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Barium titanate ground- and excited-state properties from first-principles calculations
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We present a comprehensive theoretical investigation of paraelectric (cubic) and ferroelectric (tetragonal)
BaTiO;. The atomic and electronic structure, piezoelectric tensor, Debye temperature, zone center phonon
frequencies, and optical absorption are calculated for both phases from first principles. The structural and
vibrational properties predicted from density functional theory are in good agreement with experiment and earlier
theoretical work. The electronic structure and optical response are found to be very sensitive to quasiparticle
and electron-hole attraction effects, which are accounted for by using the GW approach and by solving the
Bethe-Salpeter equation, respectively. Electronic self-energy effects are found to open the band gap substantially,
to 3.7 and 3.9 eV for the cubic and tetragonal phases, respectively. In contrast to earlier calculations, good
agreement with the measured optical data is achieved. The ab initio thermodynamics predicts that the ferroelectric
ordering will disappear at 419 K. It is shown that the phase transition is driven by the vibrational entropy of a

variety of modes.
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I. INTRODUCTION

Barium titanate (BaTiO3, BT) is a synthetic material that
crystallizes either in the perovskite crystal structure' or
in its hexagonal modification (h-BaTiO3).*> The perovskite
polymorph undergoes a sequence of ferroelectric transitions
with growing temperature. At 183 K, the structure transforms
from rhombohedral to orthorhombic and the polarization
direction changes from the [111] to the [110] direction. At
278 K, the structure becomes tetragonal, with spontaneous
polarization directed along the [100] direction. Finally, at
393 K, BaTiO; assumes a cubic symmetry with no net
polarization. Because of the number of different ferroelectric
phases and the ease of switching back and forth between
them, BT is both of great scientific interest and technological
relevance. Indeed, it is the prototypical ferroelectric oxide,
as many features and properties caused by or related to
ferroelectricity have been found for the first time in BT. The
technological relevance is due to the still growing employment
of BT for various technical applications in fields such as
electronics, electromechanical energy conversion, nonlinear
optics, and nonvolatile data storage.’ Previous experimental
and theoretical studies have focused on the structural, elastic,
thermal,'>7# electronic,”'!" optical,”!’ and vibrational'>!?
properties of the different phases. Furthermore, electron-spin
resonance'* as well as X-ray diffractometry'> have been used
to determine the dominant intrinsic defects in BT bulk and
the structural properties of BaTiO3 nanocrystalline powders.
Early theoretical investigations (see for example Refs. 16
and 17 and references therein) date back to the 1960s. In
the past 20 years, several first-principles calculations on BT
have been performed that address the structural, mechanical,
and electronic properties of the four phases®'32% and the
origin of the ferroelectricity.”! The phonon dispersion has been
calculated for the cubic phase,?? and the optical properties (at
different levels of approximation) for the cubic and tetrag-
onal phases.?>?® However, none of the exchange-correlation
potentials commonly used within the density functional theory
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(DFT)?"28 is able to provide at the same time an accurate
description of both the electronic and the structural properties
of BT.?>*2 Neither the standard local density approximation
(LDA)** and generalized gradient approximation (GGA)**
nor the hybrid functionals*>-3 are sufficiently accurate for a
complete description of the four phases. Most local functionals
predict the BT structure with an acceptable precision but
underestimate the electronic band gap, while hybrid func-
tionals yield an improved band gap but overestimate the
lattice constant and the atomic distortion associated with
the ferroelectricity. This is particularly problematic in the
study of ferroelectric oxides, as the structural instabilities
that give rise to the ferroelectricity are highly sensitive to
volume changes and strongly linked to the electronic states
at the valence band maximum (VBM) and conduction band
minimum (CBM). The theoretical description of the optical
properties is not satisfactory either, as the calculated adsorption
peaks are either redshifted” or have a wrong line shape!”
in comparison with the measured spectra. Most theoretical
investigations of BT deal with the highly symmetric cubic
phase, while the tetragonal phase, stable at room temperature,
is far less investigated. The ferroelectric phase transition is also
still an object of investigation.?? Its study (both experimental
and theoretical) is made difficult by the small size of the
atomic displacements and energy differences. For this reason
impurities, point and extended defects, stress, and even light
can affect the transition. Cohen and Krakauer'® and later
Wahl et al.*> and Xie et al.?* calculated the lowest frequency
F1, phonon mode, related to the structural distortions in the
ferroelectric phase, as a function of the crystal volume. They
found that the ferroelectric instability arises largely from the
covalent hybridization between the Ti and the O ions.

