hilbert space and the statistical fluctuation
of the system arising out of disorder.

Keeping in mind the two forms of operator Ñ (i.e., ÑR
corr

and ÑR , one indicating the signature of correlated disorder
cluster with conditional probability and the other the rest of
the homogeneous disordered medium), the augmented space
operators M̃ and D̃ can be expressed as

M̃ = mB Ĩ ⊗ I + δm

[ ∑
R 
∈corr

ÑR +
∑

R∈corr

ÑR
corr

]
⊗ PR, (11)

D̃off =
[ ∑

R 
∈corr

∑
R′ 
∈corr

{
	BB

RR′ Ĩ + 	
(1)
RR′ (ÑR + ÑR′

) + 	
(2)
RR′Ñ

RÑR′}
+

∑
R∈1

∑
R′∈corr

{
	BB

RR′ Ĩ + 	
(1)
RR′

(
ÑR + ÑR′

corr

) + 	
(2)
RR′Ñ

RÑR′
corr

}] ⊗ TRR′ ,

=
[ ∑

R 
∈corr

∑
R′ 
∈corr

	uncorr
RR′ +

∑
R∈1

∑
R′∈corr

	corr
RR′

]
⊗ TRR′ ,

D̃dia = −
[ ∑

R 
∈corr

∑
R′ 
∈corr

	uncorr
RR′ +

∑
R∈1

∑
R′∈corr

	corr
RR′

]
⊗ PR,

D̃ = D̃dia + D̃off, (12)
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Atom B

α α

Atom A Sites in the average medium

Clustering tendency (with    = 1) Ordering tendency (with    =−1) 

FIG. 2. (Color online) Multiple scattering picture for the disor-
dered alloy with SRO. The left panel shows a clustering tendency
while the right panel shows an ordering tendency. The range of
short-range correlation is extended up to the second nearest neighbors
in this cartoon diagram [shown by the red box].

where

δm = mA − mB, 	
(1)
RR′ = (

	AB
RR′ − 	BB

RR′
)
,

	
(2)
RR′ = (

	AA
RR′ + 	BB

RR′ − 2	BB
RR′

)
.

Once the augmented space operators M̃ and D̃ are constructed,
the configuration averaged Greens function is obtained from
Eq. (10) using the recursion method of Haydock et al.12 The
recursion method in the context of the phonon problem has
been described in earlier papers, and hence we refer the reader
to Ref. 23 for more details.

In terms of the multiple scattering picture, the above
mathematical formulation can explain a number of situations
describing the short-range correlations depending on the value
of the Warren–Cowley parameter α. Out of various other
possibilities, the tendency of clustering and ordering are
described in Fig. 2 for the two extreme values of α (+1 and
−1) for a 50-50 alloy. The left panel shows the clustering
tendency with the effect of short-range correlation maintained
till the second nearest neighbor [shown by the red box], and the
right panel shows the ordering tendency with the same range
of correlation.

C. Important quantities

Once the Fourier transform of the averaged Green’s
function Ḡ(k,w2) is calculated, the spectral function is
obtained as

A(k,w2) = − 1

π
�mḠ(k,w2). (13)

A more frequently used quantity is the coherent scattering
structure factor Scoh(k,w2), which is basically the same as the
spectral function except that the fluctuation in the scattering
length of different atomic species is also included in the
definition of Scoh. All of our results are based on the structure
factor. The dispersion curves for different modes are then
obtained by numerically calculating the peak frequencies of
these structure factors.

The disorder-induced widths are the quantities which are
more sensitive to the effect of randomness as compared to
dispersion, and as such are one of the focuses of the present

work. In order to extract these full widths at half maxima
(FWHM), we have fitted the coherent structure factors to
Lorenzians exactly as experimentalists do to extract the same.

The SRO-dependent phonon DOS is obtained by integrating
the structure factor over the Brillouin zone,

n(w,α) =
∑

λ

〈〈nλ(w,α)〉〉

= − 2

3π

1

�BZ

∑
λ

∫
BZ

�m[Ḡλ(k,w2)]wdw (14)

where λ is the normal-mode branch index and α is the SRO
parameter. The normal modes are tracked from the complex
band structures obtained from the configuration averaged
Green’s functions.

