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Mechanism of the phase transitions in MnAs
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Based on first-principles calculations, the structural, magnetic, dynamic properties, and the α-hexagonal →
β-orthorhombic → γ -hexagonal phase transitions of ferromagnetic, antiferromagnetic, and paramagnetic MnAs
are studied. The phonon-dispersion curves for some of the phases were derived using the direct method. Soft
modes were found in ferromagnetic and antiferromagnetic structures in a wide range of pressures. A strong
dependence of the soft-mode energy on the magnetic moment and magnetic order was revealed. The double-well
potential was found as a function of the soft-mode amplitude at the reduced crystal volume. In the β-orthorhombic
phase, a new antiferromagnetic configuration consisting of linear chains of alternating spins was found. Therefore,
the mechanism of the magnetostructural phase transitions confirms the antiferromagnetic or paramagnetic (with
antiferromagnetic fluctuations) state of the β-orthorhombic phase. The paramagnetic γ -hexagonal phase is
stabilized at high temperature in the displacive second-order phase transition owing to the disappearance of the
soft mode.
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I. INTRODUCTION

The magnetic properties of MnAs have been known for a
long time.1 In recent years, MnAs has attracted the attention
of researchers owing to its possible magnetocaloric2 and
spintronic applications.3 A giant magnetocaloric effect (MCE)
observed in MnAs (Ref. 2) allows for adiabatic heating up and
cooling down materials by applying the external magnetic
field. It provides a mechanism of magnetic refrigeration at
room temperature. The MCE is connected with the magne-
tostructural properties of MnAs, resulting from the unique
interplay of magnetic and lattice degrees of freedom.4,5

At ambient conditions, MnAs crystallizes in a hexagonal
NiAs-type structure (α phase), which transforms into a
orthorhombic MnP-type structure (β phase) at approximately
Tc = 315 K.6 This structural transition is associated with the
change in magnetic state from the ferromagnetic (FM) in the
α phase to the paramagnetic (PM) in the β phase. Because
of the magnetostructural coupling, the α → β transition
is of first order with a discontinuous change of volume
(∼2%),7 resistivity, and magnetization. A large latent heat8

and hysteresis of the phase transition9,10 has been observed.
At higher temperature Tt = 393 K, in the second-order phase
transition, the crystal structure reverts back to the hexagonal
symmetry (γ phase), which is PM.11

The exceptional magnetic properties of MnAs, includ-
ing the giant MCE,2 magnetoresistance,12 and magnetoe-
lastic effects13 are induced by the first-order magnetostruc-
tural transition. At ambient pressure, the entropy change
reaches 30 J/(kg K), and this value increases further upon
compression.14 As found by Zou et al.,15 the majority of
the total entropy change comes from the magnetic transition,
and the contribution from the lattice is very small. Above
Tc, the magnetization drops to zero, however, the magnetic
susceptibility does not show a typical PM behavior (it increases
with temperature). The Curie-Weiss dependence is observed
only above Tt .

All of these experimental facts indicate an existing connec-
tion between the magnetic and structural properties of MnAs.

The first phenomenological model of the α → β transition
was proposed by Bean and Rodbell,8 who considered the
explicit dependence of the critical temperature Tc on volume.
Goodenough et al. proposed the mechanism based on the
high-spin to the low-spin state transition induced by crystal
distortion.9 Both phase transitions were studied within the
Landau theory with two coupled order parameters: lattice
distortion and magnetization.16–19 This model successfully
described a complex phase diagram with the first-order and
second-order coexistence lines, including the effect of the
magnetic field. On a microscopic level, the magnetostructural
properties of MnAs were studied within the density functional
theory (DFT).20–25 In particular, it was demonstrated that the
orthorhombic distortion in the β phase induces the antifer-
romagnetic (AFM) order at the reduced crystal volume.24,25

The second-order phase transition (β → γ ) was explained as
the effect of stabilization of the hexagonal phase at a larger
volume owing to thermal expansion.25 These studies clearly
indicated the importance of the lattice distortion in both phase
transitions, and the significant spin-lattice coupling in MnAs.

A phonon spectrum in MnAs has not been measured
yet, however, there are many indications that phonons are
involved in both phase transitions in MnAs. The anomalous
behavior of elastic constants close to the structural phase
transition was interpreted in terms of a condensation of
a soft mode.26,27 Similarly, the temperature dependence of
the Debye-Waller factor at Tc suggests the critical lowering
of phonon frequencies.28 A soft-mode mechanism of the
magnetostructural transition was also postulated on the basis
of general thermodynamic considerations.15 In the previous
study, we have explicitly demonstrated the existence of the
soft mode in the hexagonal phase, which could have induced
the phase transition to the orthorhombic symmetry.29 The
soft mode strongly interacts with magnetic moments, and
it explains in a natural way the magnetoelastic properties
of MnAs.