In this work we present the results of our first-principles
investigation of thermal, electronic, and optic excitations of
high-temperature (cubic) and room-temperature (tetragonal)
BT. Structural and vibrational properties are calculated in
the framework of the DFT-GGA (the PW91 formulation).3®
In order to address the discrepancies between measured and
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calculated excitation properties, we calculate the electronic
and optical properties, accounting for quasiparticle effects
within the GW approach?® and for electron-hole attraction*—+?
by solving the Bethe-Salpeter equation (BSE).* The
ferroelectric phase transition is investigated by means of
first-principles thermodynamics. The paper is organized as
follows: After a brief introduction to the computational scheme
(Sec. II), we determine the structurally relaxed ground state
of both the ferro- and paraelectric BT phases. The reliability
of our scheme is demonstrated by comparing the struc-
tural and vibrational properties with earlier theoretical data
and experiment. Then, the electronic quasiparticle spectrum
is obtained within the GW approximation (GWA) to the
exchange-correlation self-energy, using the DFT-GGA Kohn-
Sham eigenvalues and eigenfunctions that enter the single-
and two-particle Green’s functions. Finally the Bethe-Salpeter
equation is solved for coupled electron-hole excitations,
thereby accounting for the screened electron-hole attraction
and the unscreened electron-hole exchange (Sec. III). In
Sec. IV we discuss the ferroelectric phase transitions, and
in Sec. V we summarize the main results of this work.

II. METHODOLOGY

Our first-principles calculations within the density func-
tional theory (DFT) use the projector augmented wave
method*® (PAW) as implemented in VASP.*’ The PWOl
formulation of the generalized gradient approximation (GGA)
exchange-correlation (XC) functional,*®*® plane wave expan-
sions up to 550 eV, and projectors up to [ =3 for Ti and
[ = 2 for Ba and O have been used for the calculations. The
5s electrons of Ba ([Xe] Sp6s) are treated as valence states.
King-Smith and Vanderbilt** have pointed out that the low-
frequency phonon modes related to the ferroelectric instability
of many perovskite compounds including BT are remarkably
sensitive to the k-point sampling and that rather dense meshes
are needed for an accurate description. Therefore, even if
the total energies are already converged up to 1 meV with
aregular 8 x 8 x 8 Monkhorst-Pack® k-point mesh, a shifted
12 x 12 x 12 Monkhorst-Pack (1728 irreducible points) mesh
is used for the Brillouin zone integrations. This allows us to
calculate the low-frequency phonon modes with an uncertainty
of 0.1 cm~'. The BSE calculations were carried out using a
mesh of 728 irreducible k points. With this choice we obtain
converged spectra.

The electronic self-energy effects are included by replacing
the GGA exchange and correlation potential with the non-
local and energy-dependent self-energy operator X(r,r'; E).
We thereby calculate ¥ in the GW approximation,® from
the convolution of the single-particle propagator G and the
dynamically screened Coulomb interaction W. The screening
is calculated in the independent-particle approximation. To
take into account the electron-hole interaction, we consider
the two-particle Hamiltonian

chk,v/c’k’ = (eck - Evk)(svv’gcc’Sk,k’

+2 / / dr dr' Y ()Y (O — Y)Y ()Y ()

- / / drdr' Y Oy W@, Y@y @), (1)
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which describes the interaction of pairs of electrons in
conduction states |ck) and holes in valence states |vk).*>*
The first (diagonal) term contains the quasiparticle energies
from the GW approximation. The second term is the electron-
hole exchange term; it contains the short-range part of the
bare Coulomb potential ¥ and represents the effect of local
fields. The third part describes the screened electron-hole
attraction and is calculated using a model dielectric function.>!
In this approximation, the wave-vector (q) dependence of the
dielectric function is given by

1 2 3q* !
e(q.0)=1+ +< 1 )+ 1 ,
€o— 1 \qrr(p))  4k%(0)g%(p)
2)

where kp and grp represent the Fermi and Thomas-Fermi
wave vectors, respectively, which depend on the electron
density p. This expression interpolates between the correct
behaviors at high and low q vectors and, by construction,
correctly obtains the static dielectric constant for q = 0.
For the actual calculation of the polarizability, we use the
time-evolution implementation described in Refs. 52 and 53.