The lattice heat capacity (Cβ
v ) of a phase (β) is determined

by its phonon DOS n(w,α). The difference �Cβ−β ′
v for two

phases β and β ′ of a compound depends on the difference in
their phonon DOS as

�Cβ−β ′
v (T ,α) = 3NkB

∫ ∞

0
[nβ(w,α) − nβ ′

(w,α)]

×
(

hν

kBT

)2
ehν/kBT

(ehν/kBT − 1)2
dν, (15)

where w = 2πν.
The thermodynamic importance of vibrational entropy has

often been neglected, but recent measurements show that
it affects the relative stability of chemically ordered and
disordered phases.6,20,24 As a matter of fact, in many systems,
the vibrational entropy difference between two phases comes
out to be comparable to the configurational entropy difference.
The difference in vibrational entropy of two phases β and β ′,
�S

β−β ′
vib , can be obtained from the difference in their lattice

heat capacity �Cβ−β ′
v as

�S
β−β ′
vib (T ,α) =

∫ T

0

�Cβ−β ′
v (T ′,α)

T ′ dT ′. (16)

In the higher temperature limit (T � �Debye), the combination
of Eqs. (15) and (16) yields

�S
β−β ′
vib (α) = −3NkB

∫ ∞

0
[nβ(ν,α) − nβ ′

(ν,α)] ln(ν) dν.

(17)
Configurational entropy is a measure of the degree of

disorder for an alloy. For a homogeneously disordered binary
alloy, the configurational entropy is given by

Shomog = −kB[x ln(x) + (1 − x) ln(1 − x)]. (18)

This approximation assumes that all the lattice sites are
equivalent and uncorrelated. However in an alloy with a certain
degree of order, not all lattice sites are equivalent and a certain
degree of correlation always exists between lattice positions.
In the case of SRO, there exists a finite cluster up to which the
correlation between sites remains stronger and decays rapidly
with increasing distance. All the correlations are described
within the basic cluster and the rest of the lattice sites are
considered to be homogeneously disordered. Since one of our
focuses in this article is to describe states with a certain degree
of SRO, we choose the basic clusters to be pairs for simplicity.
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The configurational entropy (including pairs up to the nth
nearest neighbor distance) for a random binary alloy with SRO
is given by

S(n)
corr = Shomog − Shomog

(
n∑

j=1

N (j )

)
− kB

n∑
j=1

N (j )

2

× [
P AA

j ln
(
P AA

j

) + 2P AB
j ln

(
P AB

j

) + P BB
j ln

(
P BB

j

)]
,

(19)

where N (j ) denotes the number of atoms in the j th
neighboring shell, Also the pair probabilities Pj ’s are
given by

P AA
j = y2 + xyαj , P AB

j = xy(1 − αj ), P BB
j = x2 + xyαj ,

where αj is the SRO parameter in the j th nearest neighbor
shell.

It is easy to verify that for αj = 0(∀j ), Scorr reduces to
Shomog. In addition, the terms under the summations converge
to zero with increasing distance, meaning that lattice sites
separated by large distances are uncorrelated. In our case
of a bcc disordered alloy, we verified that the inclusion of
third neighbor pairs modifies the entropy only by 0.005%,
confirming the short-range nature of the correlations.

