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Interatomic potential for the Al-Cu system
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An angular-dependent interatomic potential has been developed for the Al-Cu system based on existing
embedded-atom method potentials for Al and Cu and fitting of the cross-interaction functions to experimental
and first-principles data. The potential reproduces lattice parameters, formation energies, and elastic constants of
the θ and θ ′ phases of this system. It predicts the θ ′ phase to be more stable than θ at 0 K but to become less stable at
hight temperatures due to vibrational entropy. The temperate and entropy of this phase transformation are in good
agreement with previous first-principles calculations [C. Wolverton and V. Ozoliņš, Phys. Rev. Lett. 86, 5518
(2001)]. The potential provides a reasonable description of the phase stability across the Al-Cu phase diagram,
dilute heats of solution, and other thermodynamic properties. It has also been tested for generalized stacking
fault energies in the presence of a copper layer embedded in Al. This configuration bears some resemblance to
Guinier-Preston zones that strengthen Al-Cu alloys. The trends predicted by the potential for uniform shearing
of this configuration are in agreement with results of first-principles density-functional calculations performed in
this work. The potential is expected to be suitable for atomistic simulations of precipitation hardening of Al-Cu
alloys.
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I. INTRODUCTION

Al-Cu–based alloys are widely used in aircraft structures
due to their low density and much higher mechanical strength
in comparison with pure Al. The strength of Al-Cu alloys
is due to an effect called precipitation hardening. During
isothermal aging of a Al(Cu) solid solution supersaturated with
Cu, uniformly dispersed Cu-rich precipitates (particles) are
formed by diffusion of Cu. These precipitates create obstacles
to dislocation glide during plastic deformation of the alloy. The
dislocations are forced either to cut through the precipitates or
to loop around them, increasing the strength of the alloy.

The well-established precipitation sequence during the
aging process consists of several steps: solid solution →
Guinier-Preston (GP) zones → θ ′′ particles (GP II zones) →
θ ′ phase particles → θ phase particles.1 GP zones, indepen-
dently discovered in 1938 by Guinier2 and Preston,3 are
disk-shaped monolayers of Cu aligned along {100} planes of
the fcc Al lattice. The θ ′′ particles are clusters of two or more
{100} Cu layers separated by three aluminum planes. The
θ ′ particles are larger, are semicoherent with the Al matrix,
and contain a metastable Al2Cu phase with a tetragonally
distorted calcium fluorite structure. Finally, the θ particles
are even larger, are incoherent with the matrix, and have the
same Al2Cu stoichiometry as θ ′ but a tetragonal C16 structure.
The θ phase is the thermodynamically stable phase that
appears in the phase diagram of the Al-Cu system at elevated
temperatures.1

Wolverton and Ozoliņš4 have shown by first-principles
calculations that at 0 K, the θ ′ phase has a lower energy than θ .
According to their calculations, it is the vibrational entropy
that stabilizes θ over θ ′ at temperatures higher than about
473 K. In alloy processing technology, it is desirable to avoid
the θ ′ → θ transformation during the aging anneal because it
significantly lowers the mechanical strength of the alloy (the
“overaging” effect). It is the GP zones and the θ ′ phase that are
most important for the precipitation hardening effect, whereas
the θ phase is less important.

Significant insights into the strengthening mechanisms can
be obtained by large-scale molecular dynamics simulations;
see, for example, the recent study of the strengthening by GP
zones.5 To afford large ensembles of atoms and long simu-
lation times, such simulations use semiempirical interatomic
potentials.6 While such potentials cannot be as accurate as
first-principles calculations, they are computationally fast and
can capture some of the key features of the strengthening effect.
The goal of this work is to develop an accurate (within intrinsic
limitations of the semiempirical approach) potential for the
Al-Cu system that could be suitable for atomistic simulations
of precipitation and hardening in Al-Cu alloys.