The ferroelectric phase transition is investigated by means
of ab initio thermodynamics. The ground state of BaTiO; at
a given pressure p and temperature 7 is characterized by the
lowest Gibbs free energy:

Gp,T)=U+pV -TS, 3)

where U is the internal energy of the system and S its entropy.>*
For zero pressure, the Gibbs free energy G coincides with the
free energy ' = U — T'S. For a solid, with no rotational and
translational degrees of freedom, it can be decomposed in
an adiabatic approximation to an electronic and a vibrational
contribution:

F=F'4F" 4)

As the considered BT phases are characterized by a
noticeable electronic band gap (i.e., &2 eV), the electronic
contributions to the entropy can be considered vanishing.
Therefore, the dominant term is

v 2 s L _ R
F' = dkzzhw,(k)JrkBTln | —e ™7 |,
J

83

&)

where w;(k) is the wave-vector-dependent frequency of the
jth phonon branch. We note here that the frequencies and the
corresponding eigenvectors are calculated within the harmonic
approximation from the force-constant matrix. This, in turn,
is calculated approximating the electronic free energy of the
system F(V,T) with the DFT total energy E°Y(T = 0). (See
Refs. 54 and 55.)

III. RESULTS

A. Lattice Parameters

The calculated lattice parameters of BT in the high-
temperature cubic phase and in the room-temperature tetrag-
onal phase are reported in Table I. Our PW91 calculations
overestimate the measured values by 0.8% for the lattice
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TABLE I. BaTiOj; calculated and measured lattice parameters (in
A). 8(Ti), 8(0y), and 8(0,) are the atomic displacements parallel
to the z axis of the Ti and of the two inequivalent oxygen sites in
fractions of the lattice constant c. The results of previous DFT-PBE
calculations are reported for comparison.

PW91 PBE* Exp.2%
Cubic
a 4.032 4.035 4.00
Tetragonal
a 4.005 4.005 3.986
c/a 1.048 1.050 1.010
8(Ti) 0.019 0.018 0.015
3(0)) —0.025 —0.027 —0.014
3(0)) —0.045 —0.047 —0.023

constant of the cubic phase and by 0.5% and 4.2% for the
a and c¢ parameters of the tetragonal phase, respectively.
The deviations from the experimental values are similar to
previous calculations?®!*? and affected by the well-known
overtetragonality problems (overestimation of the c/a ratio)
in the description of the ferroelectric phase.’! The calculated
energy difference between the two phases, AE = 48.4 meV
per formula unit, is similar in magnitude to that found with
DFT-PBE simulations in Ref. 31 (49.3 meV). Even if the
accuracy of a DFT calculation is considered to be of the
order of 1 meV, energy differences between different phases
may be more accurate, since a considerable error cancellation
occurs in the calculation of the total energy of two supercells
containing the same atoms and carried out with the very
same numerical parameters. The bulk modulus B and its first
pressure derivative B’ have been derived by fitting the energy-
volume curves (calculated at 7 = 0 K) to the Murnaghan
equation (see Fig. 1). The calculated values (B = 163.0 GPa,
B’ = 4.5 for the cubic phase and B = 85.6 GPa, B’ = 10.9
for the tetragonal phase) are in excellent agreement with the
available experimental data.’®

The relaxed-ion piezoelectric stress tensor e;; has been
calculated using density functional perturbation theory as
described in Refs. 57-59. Our approach takes into account the
contributions from the lattice relaxation.®® The piezoelectric
strain tensor d; i is then derived by solving the tensor equation

eijk = Cimjkdiim, (6)

where ¢;,,j; are the elastic constants calculated at constant
electric field. The number of indices can be reduced by
introducing the matrix (or Voigt) notation. The relationship
between tensor indices and matrix indices is given by

Tensor 11 22 33 23,32 31,13 12,21

Matrix 1 2 3 4 5 6. ™

Although the relationship between the indices of the tensor
components and matrix elements is unambiguous, it is defined
to the extent of a multiplication factor. The elements (d;,)
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FIG. 1. (Color online) Total energy as a function of the volume
for the cubic and tetragonal unit cells of BaTiO;. The energy
difference between the two minima represents the Gibbs energy
difference AG(T = 0, p = 0) of the two phases at zero temperature
and pressure.

of the piezoelectric matrix are formed from the [d;;;] tensor
components with the following summation convention:

d,',, = djjk if n= 1,2,3
ERAR ®)
d,'n = 2dijk if n= 4,5,6.