In this paper, we extend the lattice dynamics studies and
present in detail the phonon spectra for both the hexagonal
and orthorhombic phases. We focus on the properties of the
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soft mode, relating its behavior with the mechanism of the
phase transitions in MnAs. The paper is organized as follows.
In Sec. II, we describe the calculation methods. The crystal
structure as a function of pressure is discussed in Sec. III.
In Sec. IV A, we present the phonon spectra for both crystal
structures of MnAs. Section IV B contains information on the
soft mode, and Sec. IV C describes the coupling between the
soft mode and magnetic structure. In Sec. V, we discuss the
mechanism of phase transitions in MnAs. Finally, the main
conclusions are presented in Sec. VI.

II. CALCULATION SETUP

We have performed first-principles calculations based on
the spin-polarized DFT as implemented in the Vienna ab
initio simulation package (VASP).30 The calculations have
been performed using the full-potential projector-augmented
wave method31 within the generalized gradient approximation
(GGA) approach.32,33 The following valence base configura-
tions have been included: Mn 3d54s2 and As 4s24p3. The
integration in the k-point space has been sampled by the
4 × 4 × 4 Monkhorst-Pack mesh,34 and the energy cutoff for
the plane-wave expansion was equal to 320 eV. The crystal
structure has been optimized using the conjugate gradient
technique with the energy convergence criteria set at 10−8 and
10−5 for the electronic and ionic iterations, respectively. For
the hexagonal and orthorhombic symmetry we used 2 × 2 × 1
and 1 × 2 × 1 supercells, respectively, both with 16 atoms and
periodic boundary conditions. Larger supercells with 72 and 96
atoms in the hexagonal and orthorhombic structures have been
used for checking the convergence of the lattice parameters
and phonon frequencies.

Phonon dispersions have been calculated with the direct
method35 as implemented in the PHONON program.36 The
force constants and dynamical matrix have been obtained from
the Hellmann-Feynman forces calculated with small individual
displacements of nonequivalent atoms. For FM order, there
exist six independent displacements for both hexagonal and
orthorhombic phases. For the PM phase all atoms should be
considered as nonequivalent, which led to 48 independent
displacements. For better accuracy, each displacement has
been made with a positive and negative sign. To study the
dependence of phonon frequencies on magnetic moments, the
difference between the “up” and “down” state occupations has
been fixed during VASP calculations.

III. THE GROUND STATE AT T = 0

MnAs in a broad range of temperature and pressure coexists
in two phases: α-MnAs hexagonal (P 63/mmc, 194) and β-
MnAs with orthorhombic (Pnma, 62) unit cells.10 Increasing
twice the unit-cell volume of the α phase by doubling the area
on the hexagonal plane (aortho = √

3ahex, bortho = chex, and
cortho = ahex), one can obtain the β-phase unit cell. Because
the orthorhombic space group is a subgroup of the hexagonal
one, there may exist—from the structural point of view—a
continuous transformation between these phases. It is reflected
in the experimental observation that for a temperature interval
from 0 to 150 K the hysteresis region extends from normal
pressure up to 3.6 kb. For higher temperatures and low

pressures (below 2 kb) the hexagonal phase becomes more
stable. Above 313 K, the orthorhombic phase is more stable,
however, at 393 K the reentrance of the hexagonal phase is
observed. The existence of a large hysteresis region as well as
the return of the hexagonal phase in high temperature indicate
a small difference in the free energies of both phases. Also
small differences in lattice parameters and volumes reported
in literature confirm this hypothesis.

We have optimized the crystal structure of MnAs in
both symmetries, assuming the FM order on Mn atoms. For
the hexagonal structure, we obtained the lattice parameters
a = 3.666 Å and c = 5.508 Å, in a good agreement with
the experimental data taken at T = 110 K, aexp = 3.733 Å,
and cexp = 5.677 Å. With increasing temperature, a drops
slightly to 3.724 Å at room temperature, while c increases
its value to 5.707 Å. Comparing to the experimental magnetic
moment on Mn atoms (3.4μB), we obtained a smaller value,
3.05μB , for the optimized hexagonal structure, however, for
the experimental values of lattice constants we found 3.35μB .

The relaxation in the orthorhombic symmetry with FM
ordering of spins leads to a very similar structure (the
difference in atomic positions is less than 0.01 Å), which can be
described using the pseudohexagonal lattice parameters. The
pseudohexagonal structure is defined by an additional (third)
lattice constant b (related to the hexagonal parameter a) and
by a pseudohexagonal angle α with values close to 120◦. The
differences in total energies of both structures are less for the
FM one by 0.01 eV per one supercell (16 atoms). It confirms
that the ground state with the FM order has the hexagonal
symmetry.