Several Al-Cu potentials can be found in the literature.
Cai and Ye7 developed a set of embedded-atom method
(EAM) potentials for seven fcc metals and their binary alloys,
including Al-Cu. For the cross-pair potential function, which
defines properties of the binary system, they used a density-
weighted combination of the monoatomic pair potentials8

without any fitting parameters. The dilute heat of solution,
�Es , of Cu in Al was reported to be −1.29 eV,7 which is
almost an order of magnitude larger than the experimental
value of −0.142 eV.9 Properties of the θ and θ ′ phases were not
tested with this potential and the formation energies of the L12

(Al3Cu and AlCu3) and L10 (AlCu) structures are not in close
agreement with first-principles results.10,11 The EAM potential
of Rohrer,12 designed for Al-Cu-Ag solid solutions, predicts
accurate values of �Es for Al in Cu and of the Cu-vacancy
binding energy in Al. But this potential underestimates the
�Es of Cu in Al as −0.041 eV. The potential was not tested
for properties of Al-Cu compounds. The EAM potential of
Liu et al.13 was obtained by fitting the lattice parameters and
formation energy of the θ phase as well as the dilute heats
of solution and some other properties of the Al-Cu system.
As shown later, this potential does not reproduce the correct
stability of the θ ′ phase. The recent modified embedded-atom
method (MEAM) potential of Hu et al.14 correctly predicts
the θ ′ phase to be more stable than θ at 0 K. This potential
reproduces the crossing of the θ and θ ′ free energies at 260 K.
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Hu et al.14 do not report on elastic properties of the θ and θ ′
phases, the phase stability across the Al-Cu phase diagram, or
other properties of the Al-Cu system.

In this work we propose an interatomic potential for the
Al-Cu system based on the angular-dependent potential (ADP)
formalism,15–18 which is a generalization of the traditional
EAM method19,20 to include angular-dependent interactions.
The potential development methodology is described in Sec. II.
The testing procedures and results are presented in Secs. III
and IV, followed by conclusions in Sec. V. We use the potential
of Liu et al.13 (which is referred to as the LLB potential) for
comparison with our potential throughout the paper.

II. POTENTIAL DEVELOPMENT

In the ADP method,15–18 the total energy Etot of a collection
of atoms is represented in the form

Etot = 1
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where indices i and j refer to atoms and superscripts α, β = 1,
2, 3 to Cartesian directions. �sisj

(rij ) is the pair-interaction
potential, which depends only on the scalar distance rij

between atom i and atom j and on their chemical species
si and sj . The function Fsi

(ρ̄i) is the embedding energy of
atom i in the host electron density ρ̄i induced at site i by all
other atoms of the system. The host electron density is defined
as

ρ̄i =
∑
j �=i

ρsj
(rij ), (2)

where ρsj
(rij ) is the electron density function assigned to

atom j . The first two terms in Eq. (1) constitute the functional
form of the regular EAM19,20 and have a central-force
character, that is, do not depend on angles between interatomic
bonds. The noncentral interactions are represented by the last
three terms in Eq. (1), which depend on the dipole vectors,
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ij , (3)

and the quadrupole tensors,
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νi being the trace of λ
αβ

i ,

νi =
∑

α

λαα
i . (5)

Equations (3) and (4) introduce two additional pairwise
functions, usisj

(r) and wsisj
(r), which represent angular-

dependent forces. The angular terms penalize the total energy
for deviations of atomic environments from cubic symmetry.
They vanish in a perfect cubic structure but can be important
in noncubic structures and even in cubic structures under
nonhydrostatic strains. They can affect elastic constants, defect

formation energies, the melting point, and a number of other
properties of the material.

A complete ADP description of the binary Al-Cu system
requires 13 functions: �AlAl(r), �AlCu(r), �CuCu(r), ρAl(r),
ρCu(r), FAl(ρ̄), FCu(ρ̄), uAlAl(r), uAlCu(r), uCuCu(r), wAlAl(r),
wAlCu(r), and wCuCu(r). In this work we used the existing
EAM potentials for Al21 and Cu22 and constructed only the
cross-interaction functions �AlCu(r), uAlCu(r), and wAlCu(r).
Since both Al and Cu potentials are the regular EAM type,
we formally added the fictitious functions uAlAl(r), wAlAl(r),
uCuCu(r), and wCuCu(r) set to identical 0. It should be noted
that, as with all semiempirical models, the choice of the ADP
format over EAM cannot be justified rigorously on the basis of
the electronic structure of these two metals or their compounds.
We chose the ADP format because we were able to achieve a
more accurate fit using this format rather than EAM, apparently
due to the greater flexibility of the ADP functions and the
additional fitting parameters.