The total number of independent tensor components is
determined by the point group of the material. This leads for
tetragonal BaTiO3 with point group 4mm: to three independent
tensor elements, in Voigt notation d3, ds3, and d; s, often called
piezoelectric constants. The calculated tensor components are
given in Table II, where the measured values are reported
for comparison. Our calculations correctly reproduce the sign
and the magnitude of the measured tensor components.®'-%?
The quantitative agreement is poor, however. In particular,
dis is underestimated. The deviation from the experiment
results from the simultaneous overestimation of c¢ss and
underestimation of e;5. However, the comparison of calculated
and measured tensor components is made difficult by the un-
certainties and systematic errors affecting the measurements,
and by the sensitivity of the calculations.®® Indeed, small
errors in the calculation of the elastic constants or dipole
moments may have a large influence on the calculation of the
piezoelectric tensor. With the calculated elastic constants it is
possible to estimate the Debye temperature ©p of the material.
Siethoff and Ahlborn® have shown that the relationship
between ¥p and elastic constants is given, for tetragonal

crystals, by
CBI’Z (lGT
Vp = ——/ —, 9
P ke s\ M ®)

where Cp is a constant equal to 5.05 x 10'' obtained by
fitting all the analyzed tetragonal materials to Eq. (9). Here
h and kp are the Planck and Boltzmann constants, s and M
are the number of atoms and the weighted average of the
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TABLE 1I. Relaxed-ion piezoelectric tensor components
d;; (10" C/N) for tetragonal BaTiOs.
Component Theory Exp.
ds —1.48 —3.34
ds3 9.02 9.00
ds 1.00 28.20

atomic masses in the crystallographic unit cell, a is the lattice
parameter, and

1
_ 3
Gr = [(611 C;2)C44C66:| (10)

gives the proportionality to the lattice constants (here ex-
pressed in Voigt notation). With the calculated lattice parame-
ter and ¢;; we obtain a Debye temperature ©p = 513 K, which
is a good estimate of the measured value (480.16 K) reported
in Ref. 63.

The relaxed ground-state geometries for ferroelectric and
paraelectric BT are used as the starting point for all further
investigations.

B. Vibrational properties and ferroelectric instability

The calculated frequencies of the I'-phonon modes of the
cubic phase, which can be compared to previous calculations
and experiment, are given here to allow an assessment of the
accuracy of our approach. The phonon modes of the tetragonal
phase had not been calculated before and are reported for the
first time. Furthermore, we use this section to briefly discuss
the ferroelectric instability, which is strongly connected with
the vibration modes. The lattice dynamics of the different
BaTiO3 phases were investigated experimentally in the 1970s
in order to explain the mechanisms of the (ferroelectric)
phase transition.'> Since then, starting with the work of
Cohen and Krakauer'® different theoretical investigations of
the BT vibrational properties have appeared. Tinte et al.?’ as
well as, more recently, Wahl et al.*> and Bilc et al.>' have
calculated the phonon modes of cubic BaTiO3 within different
approaches. These investigations have shown that the phonon
frequencies of the cubic phase do not directly depend on
the exchange-correlation potential but are quite sensitive to
the cell volume, which in turn strongly depends on the XC
potential. As first noted by Cohen,'® the ¢/a lattice strain at
fixed volume increases the Ti-O distance along the tetragonal
axis, thus facilitating the [001] ferroelectric distortion. In
particular, an underestimation of the crystal volume leads to
the inhibition of the modes responsible for the ferroelectric
instability. This is consistent with the experimental obser-
vation that BT loses ferroelectricity at high pressures.> We
perform our calculation at the calculated volume. The phonon
modes and frequencies are calculated using the frozen-phonon
approach.’This approach does not include the long-range
electric fields that accompany longitudinal phonons. For
this reason, we restrict ourselves to the transverse modes.
All the modes are calculated with fully relaxed geometries.
The unit cell of BaTiO3 contains five atoms, which yields
(excluding the translational modes) 12 phonon modes. The
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TABLE III. Frequencies (cm™!) of the optical phonons at the
center of the Brillouin zone. Phonon modes are calculated at the
GGA volume.