III. COMPUTATIONAL DETAILS

The Ab initio Quantum-ESPRESSO code25 has been used
to compute the Fe-Fe, Fe-Cr, and Cr-Cr dynamical matrices
at different bond lengths with different ordered structures.
Force constants for B2 Fe-Cr, DO3 Fe3Cr and FeCr3, and
bcc Fe and bcc Cr at their equilibrium lattice parameters have
been used to estimate the random alloy dynamical matrix.
Quantum-ESPRESSO is based upon the density functional
perturbation theory (DFPT),26 which is basically a linear
response method to study the electronic structure and phonon
excitations in condensed matter systems. Within this method,
the dynamical matrix associated with the lattice dynamics of
the system can be obtained from the ground state electron
charge density and its linear response to a distortion of the
nuclear geometry. In terms of computational efficiency, one
of the greatest advantages of the DFPT (as compared to
other nonperturbative methods) is that within this method the
responses to perturbation of different wavelengths are decou-
pled. This feature allows one to calculate phonon frequencies
at arbitrary wave-vectors avoiding the use of super cells and
with a workload that is independent of the phonon wavelength.
The calculations were done at the alloy lattice constants:
a = 2.873 Å for Fe75Cr25, a = 2.876 Å for Fe50Cr50, and
a = 2.879 Å for Fe25Cr75. Ultrasoft pseudopotentials with
nonlinear core corrections27 were used. PBE-96 spin-polarized
generalized gradient approximate (GGA) functionals were
used for the exchange-correlation part of the potential. The
reason for choosing GGA functionals is its better capability to
calculate the ground state properties. Plane waves with ener-
gies of up to 55 Ry are used in order to describe electron wave
function, and Fourier components of the augmented charge
density with cutoff energies of up to 650 Ry are taken into
account. The Brillouin zone integrations are carried out with
Methfessel-Paxton smearing28 using a 14 × 14 × 14 k-point

TABLE I. Dynamical matrix elements in newtons/meter obtained
from Quantum-ESPRESSO codes.

Neighbors x = 0.0 x = 0.25 x = 0.5 x = 0.75 x = 1.0

111xx 16.660 14.081 13.259 12.120 13.491
111xy 14.910 14.100 13.610 12.490 6.469
200xx 14.580 18.782 20.192 20.910 35.960
200xy 0.550 −1.112 −0.911 −0.165 −1.556

mesh. The value of the smearing parameter is 0.01 Ry. These
parameters are found to yield phonon frequencies converged
to within 5%. Once the electronic structure calculation is
converged within a desired accuracy, the force constants are
then computed first in reciprocal space on a finite q-point
grid and then a Fourier transformation is employed to obtain
the real space force constant. In this work, we have used a
8 × 8 × 8 q-point mesh, which provides a sufficiently dense
grid.

The masses of Fe and Cr are 55.845 and 51.996 amu,
respectively, and their scattering lengths are 9.45 and 3.64 fm,
respectively. For dynamical matrices of a 50-50 alloy, we have
performed two sets of calculations. First is the calculations
on a Fe-Cr B2 structure with Cr at the origin and Fe at the
body-center which give the first nearest neighbor 	CrFe

1 and the
second nearest neighbor 	CrCr

2 . Next is a similar calculation but
with Fe at the origin and Cr at the body-center which yields
the first nearest neighbor 	FeCr

1 and second nearest neigh-
bor 	FeFe

2 . The second nearest neighbor 	FeCr
2 is estimated

from (	FeFe
2 + 	CrCr

2 )/2.
The dynamical matrices for the compositions Fe0.25Cr0.75

and Fe0.75Cr0.25 cannot be so obtained from an ordered
structure. For these compositions the dynamical matrices are
estimated from the transferable force constant model proposed
by van de Walle and Ceder.18,29 The idea behind this model
is to use bond-length-dependent transferable force constants.
Calculations using this model on a number of systems had
revealed that a major part of the variation of stiffness can
be explained by changes in bond length alone. This suggests
that force constant vs bond length relationships exhibit better
transferability than the force constants themselves. Table I
shows our estimates of the dynamical matrices.

The ASR calculation for the random alloy is done by
generating a map from a real space cluster of 700 atoms. The
disorder in the force constants was considered till the second
nearest neighbor shell, which consists of 14 sites for a bcc
structure. The phonon DOS is calculated on a frequency mesh
of 1001 points with a small smearing of 0.005. However for a
more accurate calculation of vibrational entropy, the phonon
DOS used in the entropy expression was calculated at 2001
points.