The cross-pair function �AlCu(r) was represented by a
cubic spline through a set of n = 15 points {ri,�i} (i =
1, . . . ,n). The last point in the set was (rc,0), where rc is
the cutoff radius. On the last segment, [rn−1,rn], the spline
was additionally smoothed to make it vanish at rc together
with the first and second derivatives. The distances {ri} were
chosen in advance and were not varied during the fit. Thus,
�AlCu(r) was parameterized by a total of 15 parameters: {�i}
(i = 1, . . . ,14), and rc. The cross-dipole and cross-quadrupole
functions were parameterized in the form

uAlCu(r) = (
d1e

−d2 + d3
)
ψ

(
r − rc

h

)
, (6)

wAlCu(r) = (
q1e

−q2 + q3
)
ψ

(
r − rc

h

)
. (7)

Here, di , qi (i = 1,2,3), and h are the fitting parameters and
ψ(x) is a cutoff function defined by

ψ(x) =
{

x4/(1 + x4), x < 0,

0, x � 0.
(8)

The potential transformation coefficients6 sCu, gAl, and gCu

were also used as fitting parameters. Thus, the parametrization
of the cross-functions involved the total of 25 parameters.

The fitting database included first-principles values for the
lattice parameter a of the θ ′ phase and the formation energies
�Ef of the θ and θ ′ phases computed by Wolverton et al.4

It also included the elastic constants cij of the θ ′ phase
calculated by Vaithyanathan et al.23 The experimental part
of the database included lattice parameters24 a, c, and x and
elastic constants25 cij of the θ phase. Additionally, the database
included first-principles results10,11,26 for the formation ener-
gies of six ordered structures of the Al-Cu system: one stable
phase (AlCu3-D022), two metastable phases (Al3Cu2-D519

and AlCu3-D03), and three imaginary compounds (AlCu-L10,
AlCu-B32, and AlCu3-L12). The formation energy �Ef of a
compound AlnCum is defined relative to pure fcc Al and pure
fcc Cu as

�Ef = 1

n + m
[E(AlnCum) − nEfcc(Al) − mEfcc(Cu)]. (9)
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FIG. 1. Potential functions for the Al-Cu system: (a) pair interaction functions; (b) cross-dipole uAlH(r) (
√

eV/Å) and cross-quadrupole
wAlH(r) (

√
eV/Å2) functions.

The cross-functions were optimized by minimizing the
weighted mean-squared deviation of the selected proper-
ties from their target values using the simulated annealing
method.27 The properties a, �Ef , and cij of the θ ′ phase were
included in the fit with the largest weight. A medium weight
was assigned to a, c, x, �Ef , and cij of the θ phase. The
formation energies of the Al-Cu compounds were included
with the lowest weight. The optimized potential functions are
plotted in Fig. 1. The tabulated forms of the functions can be
downloaded from the NIST Interatomic Potentials Repository
at http://www.ctcms.nist.gov/potentials.

III. TESTING AND VALIDATION OF THE POTENTIAL

Table I summarizes the properties of the θ ′ phase pre-
dicted by the ADP and LLB potentials in comparison
with experimental1 and first-principles4,23 data. According
to experiment,1 the θ ′ phase has a slightly distorted C1
structure (CaF2 prototype). For a direct comparison of the
lattice parameter a of the undistorted C1 structure calculated
from first-principles4 and with the potentials, the conventional

cell of the experimental bct structure of θ ′ was rotated by 45◦
and the experimental lattice parameter aexp was multiplied by√

2 (Table I). Our potential reproduces a and �Ef with very
good accuracy. The ADP elastic constants are in reasonable
agreement with first-principles results.23 The LLB potential
also gives accurate a and reasonable cij values. However, it
predicts a positive formation energy of the θ ′ phase instead of
a negative one. It should be noted that the θ ′ phase was in the
fit of our potential but not in the LLB fit.