Cubic Tetragonal
Calc. Exp. Mode Calc.
Fy, (TO1) 198i soft A 363
E 122i
F, (TO2) 178 182 A 152
E 163
F,, (TO3) 466 482 A 562
E 451
F, 288 306 A 275
E 290

cubic phase exhibits four triply degenerate distinct modes,
which split into a doublet (E mode) and a singulet (A;
mode) each in the tetragonal phase. At the I' point, the
optical phonons can be classified according to the irreducible
representations of the space group Pm3m into three I';5s modes
with Fy, symmetry and one [',5 mode with F, symmetry. In
Table III we assign our results to the experimental findings
for the respective modes. The modes belonging to the first
optical branch (TO1) have imaginary frequencies, as they
represent a saddle point of the total energy. Within deviations
of at most 18 cm™', the calculated frequencies match the
experimental results and, in the case of cubic BT, are similar
to previous calculations.’” To our knowledge, our work is
the first theoretical investigation that addresses the phonons
of the ferroelectric phase and confirms the phonon splitting
observed upon the cubic-tetragonal phase transition.' The
biggest singlet-doublet splitting is observed for TO1, a phonon
branch characterized by the relative movement of the oxygen
ions with respect to the Ti ion, which has been considered
responsible for the ferroelectric instability.”! This phonon
mode, whose dispersion has been calculated by Xie et al.,?
is depicted in Fig. 2(d). The other TO1 phonons are also
represented in Fig. 2. The triplet of the cubic phase is split
into a singlet and doublet with higher frequencies. This shift
in the frequency can be understood by way of the hybridization
of the Ti 3d with the O 2p orbitals suggested by Cohen and
Krakauer,'® which results in larger force constants. In further
agreement with the measurements of Ref. 13, we observe
the continuity of the three E-type modes in the tetragonal
phase correlated with the three F;, modes in the cubic phase.
The correct description of the phonon modes is of particular
relevance, as the vibrational entropic contribution to the free
energy enters into the calculation of the phase transition.

C. Electronic structure

There have been different attempts to calculate the elec-
tronic structure of cubic>*3! and tetragonal'”-' BT. We note
that the band dispersion depends on the XC potential used.
While cubic BT seems to be a direct semiconductor at I"
within LDA,?* GGA and hybrid potentials yield an indirect
I'-R gap.’! In this work the electronic band structure of
cubic and tetragonal BT has been calculated within different
approaches. In Fig. 3 (solid lines) we plot the Kohn-Sham
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FIG. 2. (Color online) Schematic representation of the eigenvec-
tors of the phonon modes belonging to the first optical branch (TO1)
of cubic and tetragonal BaTiO;. The phonon mode of the isotropic
cubic phase [(a), (b), and (c)] is triply degenerate and represents the
reciprocal movement of one oxygen atom and the Ti atom in the three
spatial directions. This mode splits in the tetragonal phase into a
singlet (d), with oxygen atoms and Ti vibrating in opposite directions
along the z axis and originating the ferroelectric instability, and a
doublet, with Ti and the O; group, vibrating in opposite directions in
the nonpolar xy plane [(e), (f)].

energy eigenvalues calculated along the high-symmetry lines
of the cubic and tetragonal Brillouin zone shown in Fig. 4.
The DFT band gap of 1.63 eV for the paraelectric phase and
1.71 eV for the tetragonal phase is in agreement with previous
calculations. Strictly speaking, BT has an indirect band gap
(CBM at I and VBM at R in the cubic and A in the tetragonal
phase). However, the uppermost valence band is relatively
flat, so that BT can be approximatively regarded as a direct
semiconductor at I" in both cases. The valence band, with a
band width of about 5 eV, is mainly derived from O 2 p states,
while the lowest part of the conduction band has mainly Ti 3d
character. The lowest valence bands visible in Fig. 3, located
10 eV below the VBM, are related to the Ba 5d orbitals.
While the dispersion of the bands is in reasonable agreement
with photoemission measurements,®’ the calculated band gap
is well below the measured optical band gap of 3.3 eV (cubic
BT).