In order to study the relative stability of both phases, we
have repeated calculations in a wide range of pressures, from
−50 to 40 kb. The negative pressures correspond to larger
volumes, which can imitate the crystal thermal expansion or
the effect of substitution of atoms with larger radius.37 In
Fig. 1, we present the lattice parameters for both hexagonal
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FIG. 1. (Color online) Calculated lattice parameters and volume
as functions of pressure for the hexagonal (open circles) and
orthorhombic (filled squares) structures. Parameters recalculated for
the pseudohexagonal structure were depicted by open diamonds.
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and orthorhombic structures as functions of pressure. For the
orthorhombic phase, the pseudohexagonal structure was intro-
duced to emboss the changes of lattice constants and angles
(open diamonds in Fig. 1). At p = 0 and all positive pressures,
the lattice constant and volumes of both phases are identical.
However, there is a small deviation (not exceeding 0.15◦) from
the hexagonal angle (120◦) in the orthorhombic structure.
Interestingly, this angle approaches 120◦ at p = −20 kb,
and then decreases again with more negative pressure. There is
also a small difference between the values of lattice parameter
a; the highest observed at −20 kb reads 0.54%. At the same
pressure the difference in the volumes is equal to 1%. The
relative difference in the volumes induced by an external
pressure between −50 and 20 kb is very similar for both
structures and is equal 11%.

One can conclude that keeping the FM order unchanged, the
crystal optimization in two different supercells relevant for the
hexagonal and orthorhombic symmetries leads in practice to
the hexagonal structure. It confirms that the FM configuration
in the hexagonal phase is a ground state at T = 0. It also
proves that only volume changes within the FM configuration
cannot explain the magnetostructural phase transition in
MnAs. The same conclusions result from the previous ab initio
studies.24,25

In the framework of collinear calculations, apart from
the FM configuration, one can study antiferromagneti-
cally ordered systems as well. We consider two different
AFM arrangements: one, called AFM(1), with the magnetic
moments aligned antiparallel in the a-b plane and with
the same directions of moments between the a-b planes,
and the other, AFM(2), with parallel magnetic moments
in the a-b plane and with staggered magnetic orientations
between the nearest a-b planes. In agreement with the
previous study,24,25 the AFM systems have a higher energy
than the FM one, smaller volumes, and reduced magnetic
moments. In Table I, we put together their characteristics for
pressures for 0 and 20 kb. Additionally, the AFM order in
MnAs induces the orthorhombic distortion observed in the
β phase.24,25 This effect will be discussed in the following
sections.

The dependence of magnetic moments on crystal volume
for the FM and AFM states is plotted in Fig. 2. In the range
of pressure considered, magnetic moments change linearly
with volume. The magnitudes of moments in the AFM state
are systematically lower (∼10%) than in the FM one. The
AFM(3) case will be discussed in detail later.

TABLE I. Volumes, enthalpies, and magnetic moments for anti-
ferromagnetically ordered systems in comparison with data for the
FM configuration.

p = 0 p = 20 kb

V H m V H m

(Å3) (eV) (μB ) (Å3) (eV) (μB )

FM 256.52 −113.300 3.05 249.85 −110.142 2.93
AFM(1) 253.20 −112.903 2.86 247.22 −109.783 2.74
AFM(2) 246.98 −113.037 2.72 241.30 −109.993 2.61
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FIG. 2. (Color online) Dependence of magnetic moment on
crystal volume.

IV. PHONONS

A. Dispersion curves

In this section, we present the phonon spectra obtained
for the hexagonal and orthorhombic structures. Because the
primitive unit cell for the hexagonal symmetry contains
four atoms, the complete phonon spectrum consists of 12
dispersion curves: three acoustical and nine optical ones. A
group-theoretical analysis shows that the nine zone-center
optical modes are classified by the following symmetries:
A2u + B1g + B2u + E1u + E2g + E2u. The E modes are dou-
bly degenerate. Only the E2g mode is Raman active, while the
A2u and E1u modes are infrared active.

For the orthorhombic phase with eight atoms in a primitive
unit cell, there exist 24 dispersion curves, and the optical
modes are split among the following symmetries: 4Ag +
2Au + 2B1g + 3B1u + 4B2g + B2u + 2B3g + 3B3u. All ger-
ade modes are Raman active. Additionally, Bu modes are
infrared active. Phonon frequencies obtained at the � point
in both structures are presented in Table II. It is worth pointing
out that the volume of the first Brillouin zone (BZ) for the
orthorhombic structure is two times smaller than for hexagonal
structure, and the high-symmetry point M of the latter one
becomes the � point of orthorhombic BZ. For that reason we
put the phonon frequencies for the hexagonal system also at
the M point and assign them to the proper values obtained for
the orthorhombic system.

The calculated phonon-dispersion relations for the FM
hexagonal phase along the high-symmetry directions for
different pressures are plotted in Fig. 3. At p = 0, all phonon
energies are positive, which ensures the dynamical stability
of the hexagonal phase in ambient conditions. For positive
pressure, most dispersion curves shift to higher energies owing
to increased interatomic forces. With the crystal expansion,
phonon energies decreases. The opposite effect is seen for the
lowest mode at the M point, which strongly goes down upon
compression. This soft mode will be discussed in detail in the
next section.