In terms of computational efficiency, one of the advantages
of k-space recursion (over the real space one) is the possibility
of working in an enormously reduced space (compared to the
Hilbert space required in the real space recursion method). It
can be shown explicitly30 that the operation of an effective
Hamiltonian (in the k-space recursion method) can entirely
be done in configuration space only and the calculation does
not require us to involve the Hilbert space H at all. Thus,
for example, for a system with N sites and m possible
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realizations of the random variables associated with each
site, the augmented space involved N × mN basis functions.
The standard real space method for implementing this on a
computer would require handling impossibly large (NmN ) ×
(NmN ) matrices. The first reduction of computational cost in
a k-space recursion comes in the form of dealing with smaller
subspaces of such a huge product space. Since in the k-space
recursion one is required to deal only with the configuration
space, instead of handling the enormously large matrix of rank
(NmN ) × (NmN ), one needs to work with a matrix of rank
(mN ) × (mN ) only. In addition, the approximation involved
in truncating the full lattice to a large cluster (in real space
method) is also avoided. Second, we can utilize the local
symmetries of the configuration space (as described earlier31)
to further reduce its rank. Finally we have used memory
reduction and time saving for ASR by taking advantage of
multispin coding techniques. In other words, one can utilize the
bit manipulation technique and predefined logical functions in
the computer to store the basis vectors of configuration space
in bits associated with different words.

IV. RESULTS AND DISCUSSION

In the first part of this section, we initially focus on
the lattice dynamics of three bcc Fe1−xCrx (x = 0.25, 0.47,
and 0.75) alloys. The present study is based on the phonon
dispersion, phonon DOS, lattice heat capacity, and vibrational
and configurational entropy for these alloys. The trend and the
magnitude of the phonon entropy as a function of the alloy
composition (x) is discussed in some detail. We also provide
a plausible explanation for our smaller value of vibrational
entropy of mixing (compared to other findings). Our next focus
is to investigate the effect of the local chemical environment on
the vibrational properties of the bcc Fe50Cr50 alloy. The effect
of local environment will be studied via the Warren–Cowley
SRO parameter.

A. Fe1−xCrx alloy (x = 0.25,0.47,0.75)

In Fig. 3 we display the phonon dispersion curves for the
three Fe1−xCrx (x = 0.25, 0.47, and 0.75) alloys. The error
bars in all the three panels represent the FWHM at various
ζ values. Interestingly, the gross feature of dispersion for
all the three alloys, including the Cr-rich Fe25Cr75, resemble
much more the phonon dispersion of bcc Fe than that of bcc
Cr. The disorder-induced linewidths on the other hand vary
from one alloy to another along the different high symmetry
directions. The Cr-rich alloy tends to have a larger width
(i.e., smaller phonon lifetime) than the other two alloys.
Being dominated by the force constant disorder, we expect
ASR to perform a good job (as done before17 as well in the
case of the NiPt alloy) in capturing the essential off-diagonal
disorder in the present case. The advantage of ASR over the
other approximate theories (VCA or single-site CPA) is more
significant if one looks at the feature of phonon dispersion
at higher wave-vectors, where the improper inclusion of the
disorder effect in other theories deviates the dispersion curves
lower in frequency and away from the one calculated from
ASR (as well as those measured). The distinction in the low
wave-vector regime is not that big, because the self-averaging
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FIG. 3. Phonon dispersion curves for three Fe1−xCrx (x = 0.25,
0.47, and 0.75) alloys. The error bar in all three panels represent the
FWHM at various ζ values.

of both masses and force constants over a single wavelength
reduces the result of ASR or any other accurate theory to
become close to VCA.

The phonon DOS for the three alloys along with those of
pure bcc Fe and bcc Cr are shown in Fig. 4. As reflected by
the dispersion curves, the phonon DOS for all three alloys
resembles much more the phonon DOS of bcc Fe than that
of bcc Cr. The overall shape of the phonon DOS curves
calculated in the present work is similar to the previous
findings5,6 for an almost similar alloy composition. Since the
change in the phonon DOS as Cr is added to bcc Fe is rather
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FIG. 4. Phonon DOS for pure bcc Fe, bcc Cr, and the three
Fe1−xCrx (x = 0.25, 0.47, and 0.75) alloys.

small, there should in fact be little difference in the integral∫ ∞
0 n(ν) ln(ν) dν for bcc Fe and that of the three alloys. This

will be shown more explicitly by our data on the vibrational
entropy for these sets of alloys.