To go beyond the single-particle approximation we perform
GW calculations for both the ferroelectric and paraelectric
phases. The correspondingly corrected energy bands are shown
with dotted lines in Fig. 3. The energetic positions of the
bands change with the inclusion of quasiparticle effects: The
Ti 3d conduction bands are shifted upward by about 1.8
eV, while the O 2p bands are shifted downward by about
0.2 eV and the Ba 5d by about 1.6 eV. The effect of the
GW calculations on the band dispersions, however, is small,
below 0.1 eV. Quasiparticle effects open the BT band gap
significantly. The DFT 4+ GW band gaps amount to 3.68 and
3.90 eV for the cubic and tetragonal phases, respectively. This
exceeds the measured optical gap of 3.3 eV (cubic BT) and
may be related to excitonic effects. In fact, the discrepancy
seemingly observed by the calculated quasiparticle gap and
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FIG. 3. (Color online) BaTiO; band structure calculated within
the DFT-GGA (solid lines) and the GW approximation (dotted lines)
for the paraelectric (top panel) and ferroelectric (bottom panel) phase.

the experimental value corresponds to the excitonic shift at the
optical absorption onset, as discussed below.

D. Optical properties

The optical properties of the cubic and tetragonal phase of
BT were intensively investigated in the 1960s and 1970s.°!!
In particular, the optical adsorption spectra were deduced from
reflectivity measurements by Kramers-Kronig analysis.'®!!

FIG. 4. (Color online) Path joining the high-symmetry points in
the Brillouin zone used for the band structure calculation of the cubic
(left-hand side) and tetragonal phase (right-hand side) of BaTiOs;.
The tetragonal distortion occurs along the z axis.
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Despite the tetragonal distortion, the optical spectra of the
two phases show similar features, which has been traced
back to the small effect of tetragonality (10-150 meV) on
the band structure.'®!” Two main adsorption peaks at 4.8 eV
(labeled with P; in this work) and around 10.5 eV (P,
with two side peaks P, and P, at around 8.2 and 11.7 eV)
dominate the spectrum.'’ Smaller features at 6 and 7.3 eV
are also observable. The previous theoretical description of
these features is not really satisfactory. Saha et al.?* found with
LDA-based tight-binding simulations a first peak at 3.8 eV and
second peak at 5.9 eV. Gupta et al.?® found (with an LDA-based
FLAPW method) all the experimental features, but with a
shift of at least 1 eV toward lower energies for the tetragonal
phase and of more than 1 eV for the cubic phase. Bagayoko
et al."’ calculated the optical spectrum of tetragonal BT with
a self-consistent LCAO method. The calculated spectrum is
in fair agreement with the experiment concerning the main
peak (although it appears to be a very sharp double peak at
around 4 eV); however, all the features spread over 13 eV
in the experimental spectrum appear compressed within 0 to
8eV.

In Fig. 5 we show the optical spectra calculated for cubic
and tetragonal BT within the DFT-GGA and BSE approach.
For the tetragonal phase, the complex dielectric constant
has been calculated both parallel [¢(w)] and perpendicular
[e+(w)] to the polarization. The spectrum obtained within
DFT-GGA for cubic BT [Fig. 5(a)] agrees roughly with
earlier independent-particle results.!”?>> There are two main
features of the optical absorption centered at about 3.9 eV (P;)
and 8.4 eV (P,, with smaller shoulder peaks P; and P;’ at 6.8
and 9.6 eV), as indicated by the arrows. The first peak has
been attributed to transitions from the lower states of the O 2p
valence band to the lower states of the Ti 3d conduction band
and from transitions from the upper states of the O 2p valence
band to the upper states of the Ti 3d conduction band. The
second peak has been attributed to transitions from the lower
states of the O2 p valence band to the upper states of the Ti 3d
conduction band. The spectrum calculated for tetragonal BT
for the x and y directions [¢(w) in Fig. 5(b)] does not differ
substantially from the spectrum of cubic BT. ¢l(w) shows
peaks shifted toward higher energies instead [Fig. 5(c)]. The
positions of P; and P, are shifted by almost 1 and 2 eV,
respectively, toward lower energies compared to experiment,
because of the inadequate DFT-GGA description of the band
gap and excited states. In agreement with Gupta et al., we
observe that even if the band structures of cubic and tetragonal
BT are very similar, the optical properties are rather sensitive
to the tetragonal distortion.