The phonon spectrum for the FM orthorhombic phase
is presented in Fig. 4. In the broad range of pressures,
all phonon frequencies are positive, which shows that the
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TABLE II. Assignment of the calculated frequencies at the �

point in the hexagonal and orthorhombic structures. Values from the
second column, ω(M), correspond to the frequencies at the M point
of the hexagonal Brillouin zone, which in the orthorhombic structure
becomes the � point. For phonons at the � point, the mode symmetry
and their activity (R—Raman, I—infrared) for optically active modes
has been given. Doubly degenerated hexagonal phase modes of E
symmetry split into two one-dimensional modes in the orthorhombic
phase. All presented values are in THz.

P 63/mmc Pnma

ω(�) ω(M) Symm. (activ.) ω(�) Symm. (activ.)

1.133 0.943 Ag (R)
2.847 2.912 B1g (R)
4.449 4.419 B2g (R)
4.576 4.593 B1u (I)

4.944 B1g 4.972 B2g (R)
5.131 5.184 Au

5.190 5.216 B3g (R)
5.307 E2g (R) 5.269 Ag (R)

5.398 B3g (R)
5.414 5.397 Ag (R)

5.545 E2u 5.491 Au

5.623 B3u (I)
5.505 5.533 B3u (I)
5.533 5.588 B2g (R)

6.189 A2u (I) 6.256 B3u (I)
6.627 B2u 6.690 B1u (I)

6.987 7.002 Ag (R)
7.018 7.049 B1g (R)

7.247 E1u (I) 7.288 B2u (I)
7.363 B1u (I)

7.680 7.738 B2g (R)

orthorhombic symmetry cannot be further reduced by the
soft-mode mechanism. There is one mode at the � point with
the Ag symmetry, which strongly depends on pressure. Unlike
all other phonons, this mode increases its energy with the
crystal expansion. This mode corresponds to the soft mode at
the M point in the hexagonal structure.

k

0

1

2

3

4

5

6

7

8

ω
 (

T
H

z)

Γ K H Γ M L A Γ

 30 kb
 20 kb
   0 kb
-20 kb

FIG. 3. (Color online) Phonon dispersions for the FM hexagonal
phase calculated under pressure.
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FIG. 4. (Color online) Calculated phonon spectrum in the FM
orthorhombic phase.

B. Soft mode

In the Landau theory of structural phase transitions, the
normal mode of the soft phonon plays a role of the order
parameter. In a typical second-order transition, the soft
mode reduces the high-symmetry space group to one of its
subgroups, and the order parameter is characterized by the
irreducible representation of the high-symmetry space group.
Therefore, we can define the order parameter as a vector
�k,j (ηi), where k is a wave vector of the irreducible star, j

is the index of ray representations, and ηi are the components
of the order parameter. Defined in this way, the order parameter
determines uniquely the lattice distortion observed in the phase
transition. In the following, we shall denote the soft-mode
order parameter by η.

In MnAs, the hexagonal space group P 63/mmc is reduced
to the orthorhombic subgroup Pnma by the irreducible
representation M+

2 at the wave vector k = (0.5,0,0) (in
units of the reciprocal space).29,38 The atomic displacements
associated with the soft mode are presented in Fig. 5. Mn
atoms are displaced primarily in the hexagonal a-b planes, so
the nearest Mn-Mn distance becomes shorter. As atoms are

FIG. 5. (Color online) Displacements of atoms in the soft mode
at the M point of the hexagonal phase Brillouin zone.
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TABLE III. Volume and soft-mode frequency calculated for the
hexagonal phase versus external pressure.

p (kb) V (Å3) V/V0 ωsoft (THz)

−50 282.04 1.099 2.280
−20 266.71 1.040 1.756
−10 260.53 1.016 1.333

0 256.52 1.000 1.133
10 253.15 0.987 0.760
20 249.85 0.974 0.322
30 246.73 0.962 −0.277
40 243.95 0.951 −0.546

shifted along the c direction. These atomic displacements are
consistent with the orthorhombic distortion observed in the
single-crystal x-ray diffraction6 and with those considered in
previous studies.25

We have investigated the behavior of the soft mode in a
wide range of pressures. The frequencies of the soft mode
and the crystal volumes for all considered pressures are
presented in Table III. The frequency of the soft mode becomes
imaginary for a pressure pc just above 20 kb. This point could
have defined the structural transition from the hexagonal to
the orthorhombic phase in the continuous (second-order) phase
transition. However, in this particular case—owing to the
strong spin-phonon coupling (described below)—magnetic
disordering responsible for volume shrinkage considerably
decreases transition pressure. The 2% volume collapse
accompanying magnetic disordering in the first-order phase
transition results in sufficient phonon softening to enforce
symmetry reduction and structural transformation.

Next, we study how the total energy changes with the
crystal distortion induced by the soft mode. The positions of
the atoms have been generated using the polarization vectors
of the soft mode obtained at different pressures. In Fig. 6 we
have plotted the total energy as a function of the Mn fractional
displacement uMn. At the equilibrium volume (p = 0), the
energy changes monotonically with the amplitude, showing
the quadratic (harmonic) dependence. With increasing pres-
sure this dependence becomes more flat, and at the critical
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FIG. 6. (Color online) Total energy of MnAs calculated for
increasing amplitude of the soft mode as a function of pressure.