As a test of thermal stability, canonical Monte Carlo (MC)
simulations were performed at zero pressure and several tem-
peratures. With the ADP potential, the θ ′ phase was found to be
stable at temperatures up to at least 800 K. By contrast, when
computed with the LLB potential, the θ ′ phase loses stability
at T = 300 K and transforms to an amorphous structure. We
expect that, given enough time, this amorphous structure would
eventually crystallize into θ or another crystalline structure,
but such long simulations were not pursued in this work. This
outcome is not surprising, knowing that the LLB potential
predicts a positive �Ef of the θ ′ phase at 0 K.

TABLE I. Properties of the Al2Cu-θ ′ phase calculated with the ADP (this work) and the LLB13 potentials in comparison with experimental
and first-principles data.

Property Experimenta Ab initio ADP LLB

a (Å)
√

2aexp = 5.725, 5.68b 5.649 5.668
cexp = 5.812

�Ef (eV/atom) −0.199b −0.203 +0.074
Elastic constants (GPa)

B 117c 135.9 199.2
c11 190c 192.8 310.5
c44 90c 46.5 68.2
c12 80c 110.5 142.5

Surface energies (J/m2)
γs(100) 1.524 1.093
γs(110) 1.465 1.043
γs(111) 1.768 1.371

aFrom Ref. 1.
bFrom Ref. 4.
cFrom Ref. 23.
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TABLE II. Properties of Al2Cu-θ ′ computed with the ADP (this work) and the LLB13 potentials in comparison with experimental and
first-principles data.

Property Experiment Ab initio ADP LLB

a (Å) 6.064,a 6.067b 5.96,e 6.067,f 6.049g 5.935 5.996
c(Å) 4.874,a 4.877b 4.77,e 4.877,f 4.891g 4.908 4.914
x 0.1586,a 0.1581b 0.160,e 0.1593g 0.1671 0.1626
�Ef (eV/atom) −0.135,c −0.139 ± 0.031c −0.184,e −0.169,f −0.170g −0.190 −0.159
Elastic constants (GPa)

B 113.4d 99.4f 147.6 137.7
c11 186.2d 150.3f 199.3 200.3
c33 179.4d 171.7f 278.2 235.6
c44 29.2g 29.4f 78.6 59.7
c66 47.2d 45.5f 21.2 39.8
c12 71.5d 86.1f 98.2 94.4
c13 79.2d 62.6f 116.0 98.7

Surface energies (J/m2)
γs(100) 1.294 1.266
γs(110) 1.463 1.522

aFrom Ref. 24.
bFrom Ref. 28.
cFrom Ref. 1.
dFrom Ref. 25.
eFrom Ref. 4.
fFrom Ref. 10.
gFrom Ref. 26.

Fully relaxed low-index surface energies γs of the θ ′ phase
at 0 K are reported in Table I. We are not aware of experimental
or first-principles data that could be used for comparison. Both
potentials predict that γs(110) < γs(100) < γs(111) but the
ADP energies are consistently higher. This is in agreement with
the observation6 that EAM potentials tend to underestimate
surface energies of metals and intermetallic compounds. MC
simulations with the ADP potential show that the θ ′ surfaces
remain stable up to at least 800 K. With the LLB potential,
the presence of the (111) surface causes instability and
amorphization of the θ ′ phase already at 100 K. We can
conclude that the LLB potential cannot be used for atomistic
simulations of the θ ′ phase at finite temperatures.

Properties of the θ phase calculated with the potentials are
compared with experimental data1,24,25,28 and first-principles
calculations4,10,26 in Table II. Both potentials reproduce
accurate lattice parameters and the formation energy of this
phase. The elastic constants are also in reasonable agreement
with the target values. For the relaxed energies of the (100)
and (110) surfaces, both potentials give close results but they
cannot be compared with first-principles or experimental data.
MC simulations with both potentials show that the θ phase,
with or without surfaces, remains stable at temperatures up to
at least 800 K.