The Coulomb correlation of electrons and holes, accounted
for by solving the BSE, improves the theoretical description
substantially. This concerns both the peak positions and the line
shapes, which sharpen because of the inclusion of excitonic
effects. P, becomes more pronounced and the whole feature is
blueshifted compared to the DFT-GGA spectrum. Concerning
cubic BT, the main peak is positioned at about 4.9 eV, while the
second peak is now shifted to the experimental value around
10 eV. A similar behavior is observed in tetragonal BT for
e (w), while &l (w) shows a different spectrum, in which all
the previously discussed peaks can be identified, but with
a different reciprocal height than in et (w) [see Fig. 5(c)].

PHYSICAL REVIEW B 83, 054112 (2011)

—-—= DFT | 7
— BSE

Im[g(w)]

Im[e* ()]

0 1 2 3 4 5 6 7 g8 9 10 11 12 13 14 15
Energy (eV)
(b)
8 T T T T T T T T T T T T T T
U -- DFT | ]
— BSE
61— — GWA|

Im[g" ()]

Energy (eV)

()

FIG. 5. (Color online) Complex dielectric function of cubic (a)
and tetragonal [(b) and (c)] BT calculated within the DFT-GGA and
GWA and from the BSE.

Comparing the calculated GWA and BSE spectra, we find
the onset of the optical absorption to be modified by about
0.5 eV for the cubic phase and by about 0.5 and 0.3 eV
[e!(w) and e*(w)] for the tetragonal phase. This is close to
the difference between the GWA band gap of 3.7 eV and
the experimental measured value of 3.3 eV for the cubic
phase. Optical excitations at higher energies, such as the P,
peak, experience even larger excitonic effects, of the order
of 1 eV. Our BSE calculations represent the best agreement
of a first-principles theoretical model with the experimental
results so far. We mention that our GW and BSE calculations
do not contain the contribution of the lattice polarizability
to the dressing of the quasiparticles. It may be expected that
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this contribution is important in polar materials such as BT
that feature longitudinal optical phonons that give rise to
macroscopic electric fields that couple to the excited electrons
and holes and modify their motion.®

IV. THE TETRAGONAL-CUBIC PHASE TRANSITION

We have calculated the Curie temperature ¢, of BT by
evaluating the free energies of the tetragonal and cubic
phases as described in Sec. II. We thereby do not restrict
our calculation to the I" modes of Table III, but consider
the phonon frequencies at other high-symmetry points of the
Brillouin zone too. These are obtained using a supercell that
is 2 x 2 x 2 the BT primitive cell. In this way, the vibrations
at all the high-symmetry points listed in Fig. 4 are considered.
The parameters of our calculation correspond to the values
mentioned in Sec. I[II B

We predict that the tetragonal-cubic phase transition will
occur at around 419 K. At this temperature the contribution
of the vibrational entropy is large enough to compensate for
the lower total energy of the tetragonal phase at 7 = 0 (see
Fig. 6). The discrepancy between the calculated and measured
value is about 25 K. This difference can be explained by
different sources of error that we discuss in the following.
They are either due to intrinsic limitations of our model
(i.e., approximations in our thermodynamics approach and
anharmonic effects not considered in our calculation) or are of
numerical nature (i.e., the finite sampling of the phonon modes
in the Brillouin zone and the precision of the calculations
itself).

As discussed in Sec. II, our estimation of the transition
temperature is based on the evaluation of the free energy
F=F(V,T)=U(S,V)— TS of the two phases. We thereby
approximate the internal energy U = U(S, V) by the DFT total
energy E(Vy), calculated for Vy = Vr_o, i.e., neglecting the
effect of the temperature on the volume and on the entropy
as well. If the considered volume strongly depends on the
temperature, this approximation becomes less accurate at
higher temperatures. In our case, however, this approximation
is justified by the thermal behavior of BT. Similarly to other
distortion ferroelectrics, the volume of the material grows
with the temperature to a certain value, and decreases again
close to the Curie temperature ©.. Using the linear coefficient
of thermal expansion reported in Ref. 69 for T ~ T, («¢ =
—1.2 x 107 K1), we repeat our calculations at V., = Vy_y, .
This leads to an increase of the free energy of the two phases by
less than 1 meV and therefore to no change in the calculated
transition temperature. The approximation of U = U(S,V)
with the DFT total energy E(V}) cannot therefore be the reason
for the deviation from the measured value.