TABLE IV. Calculated thermal displacement for hexagonal phase
in ambient pressure.

atom
√

〈u2〉 (Å) Temp. (K)

Mn 0.047 0
0.095 300

As 0.039 0
0.077 300

pressure pc a new minimum appears at approximately uMn =
0.045. This minimum defines a new position of the Mn
atoms in the distorted orthorhombic phase. Such behavior is
typical for the displacive phase transition with a condensing
soft mode. The atomic shifts from the positions in the ideal
hexagonal structure measured at T = 328 K are in the range
0.02–0.26 Å.6 They are comparable to the average thermal
displacements calculated from the phonon density of states
(Table IV). Interestingly, the local atomic shifts studied by the
extended x-ray absorption fine structure (EXAFS) are below
the theoretical thermal displacements.28 It could explain the
broad hysteresis region observed in MnAs at low temperatures.

C. The effect of magnetic disordering on phonons

1. Spin-phonon coupling

In the previous section, we have demonstrated that the
reduced volume (under pressure) induces the soft mode, which
lowers the hexagonal symmetry to the orthorhombic one.
Taking into account a considerable dependence of the magnetic
moment in the FM phase on volume (see Fig. 2), one can
expect a strong coupling between magnetic moments and the
soft mode. This coupling has been studied in two different
ways. First, we have calculated the phonon-dispersion curves
for systems (fully relaxed each time) with reduced values of the
magnetic moment m on Mn atoms (at p = 0). The obtained
dispersions for a few values of m are shown in Fig. 7. For
the reduced moment, the same mode at the M point softens
and goes to zero at approximately m ∼ 2.6μB . Such a strong
influence of magnetic moments on the soft mode results mainly

k

-3

-2

-1

0

1

2

3

4

5

6

7

8

ω
 (

T
H

z)

Γ K H Γ M L A Γ

2.75 μ
B

2.50 μ
B

2.00 μ
B

FIG. 7. (Color online) Calculated phonon spectrum in the hexag-
onal phase for different values of magnetic moment on Mn atoms.
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FIG. 8. (Color online) Influence of soft-mode distortion on Mn
magnetic moments.

from a reduction of the Mn-Mn distance owing to volume
contraction (see Table III).

Next, we have studied how the soft mode modifies the
magnitude of magnetic moments. In Fig. 8, we plot the
dependence of the magnetic moment on the fractional dis-
placement of the Mn atoms present in the soft mode uMn. For
small amplitudes (<0.055), the magnetic moment decreases
monotonically, showing a quadratic dependence on uMn, and
saturates for larger displacements. This dependence becomes
stronger for higher pressures. We have also checked how the
magnetic moment depends on individual displacements of Mn
and As atoms (see Table V). Interestingly, the shift of only Mn
atoms influences the magnetic moment even more strongly
than the full soft-mode deformation, and the influence of the
As atom movements is rather negligible. It could be easy to
understand, taking into account the small contribution of As
electrons on the Fermi level.

The dependence of the magnetic moment on the lattice
deformation u has been derived within the Landau theory by
Pytlik and Zieba,17

m = m0(1 − γ u2), (1)

where m0 is a magnetic moment in the hexagonal α phase and
γ is a coupling parameter. This quadratic dependence perfectly
agrees with the relation presented in Fig. 8. For not too large
values of uMn (<0.055), we have fitted the parabolic function
and found γ equals 34.12 and 48.65 for p = 0 and p = 20 kb,
respectively. In this way, the results presented here provide the
microscopic validation of the effective Landau theory of phase
transitions in MnAs.

TABLE V. Magnetic moments for different displacements present
in the normal mode at the M point calculated for Mn and As atom
fractional displacements equal to 0.034 and 0.032, respectively, as
defined by the soft-mode polarization vector.

p (kb) None Mn and As Mn only As only

0 3.05 2.99 2.94 3.03
20 2.93 2.82 2.80 2.90
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FIG. 9. (Color online) Phonon-dispersion curves calculated in the
hexagonal structure for two AFM configurations at zero pressure.

2. AFM order

The phonon-dispersion curves obtained at p = 0 for two
AFM configurations, AFM(1) and AFM(2), are presented
in Fig. 9. Because for the AFM order the crystal volume
decreases, the whole spectra reach higher frequencies. The
most significant difference in comparing to the FM phase at
p = 0 is the observation of low frequencies, especially at the
M point, where the AFM(1) phonon strongly softens while
the AFM(2) behaves similarly to the FM phase. This quite
surprising feature can be understood by taking into account
the specific distribution of atomic displacements in the soft
mode (see Fig. 5). Indeed, Mn atoms move in the a-b plane in
which the AFM(2) configuration remains FM. In the AFM(1)
configuration, the in-plane spins are aligned antiparallel and
strongly modify the interatomic forces. It agrees very well with
the result, presented in Ref. 25, that only spin configurations
with the AFM alignment in the hexagonal planes stabilize
the orthorhombic structure. A comparison of the AFM(1)
spectrum with the FM one shows that not only the magnetic
moment magnitude but also the change of their ordering
visibly influences phonon frequencies and can destabilize the
hexagonal structure.