The temperature dependence of the vibrational entropy of
mixing for the three Fe1−xCrx alloys is shown in Fig. 5.
This entropy difference is calculated by using Eq. (16),
where Svib(x) (β state) is the vibrational entropy of the alloy
with composition x, and S

avg
vib (β ′ state) is the average of the

chemically unmixed state of bcc Fe and bcc Cr weighted by
the factors 75 : 25, 53 : 47, and 25 : 75 for the alloys Fe75Cr25,
Fe53Cr47, and Fe25Cr75, respectively. The inset shows a similar
estimate of the difference in lattice heat capacity between each
of the bcc Fe-Cr alloys and the corresponding chemically
unmixed state. It is immediately clear from the inset that
the specific heat curves have similar shapes, but increase in
weight with the concentration of Cr. Because of the similar
shape of the phonon DOS curve of the alloy and that of the
DOS curve for pure Fe, a linear scaling of �Cv(T ) with the
Cr concentration x is expected. Our theoretical as well as
experimental estimates of vibrational entropies are shown in
Table II. Notice our calculated values are smaller than those
obtained experimentally.5,20

How can we explain the apparent discrepancy between
our findings (smaller entropy difference) and the results from
inelastic neutron scattering?5,20 One of the reasons for such a
discrepancy is the so-called neutron weighting problem20 in
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FIG. 5. (Color online) Temperature dependence of phonon en-
tropy of mixing �Svib = Svib(x) − [xSCr

vib + (1 − x)SFe
vib] for the three

Fe1−xCrx alloys. The inset shows a similar estimate of the difference
in lattice heat capacity �Cv(x) between the alloy with composition
x and the corresponding chemically unmixed state.

the calculation of phonon DOS in inelastic neutron scattering
measurements. For alloys, different alloy components have
different efficiencies for phonon scattering, which are propor-
tional to the ratio of their neutron scattering cross sections σsc

to their atomic mass. The displacements of different atoms
in different phonons usually have different amplitudes, so
different phonons may be over- or underrepresented in a
DOS directly obtained from experimental measurements. This
distortion of phonon DOS should be corrected to get a reliable
estimate of vibrational entropy. In fact for the Fe-Cr alloy, the
phonon scattering from natural Fe is approximately three times
stronger than that from natural Cr, i.e., σ Fe

sc /mFe � 3 σ Cr
sc /mCr.

Such a neutron weighting problem has been investigated
recently20 for the Fe-Cr alloy, and an attempt has been made
to avoid such a problem by estimating a neutron-weight-
corrected phonon DOS. As a matter of fact, phonon entropy of
mixing calculated from the neutron-weight-corrected DOS is

TABLE II. Theoretical and experimental vibrational entropies. x

is the concentration of Cr.

Theoretical �Svib(x)

x T = 150 K T = 300 K T = ∞
0.25 0.051 0.063 0.0615
0.53 0.085 0.104 0.0999
0.75 0.107 0.132 0.1155

Experimental �Svib(x)5,20 at similar x

x T = 150 K T = 300 K T = ∞
0.30 0.098 0.128 0.141
0.53 0.142 0.184 0.201
0.70 0.148 0.194 0.214
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smaller than that evaluated from the directly measured DOS.
This is an indication of the right trend of our calculated phonon
entropy of mixing if the measured phonon DOS accurately
takes into account the effect of different efficiencies of phonon
scattering for alloy components. A related reason for the
mentioned discrepancy can be attributed to the use of the
VCA for analyzing the coherent inelastic neutron scattering
data from chemically disordered alloys. The VCA does not
allow for high frequency vibrations in disordered alloys at the
frequencies of optical modes in the ordered alloys. It, therefore,
may overestimate the change in phonon DOS upon chemical
ordering. In addition, it has also been mentioned by Fultz et al.5

that the absolute error in the value of vibrational entropy of
mixing (�Svib) obtained from their inelastic neutron scattering
experiment can be as large as 0.05 kB/atom. Keeping this error
in mind, our theoretical phonon entropy of mixing then is in
the same ballpark as that measured by them.