To evaluate the relative stability of the θ and θ ′ phases
at finite temperatures, their Gibbs free energies G per atom
were computed with the ADP potential. We used supercells
of N = 768 atoms with periodic boundary conditions in all
directions. At zero pressure

G(V,T ) = E(V,T ) + Gvib(V,T ). (10)

Here, V is the atomic volume and E(V,T ) is the potential
energy due to static interactions between atoms, which depends
on the temperature due to the temperature dependence of the
equilibrium lattice constant. Gvib(V,T ) is the contribution
from atomic vibrations, which can be computed from the
harmonic expression

Gvib(V,T ) = kBT

N

3N−3∑
α=1

ln

[
2 sinh

(
hνα

2kBT

)]
. (11)

Here h and kB are Planck’s and Boltzmann’s constants and να

are frequencies of normal vibrational modes of the supercell.
Equation (11) is the general quantum-mechanical expression.
In the classical limit (all hνα � kBT ) it becomes

Gvib
classical(V,T ) = kBT

N

3N−3∑
α=1

ln

(
hνα

kBT

)
. (12)

We used the quasiharmonic (QH) approximation,29 which
includes thermal expansion and treats να as volume-dependent
quantities. At each temperature, G(V,T ) is minimized with
respect to the atomic volume to determine the equilibrium
lattice constant. The free energies of the θ and θ ′ phases per
atom are plotted as functions of temperature in Fig. 2. This
plot shows that at low temperatures, the θ ′ phase is more
stable than θ , in agreement with first-principles calculations.4

The curves cross and the stability reverses at T = 325 K
if the quantum-mechanical expression for Gvib [Eq. (11)] is
used and at T = 370 K if the classical expression Gvib

classical
[Eq. (12)] is used. In this temperature range, there is a
slight difference between the calculated Gvib and Gvib

classical.
Because the quantum-mechanical treatment is physically more
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FIG. 2. Free energies per atom of the θ ′ and θ phases versus
temperature calculated with the ADP potential within the quasihar-
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and θ phases, respectively. Solid and dashed lines interpolate between
the calculated points. The θ ′ and θ phases reverse their stability at
T = 325 K for the quantum QH calculations and at T = 370 K for
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accurate, the predicted phase transformation temperature is
325 K. However, for classical molecular dynamics simulations
the observed transformation temperature is predicted to be
370 K.

Both temperatures of the θ ′ → θ transformation are some-
what closer to the experimental value30 of 463 K and the
first-principles value4 of 473 K than the temperature of 260 K
obtained with the MEAM potential.14 In addition, the ADP
potential gives the transformation entropy of 0.336 kB/atom
(quantum QH calculations) and 0.395 kB/atom (classical
QH calculations), in good agreement with the first-principles
result4 of 0.37 kB/atom.

The formation energies of selected Al-Cu compounds
calculated with the potentials and from first-principles4,10,11,26

are listed in Table III. The ADP potential overestimates the
energies of most of the Al-Cu compounds tested. The LLB
potential underestimates the energy of the metastable phase
Al3Cu2-D519 but predicts a better phase stability for 50:50 and
Cu-rich compositions. Although neither of the two potentials
reproduces the entire convex hull of the 0 K formation
energies in full agreement with first-principles data, the general
stability trends are reasonable. During the ADP potential fit
we sacrificed some of the accuracy of global phase stability to
focus on the θ and θ ′ phases.

Table IV reports fully relaxed dilute heats of solution �Es

and solute-vacancy binding energies �Eb for Cu in Al and
Al in Cu calculated with the potentials. For comparison,
experimental9,31–33 and first-principles34,35 data are included.
For two fcc metals, A and B, the dilute heat of solution of B

in A is defined as

�Es = E(An−1B) − [(n − 1)Efcc(A) + Efcc(B)], (13)

where n is the total number of atoms in the cell. The
calculations were performed for a set of n values, followed by

TABLE III. Formation energies, �Ef (eV/atom), of selected Al-
Cu compounds predicted by the present ADP potential and the LLB
potential13 in comparison with first-principles data when available.
Energy values marked followed by an asterisk were included in the
ADP potential fit. Values in boldface are in better agreement with
first-principles data.