In the next step, we study the effect of magnetic dis-
order on the crystal structure. In principle fully disordered
systems cannot be studied in the periodic boundary conditions.
Nevertheless, in the 16-atom supercell with eight magnetic
Mn atoms, one can randomly orient their magnetic moments
in space. We have selected a noncollinear distribution of
magnetic moments when the total magnetization equals zero.
The starting configuration of local moments is listed in
Table VI. Additionally, we have moved all atoms in the
supercell according to the pattern of displacements present in
the hexagonal-to-orthorhombic phase transition and described
by the soft-mode polarization vector. Finally, we have imposed
an external pressure of 40 kb under which the FM system is
unstable at the M point (see Table III).

After full relaxation of lattice constants and atomic posi-
tions (without any symmetry constrains), the crystal symmetry
has been examined using the package ISOTROPY.39 The
obtained structure has a Pnma orthorhombic symmetry with
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TABLE VI. The values of magnetic moments (in μB ) in the
orthorhombic β phase of MnAs before (input) and after (output)
structure optimization.

Atom Input Output

position μx μy μz μx μy μz

(0,0,0) 0 0 1 1.15 −0.27 1.97
( 1

2 ,0,0) 0 1 0 −1.15 0.27 −1.97

(0, 1
2 ,0) 1 0 0 1.15 −0.27 1.97

( 1
2 , 1

2 ,0) 0 0 −1 −1.15 0.27 −1.97

(0,0, 1
2 ) 0 −1 0 1.21 −0.24 1.94

( 1
2 ,0, 1

2 ) −1 0 0 −1.21 0.24 −1.94

(0, 1
2 , 1

2 ) 0 1 1 1.21 −0.24 1.94

( 1
2 , 1

2 , 1
2 ) 0 −1 −1 −1.21 0.24 −1.94

a total magnetic moment smaller than 0.01μB . The optimized
volume, amounting to 228.22 Å3, is significantly smaller than
the corresponding one obtained for the FM configuration
under the same pressure (243.95 Å3). The volume changes
∼6.9%. The equilibrium atomic positions are shifted from the
high-symmetry points of the hexagonal structure by vectors
presented in Table VII. It should be pointed out that despite a
lack of symmetry constraints during the crystal optimization,
the resulting structure has an orthorhombic symmetry with
high accuracy. It indicates a well-defined minimum of enthalpy
(−107.85 eV per 16 atoms unit cell), which is lower than that
for the FM phase (−107.06 eV) by ∼50 meV per atom.

In spite of the random initial magnetic configuration,
the resulting state shows the AFM order with an arbitrary
direction of magnetic alignment (see Table VI). This magnetic
state differs from two configurations AFM(1) and AFM(2)
discussed before, therefore, we label it AFM(3). The optimized

TABLE VII. The fractional displacements of the Mn and As atoms
from the hexagonal high-symmetry positions in the β AFM phase.

ux uy uz

Mn atoms
0.049 0.025 0.003

−0.049 −0.025 −0.003
0.049 0.025 0.003

−0.049 −0.025 −0.003
−0.049 −0.025 0.003

0.049 0.025 −0.003
−0.049 −0.025 0.003

0.049 0.025 −0.003

As atoms
0.002 0.001 −0.054
0.002 0.001 0.054
0.002 0.001 −0.054
0.002 0.001 0.054

−0.002 −0.001 0.054
−0.002 −0.001 −0.054
−0.002 −0.001 0.054
−0.002 −0.001 −0.054

k

0

2

4

6

8

ω
  (

T
H

z)

Γ K H Γ M L A Γ

FIG. 10. Phonon-dispersion curves calculated for the AFM(3)
orthorhombic structure at p = 40 GPa.

magnetic moments on the Mn atoms have a parallel orientation
along the line of the [

√
3

2 , 1
2 ,0] direction and an antiparallel one

along the line of the [1,0,0] direction. Along the c direction,
the magnetic moments are aligned parallel. Such magnetic
ordering consists of alternating chains with parallel spins,
which breaks the hexagonal symmetry. In order to verify this
result, we have repeated calculations for three different random
configurations of magnetic moments. In all cases, we have
obtained the AFM(3) state with the same magnetic moment
pattern. One should add that this new AFM(3) structure may
still diverge from a real magnetic configuration because of the
supercell constraints imposed on our calculations.

To check the dynamical stability of the obtained AFM(3)
structure, we have calculated its phonon-dispersion curves.
Because the calculations were performed without any sym-
metry constraints, we have had to consider all atoms in
the supercell as nonequivalent. As a consequence, we have
obtained 48 dispersion curves (see Fig. 10) instead of 24.
As it was mentioned above, the M point in the hexagonal
structure descends to the � point in the orthorhombic phase.
Additionally, the points L and A become equivalent.