Another crucial point is the sampling of the phonon disper-
sion relations. As pointed out by Xie et al.?* the phonon modes
of BT show a pronounced dispersion within the Brillouin zone.
An accurate sampling of the latter is therefore necessary to
have a complete picture of the vibrational frequencies. In this
work, we have considered phonon modes calculated at all the
high-symmetry points of the Brillouin zone represented in
Fig. 4, namely I', X, M, and R for the cubic phase and T", X,
M, R, Z, and A for the tetragonal phase. To estimate the error
due to the finite sampling, we have restricted step by step the
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FIG. 6. (Color online) Calculated free energy difference between
the cubic and tetragonal phases as a function of the temperature.
Transition temperature and stable phase are indicated. The inset shows
the calculated transition temperature as a function of the phonon
sampling.

number of k points and calculated the transition temperature
again. The results of this procedure are plotted in the inset
of Fig. 6. Considering merely the frequencies of the I'-point
modes, the transition temperature rises to 863 K, indicating
that a I"-point sampling is not sufficient for a reasonable
estimate of the transition temperature. Extending the sampling
of the phonon dispersion leads to a better agreement with the
measured value, until a converged value is reached by taking
into account the phonon modes at all high-symmetry points of
the Brillouin zone. Strictly speaking only an ideal sampling
(i.e., as obtained using an infinitely large BT supercell) would
lead to an exact evaluation of the frequencies, and each finite
sampling will introduce some error. However, our choice of
the k points seems to be exhaustive enough to reduce this error
to no more than 10-15 K.

The frequencies of the longitudinal modes, which are
affected by long-range polarization effects, are not accurately
reproduced within our approach. Although this problem
concerns both the cubic and the tetragonal phases and will
therefore be of the same extent subject to error cancellation,
it will nevertheless contribute to the deviation between cal-
culated and measured phase transition temperatures. So will
anharmonicity effects, which are certainly not negligible at
T = .. If the lattice dynamics can be described by (small)
harmonic vibrations around the total energy minimum, Eq. (5)
gives the vibrational contribution to the free energy. A few
modes belonging to TO1 represent a saddle point of the total
energy, though (see Sec. III B). These vibrations are included
in our calculation and treated as harmonic modes; therefore
Eq. (5) only holds in approximate form. The uncertainty in the
temperature estimation due to the accuracy of the total energy
calculations is low. It amounts to about 1 K if we assume an
energy deviation of 0.1 meV.

An upper bound of the numerical error of our model due
to the precision of the calculation is obtained by modifying
the calculated phonon frequencies entering Eq. (5) by an
amount equal to the deviation from the measured values. As
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the phonon frequencies are varied, the transition temperature
ranges within an interval of 100 K, which is then supposed to be
the uncertainty of our model. Within this margin, the calculated
transition temperature is in agreement with the measured value.
Our calculations clearly confirm that the gain in vibrational
entropy of the cubic phase at high temperatures compensates
for the structural energy difference with the tetragonal phase.
An analysis of the entropic contributions of the single-phonon
branches reveals that the gain in vibrational entropy is roughly
equally divided between the phonons and cannot be traced
back to a single mode.

V. SUMMARY

We have performed first-principles calculations of the struc-
tural, vibrational, electronic, and optical properties of BaTiO3.
The ground-state structures and phonon frequencies calculated

PHYSICAL REVIEW B 83, 054112 (2011)

in the present work agree well with experiment and earlier
ab initio calculations. While the DFT-GGA underestimates
the electronic band gap, quasiparticle effects widen the band
gap by 2 eV in both investigated phases. On the other hand,
strong excitonic effects with exciton binding energies up to
1 eV are predicted. The ferroelectric phase transition has
been investigated by ab initio thermodynamics. This approach
gives areasonable estimate of the phase transition temperature,
calculated at 419 K.
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