In order to understand the general trend of the phonon
entropy of mixing with varying alloys, we shall next make a
connection with a more intrinsic quantity, the so-called FWHM
associated with the disorder-induced lifetime broadening of the
phonon groups. Lifetime broadening is a consequence of the
local vibrational modes mainly arising out of the disorder in
the interatomic force constants. Figure 6 shows the FWHM as
a function of the wave-vector magnitude (|ζ |) along the high-
symmetry directions for the three bcc Fe1−xCrx alloys. One
can easily notice that the disorder broadening increases quite
rapidly as we move toward the Cr-rich alloy. For example, the
maximum value of linewidth along the H -P direction for the
Fe75Cr25 alloy is �0.4 THz, however it increases to �0.78 THz
for the Fe53Cr47 alloy and increases further to �1.85 THz
in case of the Fe25Cr75 alloy. A damped harmonic oscillator
function fit to the two phonon groups (one along [100] and
the other along [111]) for the Fe53Cr47 alloy has been made
by Fultz et al.5 They estimated a resonance width of 0.2 THz
for the [100] Q = 0.5 phonon group and 0.96 THz for the
[111] Q = 0.6 phonon group. We obtained a similar estimate
for the widths for the Fe53Cr47 alloy. Broadened peaks were
also observed for phonons near Brillouin zone boundaries.

Usually the line broadening of the phonon groups is more
if the strength of the disorder is more, which causes smearing
of the sharp features in the phonon DOS curves for the alloys.
Such a smoothening of the vibrational energy spectrum will
have benign consequences on the phonon entropy calculation
provided the phonon structure factors are broadened neither
too asymmetrically nor excessively toward low frequencies.
The phonon line shapes in our calculations for Fe75Cr25 and
Fe53Cr47 came out to be quite symmetric except in some of
the higher frequency regimes. The line shapes for the Cr-rich
Fe75Cr25 alloy are comparatively less symmetric with a larger
disorder broadening. Keeping in mind the magnitude of the
calculated vibrational entropy difference for the three alloys
as quoted before and looking at the FWHM for the same three
alloys in Fig. 6, one can arrive at a conclusion that the disorder
broadening of the phonon groups tends to increase the phonon
entropy of mixing. Such a theoretical prediction has also been
supported by previous experimental investigations.5

In Fig. 7, we display the phonon entropy of mixing as a
function of alloy composition (x) at different temperatures
(T ). The high-temperature limits of �Svib were obtained from
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FIG. 6. Disorder-induced FWHM along the high-symmetry di-
rections for three Fe1−xCrx (x = 0.25, 0.47, and 0.75) alloys.

Eq. (17) and are shown in Fig. 7 by the blue-dotted curve.
The configurational entropy of the fully random solid solution
is also plotted to show the relative magnitude of the phonon
entropy.

It is expected intuitively that all thermodynamic functions
should change monotonically during spinodal decomposition.
A smooth change occurs for configurational entropy for
example. However, due to the small changes in the phonon
DOS curve, the phonon entropy will not change significantly
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FIG. 7. (Color online) Concentration dependence of phonon
entropy of mixing �Svib(x) at various fixed temperatures. The
high-temperature (T → ∞) limit of �Svib(x) is calculated from
Eq. (17). The composition dependence of the configurational entropy
(indicated by the magenta dot-dashed line) for the fully random
solid solution is also shown to compare the relative magnitude of
the phonon entropy of mixing.