In Fig. 11, a comparison of the phonon density of states
calculated for the orthorhombic AFM(3) and hexagonal FM
phases has been presented. Two characteristic features are
clearly visible. First, soft phonons at ∼2.2 THz for the FM con-
figuration stiffen in the AFM phase and their average frequency
increases up to 3.8 THz. Second, top optical band significantly
spreads in the AFM phase, reaching higher frequencies.

V. PHASE TRANSITIONS IN MnAs

In this section, we discuss both phase transitions and the
three phases α, β, and γ of MnAs in light of the results obtained
in the present work. We found that at p = 0 and T = 0 the
FM hexagonal phase is the most stable. As we have also
established, and as has been found in previous DFT studies, the
AFM configuration at p = 0 and T = 0 has a higher energy
and induces orthorhombic distortion.24,25 In addition, we have
demonstrated that the AFM hexagonal phase exhibits a soft
mode η at the M point. This mode reduces the hexagonal
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J. ŁAŻEWSKI, P. PIEKARZ, AND K. PARLINSKI PHYSICAL REVIEW B 83, 054108 (2011)

0

0.1

0.2
Mn-partial

0

0.1

0.2

ph
on

on
 D

O
S

As-partial

0 2 4 6 8
ω  (THz)

0

0.1

0.2

0.3

0.4

0.5 total

PM
FM

FIG. 11. (Color online) Partial and total phonon density of
states for the AFM(3) orthorhombic structure (foreground) and the
hexagonal FM structure (background) at p = 40 GPa.

crystal symmetry to the orthorhombic structure (see Fig. 9).
Furthermore, we have found that the soft mode at the hexagonal
FM phase leads also to the orthorhombic phase under external
pressure, in agreement with the phase diagram of MnAs.9

For T > 0, the total free energy F = E − ST consists of
internal energy E and entropy S. The main contribution to
entropy is expected from the magnetic subsystem, in particular,
the entropy of the AFM state is larger than that of the FM state.
Hence, the temperature decrease of the free energy is stronger
for the AFM system than that of the FM system.

A schematic plot of the free-energy behavior versus
temperature is presented in Fig. 12. At the bottom of Fig. 12,
we plot the expected temperature dependence of the soft-
mode frequency in the AFM state. Here ωsoft increases with
temperature owing to positive thermal expansion. The free
energies of the hexagonal FM and the orthorhombic AFM
phases intersect at the point corresponding to the α → β

transition. This transition has a first-order character with a
discontinuous jump of the crystal volume. At the moment,
an accurate value of Tc cannot be established. The volume
decreases across the phase transition as a consequence of
a larger specific volume of the FM phase than that of the
AFM phase. It should be mentioned that the precise magnetic
structure of the β phase is unknown, therefore it could exhibit
a more complex magnetic configuration or PM disorder with
local AFM fluctuations.25

The orthorhombic AFM phase possesses a shallow double-
minimum potential that creates conditions for the appearance
of critical fluctuations. As a consequence, the short-range order
may still be preserved, but the long-range order responsible for
the diffraction peaks can gradually disappear when approach-
ing the β → γ phase transition. The magnetic fluctuations
are strongly coupled to soft phonons, and a crystal volume
change was reported as an abnormal lattice constant increase,11

Mn-As distance elongation,37 and observed thermal expansion
enhancement.25 In effect, the short-range order contributes

-7.12

-7.10

-7.08

-7.06

-7.04

F
 (

eV
/a

to
m

)

hexagonal FM

orthorhombic AFM

T
c

T
t

hexagonal PM

orthorhombic
SR-AFM

F

η

F

η

0 100 200 300 400 500
T (K)

-2.00

-1.00

0.00

ω
so

ft
 (

T
H

z)

hexagonal AFM

F

η

F

η

FIG. 12. (Color online) Dependence of the free energy (top) and
the soft mode (bottom) on temperature. The calculated F for the FM
hexagonal phase was compared with the curve expected for the AFM
orthorhombic system. At Tt , thermal expansion stabilized the soft
phonon and continuously transforms the orthorhombic phase into
the hexagonal phase. Insets: The crystal potential in the respective
phases. The region of the stable orthorhombic phase is shown as gray.

to the entropy and shifts the transition point toward a lower
temperature. In the schematic plot of the phase diagram of
MnAs presented in Fig. 13, the short-range AFM order in the
β phase is denoted as SR-AFM.

The β → γ phase transition is caused by the thermal
expansion, which stabilizes the hexagonal structure above Tt .
Because the energy of the soft mode, which induces the
orthorhombic distortion in the β phase, increases for larger
crystal volume (see Fig. 3), it becomes positive (η → 0) at T =
Tt , as plotted in Fig. 12. Therefore, this is a displacive second-
order phase transition occurring owing to the soft mode η,
which defines the symmetry change at Tt .40 In the γ phase,
the PM is observed, because the AFM fluctuations found
in the orthorhombic phase weaken gradually with increasing
temperature and disappear above Tt in the hexagonal structure.