�Ef (eV/atom)

Formula Structure Ab initio ADP LLB

Al3Cu L12 0.100 −0.120
Al2Cu-θ ′ C1 −0.199a −0.203* 0.074
Al2Cu-θ C16 −0.184a −0.190* −0.159
Al3Cu2 D519 −0.164,b −0.173c −0.345 −0.047
AlCu B2 −0.195d −0.635 −0.171
AlCu “40” (NbP) −0.191d −0.257 −0.181
AlCu L10 −0.147d −0.076* −0.253
AlCu L11 −0.086d 0.090 −0.145
AlCu B81 −0.043c −0.170 0.080
AlCu B32 0.024d −0.085∗ 0.021
AlCu B1 −0.079 0.195
Al4Cu9 D83 −0.215c −0.331 −0.147
AlCu3 D022 −0.185c −0.245* −0.195
AlCu3 L12 −0.182b −0.162* −0.237
AlCu3 D03 −0.169c −0.272∗ −0.107
AlCu3 D023 −0.209 −0.215

aFrom Ref. 4.
bFrom Ref. 10.
cFrom Ref. 26.
dFrom Ref. 11.

linear extrapolation to 1/n → 0.36 The first-principles result
was obtained for n = 64.34

To evaluate �Eb, we first computed the formation energy
of a solute-vacancy pair �Ef .

�Ef = E(An−2B1 + V ) − [(n − 2)Efcc(A) + Efcc(B)],

(14)

for several n and extrapolated to 1/n → 0. �Eb was then
calculated from the equation

�Eb = −�Ef + �Es + �Ev, (15)

TABLE IV. Dilute heat of solution �Es and solute-vacancy
binding energy �Eb calculated with the present ADP potential and
LLB potential13 in comparison with experimental and ab initio data.

�Es (eV) �Eb (eV)

Cu in Al Al in Cu Cu in Al Al in Cu

Experiment −0.142a −0.873b 0.00 ± 0.12c 0.15 ± 0.10d

Ab initio −0.121e 0.04f

ADP −0.181 −0.809 0.075 0.006
LLB −0.095 −0.836 −0.005 −0.051

aFrom Ref. 9.
bFrom Ref. 31.
cFrom Ref. 32.
dFrom Ref. 33.
eFrom Ref. 34.
fFrom Ref. 35.
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FIG. 3. (Color online) Schematic presentation of the supercell
used for testing the unrelaxed GP zones for shear.

where �Ev is the vacancy formation energy in pure A. The
values of �Ev are 0.675 eV for pure Al21 and 1.272 eV for pure
Cu.22 A positive binding energy indicates attractive interaction,
consistent with the convention in the literature. Both the ADP
and the LLB potentials reproduce the experimental32,33 and
first-principles35 results for �Eb with a reasonable accuracy,
especially considering that the magnitude of this quantity
is small. Both potentials predict that �Es of Cu in Al is
significantly smaller in magnitude than �Es of Al in Cu, which
is in good agreement with experiment.9,31 It should be noted
that the LLB potential was fitted to the dilute heats of solution,
while the ADP potential was not.

IV. UNIFORM SHEARING OF GP ZONES

As a further test, we computed the energy as a function
of displacement during the shearing of an unrelaxed GP
zone using the ADP and LLB potentials and first-principles
calculations. The simulation block (Fig. 3) contained six (111)
Al layers with a total of 96 atoms. The lattice parameter had
the equilibrium value calculated with the potentials and by
first-principles methods, respectively. By doubling the period
of the block in the 〈111〉 direction, two free surfaces were
created. The block had periodic boundary conditions in the
〈110〉 and 〈112〉 directions parallel to the (111) plane. One of

the eight (200) Al layers contained in the block was replaced
by Cu atoms, creating a structure similar to a GP zone.

To produce shearing, one half of the block above a (111)
plane was shifted rigidly in small steps with respect to the
other half in either [110] or [11̄2] crystallographic directions.
After each step, the generalized stacking fault (GSF) energy,
γGSF, was computed as the excess energy per unit area:

γGSF = E(x) − E(0)

S
. (16)

Here E(x) is the total energy of the block for a displacement
x in the slip direction and S is the cross-sectional area of
the block. For comparison, the GSF energy in pure Al was
computed by implementing the same procedure but without the
Cu layer. A comparison between the two calculations permits
evaluation of the effect of the Cu layer on the shear resistance.