during the early stages of spinodal decomposition. For the
Fe-Cr alloy, the transition of the shape of the phonon DOS
curve from being Fe-like to Cr-like occurs at high Cr con-
centration. Therefore, vibrational entropy affects differently
the solubility of Fe in a bcc Cr-rich phase compared to
the solubility of Cr in a bcc Fe-rich phase. Although this
asymmetry does not occur for the configurational entropy of
mixing, the phonon entropy has a different dependence on
composition (x) and hence the reason for an asymmetric curve
in Fig. 7. This is precisely the reason that the inclusion of
vibrational entropy into the alloy thermodynamics alters the
shapes of phase boundaries and does not simply rescale the
temperature of the miscibility gap. The critical temperature
and composition of the miscibility gap in Fe-Cr are 905 K
and x = 0.51, respectively.32 As a matter of fact, it has been
found that, in the absence of phonon entropy of mixing, the
miscibility gap shifts up in temperature and toward pure Cr,
with a critical temperature and composition of 1208 K and
x = 0.64, respectively. Thus the role of phonon entropy is to
lower the critical temperature of the miscibility gap and shift
it toward the equiatomic composition.

B. Short-range ordering effect

The existence of intermetallic phases in compounds is a
consequence of the strong ordering tendency of the alloy. The
same driving forces, in various systems, make the alloy exhibit
chemical SRO in that phase. Depending on the system of
interest, the chemical SRO might result in a complete ordering
or a phase segregating tendency or even in a combination of
the two. Although a few experimental works7,33 which study
the effects of the local chemical environment on the lattice
dynamics of disordered alloys exist, a reliable theoretical
understanding of the same from a first-principles calculation
is still lacking. The present investigation is undertaken to

analyze the effects of the local atomic environment (via the
Warren–Cowley SRO parameter α) on three basic lattice dy-
namical properties, namely, phonon DOS and vibrational and
configurational entropies within a first-principles calculation.

For Fe-Cr alloys, Bonny et al.9 and Erhart et al.10 have
shown using atomistic simulations that there is the possibility
of SRO in these alloys. References 5–8 of Erhart et al.10 report
experimental work on Fe-Cr whose data can be explained by
assuming the existence of SRO in Fe-Cr alloys.

Figure 8 shows how the phonon density of states for a
50-50 Fe-Cr alloy changes as a function of the Warren–
Cowley short-range order parameter (α). The two extreme
limits α = −1 and +1 correspond to the tendency toward
ordering and phase segregation, respectively. The DOS for
the completely random (homogeneously disordered) alloy
(α = 0) is also shown for the sake of comparison. It is clear
from the figure that the alloys show moderate differences in
DOS for samples with chemical SRO. A general connection
between the phonon DOS and chemical SRO may be made
from the slopes of the phonon dispersion curves. A high
density of phonon states is obtained from flat dispersion curves,
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FIG. 9. SRO dependence of the configurational and phonon
entropy of mixing for a disordered Fe50Cr50 alloy.

especially when they include Brillouin zone boundaries. They
also provide a slow group velocity of sound. Much of the
energy of lattice vibrations is associated with localized atomic
movements for slowly propagating phonon wave packets. The
SRO affects these localized atomic movements quite strongly
and hence has a major effect on the corresponding regime
of the phonon DOS. Those parts of the phonons DOS not
associated with the flattened dispersion curves should be less
sensitive to SRO. Based on these arguments, one can easily
notice from Fig. 8 that the phonon DOS in the frequency
range �4.5–7 THz are mainly arising from the contribution
of flat parts of the dispersion curves and hence are influenced
by SRO more strongly than the feature of the DOS beyond
�7 THz.

It is even more interesting to look at the effects of SRO
on the entropy of mixing. In the lower panel of Fig. 9,
we display how the vibrational entropy of mixing in the
high-temperature limit (T � �Debye) varies with the SRO
parameter (α) for a 50-50 Fe-Cr alloy. For comparison sake, we
also plotted the SRO variation of the configurational entropy
(upper panel) as calculated from Eq. (19) (including only the
first nearest neighbor shell SRO effect α = α1). The small
variation of phonon DOS curve as a function of SRO parameter
is also reflected in the phonon entropy of mixing. For the
homogeneously disordered (α = 0) Fe50Cr50 alloy, the phonon
entropy of mixing came out to be 0.115 kB/atom. However,
in different local chemical environments, the phonon entropy
of mixing ranges from 0.099 kB/atom (for α = −1) to 0.124
kB/atom (for α = +1), which is not a big change compared
to the completely random solid solution. The dependence
of phonon entropy of mixing on the local arrangement of
atoms delivers a deeper insight into the understanding of
thermodynamic stability of complex alloys.