FIG. 13. Phase diagram of MnAs (schematic plot).
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The magnetic disordering in the α → β phase transition
is the main reason for the discontinuous change of the
crystal volume. Moreover, the volume decrease is related
to the reduced magnetic moments owing to the spin-lattice
coupling involving the soft mode η (see Fig. 8). Therefore,
the spin-phonon coupling plays an important role in the
magnetostructural transition. As we discussed above, the
entropy change in the magnetostructural transition is mainly
caused by the magnetic subsystem. In the previous work,29

we have estimated the phonon contribution to the entropy
change, assuming that the main change of the phonon spectrum
is associated with a volume reduction in the α → β phase
transition. A comparison of the phonon entropy between two
ferromagnetically ordered systems gave a change �Sph = 9.31
J/(kg K). In the present work, we have gone further and have
estimated the phonon entropy change by juxtaposing values for
the FM hexagonal and the AFM(3) orthorhombic structures.
The obtained entropy jump is ∼30% higher than before and
reads as 12.42 J/(kg K). However, both estimations are smaller
and have an opposite sign to the total entropy change found
experimentally. It agrees with the observation that the magnetic
contribution to the entropy change is larger than the total one.15

VI. SUMMARY

Using the DFT method, we have studied the structural
and dynamic properties of the hexagonal and orthorhombic
phase of MnAs. We have found continuous changes of
lattice parameters and phonon frequencies in a wide range of
pressures. In the α phase, there is a soft mode at the M point,
which reduces the hexagonal symmetry to the orthorhombic
one. We have revealed a strong influence of the magnetic
order on the soft-mode frequency and the dynamical stability
of the hexagonal phase. This strong spin-phonon coupling
plays a crucial role in the mechanism of the magnetostructural
transition in MnAs.
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31P. E. Blöchl, Phys. Rev. B 50, 17953 (1994); G. Kresse and
D. Joubert, ibid. 59, 1758 (1999).

32J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).

33J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996).

34H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

054108-9

http://dx.doi.org/10.1002/ange.19040170903
http://dx.doi.org/10.1002/cber.19110440358
http://dx.doi.org/10.1063/1.1419048
http://dx.doi.org/10.1103/PhysRevB.66.081304
http://dx.doi.org/10.1103/PhysRevB.66.081304
http://dx.doi.org/10.1063/1.370594
http://dx.doi.org/10.1063/1.370594
http://dx.doi.org/10.1143/JPSJ.75.084604
http://dx.doi.org/10.1107/S0365110X64000330
http://dx.doi.org/10.1107/S0365110X64000330
http://dx.doi.org/10.1088/0370-1301/67/4/302
http://dx.doi.org/10.1088/0370-1301/67/4/302
http://dx.doi.org/10.1103/PhysRev.126.104
http://dx.doi.org/10.1103/PhysRev.157.389
http://dx.doi.org/10.1103/PhysRev.157.389
http://dx.doi.org/10.1103/PhysRev.177.942
http://dx.doi.org/10.1103/PhysRev.177.942
http://dx.doi.org/10.1143/JPSJ.51.3149
http://dx.doi.org/10.1103/PhysRevLett.90.097203
http://dx.doi.org/10.1103/PhysRevLett.90.097203
http://dx.doi.org/10.1103/PhysRevLett.95.077203
http://dx.doi.org/10.1103/PhysRevLett.95.077203
http://dx.doi.org/10.1103/PhysRevLett.93.237202
http://dx.doi.org/10.1103/PhysRevLett.93.237202
http://dx.doi.org/10.1209/0295-5075/81/47002
http://dx.doi.org/10.1209/0295-5075/81/47002
http://dx.doi.org/10.1016/0304-8853(85)90018-6
http://dx.doi.org/10.1134/1.1309454
http://dx.doi.org/10.1134/1.1309454
http://dx.doi.org/10.1063/1.1802956
http://dx.doi.org/10.1063/1.1802956
http://dx.doi.org/10.1103/PhysRevB.59.15680
http://dx.doi.org/10.1103/PhysRevB.62.15553
http://dx.doi.org/10.1103/PhysRevB.64.085204
http://dx.doi.org/10.1103/PhysRevB.64.085204
http://dx.doi.org/10.1016/j.msec.2003.09.155
http://dx.doi.org/10.1016/j.msec.2003.09.155
http://dx.doi.org/10.1103/PhysRevB.70.180406
http://dx.doi.org/10.1103/PhysRevB.70.180406
http://dx.doi.org/10.1103/PhysRevB.74.024429
http://dx.doi.org/10.1002/pssa.2210490215
http://dx.doi.org/10.1016/0304-8853(84)90338-X
http://dx.doi.org/10.1016/0304-8853(84)90338-X
http://dx.doi.org/10.1088/0953-8984/17/10/009
http://dx.doi.org/10.1088/0953-8984/17/10/009
http://dx.doi.org/10.1103/PhysRevLett.104.147205
http://dx.doi.org/10.1103/PhysRevLett.104.147205
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.13.5188
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