It should be emphasized that no atomic relaxation was
performed after the introduction of the Cu layer or during
the shearing. Under real conditions, the large atomic size
mismatch between Al and Cu produces an elastic strain
field around a GP zone. This field strongly affects the
dislocation motion and contributes to the strengthening
effect. Furthermore, in reality the shearing occurs by the
passage of discrete dislocations, not as a uniform translation of
half-crystals as in our calculation. Thus, although the geometry
of our system is reminiscent of GP zones, this test should not be
considered as modeling of the actual GP zone shearing process.
The latter would require a much larger system, which cannot
be afforded by first-principles methods. Instead, our goal was
to perform a severe test of the potentials against first-principles
calculations by creating relevant but highly nonequilibrium
configurations that were not in the fitting database.

The first-principles density functional theory calculations
used the projector augmented wave (PAW) method37,38 and the
Perdew-Wang generalized gradient approximation39 (GGA-
PW91) as implemented in the Vienna ab initio simulation
package (VASP).40,41 We used the Methfessel-Paxton smear-
ing method42 with a smearing width of 0.2 eV and a large
cutoff energy of 380 eV in all calculations. An (18 × 18 × 18)
Monkhorst-Pack43 k-point mesh sampling the Brillouin zone
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FIG. 4. Unrelaxed GSF energy versus displacement for shear along the [11̄2] direction for pure Al and Al with a (100) Cu layer:
(a) calculated with the ADP potential and (b) calculated with the LLB potential.13 Ab initio data computed in this work are included for
comparison. Displacement is measured in units of the partial Burgers vector (1/6)[11̄2]. Solid curves interpolate between the ab initio data
points.
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FIG. 5. Unrelaxed GSF energy versus displacement for shear along the [110] direction for pure Al and Al with a (100) Cu layer:
(a) calculated with the ADP potential and (b) calculated with the LLB potential.13 Ab initio data computed in this work are included for
comparison. Displacement is measured in the units of the perfect Burgers vector (1/2)[110]. Solid curves interpolate between the ab initio data
points.

of the primitive unit cell of bulk fcc Al was rescaled to
a (4 × 12 × 1) grid appropriate for the slab geometry. This
ensured the energy convergence to within 1 meV/atom. As
a test, the energy-volume curve for fcc Al was computed
and fitted by the Birch-Murnagham’s equation of state.44 The
obtained equilibrium lattice parameter and the bulk modulus of
Al, 4.047 Å and 74.50 GPa, are in excellent agreement with the
experimental values45 of 4.05 Å and 77.3 GPa, respectively.

As an additional check, the relaxed intrinsic stacking
fault energy in pure Al was computed using the same block
and optimizing the atomic positions by a conjugate-gradient
algorithm. The convergence criterion for Hellman-Feynman
forces on each atom was set to 5 meV/Å. The relaxed stacking
fault energy was found to be 146.5 mJ/m2 in good agreement
with other first-principles results reported in the literature:
143 mJ/m2,46 164 mJ/m2,47 and 134 mJ/m2 (calculated with
VASP).48

Figures 4 and 5 show the GSF energy curves for the [11̄2]
and [110] directions, respectively, with and without the Cu
layer. The first and obvious conclusion is that neither of the two
potentials matches the first-principles calculations accurately.
However, the ADP potential appears to be in better agreement
with the VASP results. The LLB potential overestimates the
height of the large peak more significantly than the ADP
potential does. In addition, the LLB potential predicts an
unrealistically large softening of the material for shear in the
[11̄2] direction in the presence of the Cu layer. The VASP
calculation gives only a small reduction in energy due to the
Cu layer. The ADP potential predicts a decrease and then an
increase in energy but, on average, follows the trend computed
with VASP. The unrelaxed GSF energies for the displacement
by one partial Burgers vector (1/6)[11̄2] in the presence of
Cu are 132.4 mJ/m2 (VASP), 210.5 mJ/m2 (ADP), and only
18.2 mJ/m2 (LLB). The latter number indicates that, with the
LLB potential, the system would virtually lose resistance to
sliding due to the introduction of the Cu layer.