As obvious from the phonon DOS curves (see Fig. 4) for
the three Fe1−xCrx alloys, the total DOS looks very similar
to that of bcc Fe than that of bcc Cr. Unfortunately, we do

not exactly know the concentration above 75 at. % of Cr for
which the phonon DOS changes from being Fe-like to being
Cr-like. However at low concentrations of Fe in a Cr host,
there is a substantial distortion of the Fe partial DOS (PDOS)
curves compared to those of pure bcc Fe. The PDOS of both
Fe and Cr atoms undergo an average softening upon alloying,
which leads to a net positive phonon entropy of mixing, but
with a net softening of Cr PDOS to be larger than that of Fe.
At low concentrations of Fe in Cr, this larger softening of Cr
PDOS curves causes the phonon entropy of mixing to increase
rapidly with Fe concentration, yielding a skewed shape of
the concentration dependence of phonon entropy (see Fig. 7).
The interplay of such softening of phonon modes in alloys
with SRO is even more dramatic, because in this case the
total phonon entropy of mixing is not just affected by the
different entropic weights of their atomic species, but also by
the nature of correlated disorder present in the short-range
clusters considered.

The main reason behind investigating the SRO dependence
of the phonon DOS and phonon entropy in the present work
was to satisfy ourselves and at the same time provide a
validation for our correct smaller value of phonon entropy
of mixing compared to other findings. It was our intuition
that the SRO effect might enhance the magnitude of phonon
entropy of mixing to bring it closer to other findings, but we
figured out that that is not the case, at least in the case of
the Fe1−x Crx alloy. And the reason we gave in Sec. IV A
for the comparatively smaller value of our calculated phonon
entropy is indeed valid. While this result does not restrict
the possibility that SRO plays an important role in the lattice
dynamics of alloys in other systems, it does indicate that the
local environmental effects in Fe-Cr alloys may not be that
significant.

V. CONCLUSION

We propose a combination of the first-principles Quantum-
ESPRESSO method (based on the density functional perturbation
theory) and the ASR method to investigate the lattice dynamics
and the vibrational and configurational entropy of disordered
alloys at any arbitrary concentration. A generalized formalism
(within the ASR method) to include the effects of SRO on the
lattice dynamics has been derived and implemented on a bcc
Fe1−xCrx alloy. We studied three alloys Fe25Cr75, Fe53Cr47,
and Fe75Cr25, the phonon dispersion and phonon DOS of which
were much more similar to those of pure bcc Fe than those
of Cr. We obtained a comparatively smaller value of phonon
entropy of mixing (�Svib) in contrast to the interpretations
from previous experiments. However, in light of our results,
the upper bounds of �Svib obtained from inelastic neutron
scattering data should be reinterpreted. The upper bound from
the experiment is unlikely to be appropriate (i) due to the
use of the VCA in analyzing their data and (ii) due to the
incorrect neutron weighting caused by the difference in phonon
scattering efficiencies of the two elements. A connection
with the lifetime broadening of the phonon groups has been
made to explain the trend of the magnitude of calculated
�Svib. A comparatively larger softening of the Cr partial DOS
(compared to Fe) curves is found to be the reason behind the
compositional asymmetry of the phonon entropy of mixing.
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The phonon entropy shifts both the miscibility gap toward the
equiatomic composition and lowers the critical temperature by
∼300 K. The effect of SRO did not come out to be significant
in terms of the magnitude of phonon entropy of mixing, which
we initially thought not to be the case.

Understanding the magnitude of the phonon entropy varia-
tions between different states of a compound remains a central
problem in any first-principles alloy theory. The effect of local
arrangement of atoms on the phonon entropy provides an even
higher level of detail which we studied in the present work

for the Fe-Cr alloy. Although this effect turned out to be small
in the Fe-Cr alloy, it still remains of interest to evaluate the
magnitude of this effect in other systems.
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