V. CONCLUSIONS

We have developed an interatomic potential for the Al-
Cu system based on the ADP formalism. The potential

incorporates existing elemental EAM potentials for Al21 and
Cu.22 Only the cross-interaction functions were fitted in this
work, using a database of experimental and first-principles
data.

The ADP potential reproduces the lattice parameters,
formation energies, and elastic properties of the θ and θ ′ phases
of the Al-Cu system, which are relevant to the precipitation
hardening of Al-Cu alloys. The potential predicts that the
θ ′ phase is more stable than the θ phase at 0 K and that
the vibrational entropy stabilizes θ over θ ′ at high temper-
atures. This effect was previously found by first-principles
calculations.4 Using the quasiharmonic approximation, we
computed the phase transformation temperature to be 325 K
(370 K in the classical approximation). This prediction is
in reasonable agreement with first-principles calculations,
which give the transformation temperature of 473 K.4 The
entropy of the transformation predicted by the potential is
in excellent agreement with first-principles results.4 Overall,
the ADP potential accurately and reliably reproduces the
phase stability and the θ -θ ′ phase transformation in the Al-Cu
system.

The ADP potential also reproduces the dilute heats of
solution, the vacancy-impurity binding, the stability of al-
ternate compounds of the Al-Cu system, and a number of
other properties. As a severe test, the potential was used to
compute GSF energies when shearing an unrelaxed structure
reminiscent of a GP zone. The results were compared with
first-principles calculations of the shearing process performed
in this work. The ADP potential does not agree with the
first-principles results accurately but captures the essential
trends. We note that neither GSF energies nor any related
properties were included in the potential fit.

For comparison, all tests of the ADP potential were repeated
with the previously developed EAM potential referred to
as the LLB.13 The latter gives more accurate results for
some of the properties tested but less accurate results for
others. A significant disadvantage of the LLB potential is
that it gives the wrong sign of the formation energy of the
θ ′ phase. In fact, the latter loses thermodynamic stability at
finite temperatures, preventing the LLB potential from being
useful for atomistic simulations of the θ ′ precipitation in
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Al-Cu alloys. The LLB potential is also in poorer agreement
with the first-principles results for the GP-zone shearing.
We conclude that the ADP potential developed in this
work demonstrates improvements over previous semiempirical
potentials for the Al-Cu system and could be used in atomistic
simulations of precipitation hardening in Al-Cu alloys. This
potential was recently employed in molecular dynamics

simulations of the effect GP zones on dislocation motion
in Al.5
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4C. Wolverton and V. Ozoliņs̆, Phys. Rev. Lett. 86, 5518 (2001).
5C. V. Singh and D. H. Warner, Acta Mater. 58, 5797 (2010).
6Y. Mishin, Handbook of Materials Modeling, edited by S. Yip
(Springer, Dordrecht, The Netherlands, 2005), pp. 459–478.

7J. Cai and Y. Y. Ye, Phys. Rev. B 54, 8398 (1996).
8R. A. Johnson, Phys. Rev. B 39, 12554 (1989).
9I. Ansara, A. T. Dinsdale, and M. H. Rand, eds., COST 507:
Thermodynamic Database for Light Metal Alloys, Vol. 2 (European
Commision, Brussels, 1998).

10W. Zhou, L. Liu, B. Li, Q. Song, and P. Wu, J. Electron. Mater. 38,
356 (2009).

11D. Nguyen-Manh and D. G. Pettifor, Intermetallics 7, 1095 (1999).
12C. L. Rohrer, Modell. Simul. Mater. Sci. Eng. 2, 119 (1994).
13X. Y. Liu, C. Y. Liu, and L. J. Borucki, Acta Mater. 47, 3227 (1999).
14S. Y. Hu, M. I. Baskes, M. Stan, and L. Q. Chen, Acta Mater. 54,

4699 (2006).
15Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, Acta Mater.

53, 4029 (2005).
16Y. Mishin and A. Y. Lozovoi, Acta Mater. 54, 5013 (2006).
17A. Hashibon, A. Y. Lozovoi, Y. Mishin, C. Elsässer, and
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