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Effects of flavor-symmetry violation from staggered fermion lattice simulations of graphene
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We analyze the effects of flavor splitting from staggered fermion lattice simulations of a low-energy effective
theory for graphene. Both the unimproved action and the tadpole-improved action with a Naik term show
significant flavor-symmetry breaking in the spectrum of the Dirac operator. Note that this is true even in the
vicinity of the second-order phase transition point where it has been argued that the flavor-symmetry breaking
should be small due to the continuum limit being approached. We show that at weaker couplings the flavor splitting
is drastically reduced by stout link smearing, while this mechanism is ineffective at the stronger couplings relevant
to suspended graphene. We also measure the average plaquette and describe how it calls for a reinterpretation
of previous lattice Monte Carlo simulation results, due to tadpole improvement. After taking into account these
effects, we conclude that previous lattice simulations are possibly indicative of an insulating phase, although the
effective number of light flavors could be effectively less than two due to the flavor-splitting effects. If that is true,
then simulations with truly chiral fermions (such as overlap fermions) are needed in order to settle the question.
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I. INTRODUCTION

Recently, a number of lattice Monte Carlo simulations
of graphene and graphenelike systems have appeared.1–4

Refs. 1–3 study the effective theory of Nf flavors of massless
four component Dirac fermions, constrained to 2 + 1 dimen-
sions, subject to an instantaneous 3 + 1 dimensional Coulomb
interaction.5,6 In Ref. 4, a 2 + 1-dimensional Thirring-like
model is investigated. This is related to graphenelike systems
through a large Nf or strong coupling equivalence in the
dispersion relation for the auxiliary boson versus photon.
Graphene has Nf = 2, but studying other Nf is of interest in
order to understand the phases of such theories more generally,
and because the large Nf limit is under theoretical control.6

Other interesting studies coming from the effective field theory
perspective have also recently appeared.7,8

In this paper we address the flavor-symmetry breaking that
is introduced when staggered fermions are used in the lattice
formulation. We also discuss the effect of photon tadpoles that
come from lattice field theory. We will show that both features
play an important role in the interpretation of lattice results. We
explore various improvements to the lattice formulation. One is
adding a Naik term to the action, which reduces discretization
errors from O(a) to O(a2), where a is the lattice spacing.
Another is tadpole improvement, which removes ultraviolet
divergent renormalizations associated with the lattice link
operators. A final improvement that we consider is stout link
smearing, which we find restores flavor symmetries at weak
couplings but not at the strong couplings relevant to suspended
graphene. Importantly, we find that flavor-symmetry breaking
is significant in the vicinity of the second-order phase transition
point that occurs in the noncompact gauge formulation. Thus,
although it has been argued3 that the continuum limit should be
approached at this point, and hence flavor-symmetry violations
[which are O(a)] should be small in this regime, we have
empirical results which contradict this expectation. Finally, we
discuss how the flavor-symmetry violations, revealed in split
eigenvalues of the Dirac operator spectrum, perhaps imply

that there are effectively less light flavors than two. Given the
phase diagram that has been suggested by a number of studies
in the Nf versus inverse coupling plane, this would imply that
the critical coupling for Nf = 2 would occur at a somewhat
stronger coupling than is found from staggered fermions. Only
a simulation with truly chiral lattice fermions, such as overlap
(Neuberger) fermions,9 can conclusively answer the question
of what is the critical coupling for Nf = 2, since no systematic
way of restoring the flavor symmetry has been found so far for
the staggered fermion formulations at the stronger values of
couplings.

The outline of this paper is as follows. In Sec. II we describe
the action of the continuum effective theory that is supposed to
describe the low-energy limit of suspended graphene. We pay
particular attention to redefinitions that are involved in going
to the action in its simplest form, as these will be mirrored in
redefinitions made in the lattice formulation. It will be shown
that in the massless limit there is only one parameter in the
theory, a coupling g which is strong in the case of suspended
graphene. We also describe the U (4) flavor symmetry of the ef-
fective theory, which is spontaneously broken to U (2) × U (2)
by the formation of a chiral condensate, when the coupling g

is sufficiently strong. In Sec. III we discretize the continuum
action, formulating the lattice theory with staggered fermions.
We show the redefinitions that isolate the one parameter of
the lattice theory (in the massless limit), β = 1/g2. It is
important here that we make redefinitions that maintain the
unitarity of links; i.e., U (n) = exp[iθ (n)], where θ (n) is a
real lattice field representing the scalar potential associated
with the instantaneous Coulomb interaction. Interestingly, this
approach demands an anisotropic lattice with lattice spacing
at in the time direction and as in the spatial directions, with
the anisotropy parameter as/at set equal to the Fermi speed,
as/at = vF . Flavor symmetry violation of the unimproved
staggered fermion formulation is discussed in Sec. IV. For
2 + 1-dimensional staggered fermions, O(as,at ) terms reduce
the U (4) flavor symmetry to U (1) × U (1) in the massless limit.
We evaluate the spectrum of the unimproved Dirac operator
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on a large number of lattice field configurations that we have
generated by Monte Carlo techniques. We show that at stronger
values of the coupling g (equivalent to small values of β), the
flavor-symmetry violation is severe. This is revealed by the
lack of fourfold spectrum degeneracies that would be present
if the U (4) symmetry were respected. We find that this is
even true near the second-order phase transition point of the
noncompact gauge formulation.

Section V describes Naik fermion and tadpole improve-
ments to the lattice formulation. We do not find any restoration
of flavor degeneracy but do find significant reinterpretation of
the bare lattice parameters in terms of those that are tadpole
improved, at strong coupling. It will be seen that that has
important implications for the phase diagram of the theory.
We measure the average plaquette in dynamical simulations.
We will show that for stronger couplings the resulting tadpole
improvement of the theory has a large effect when relating the
simulation lattice coupling β to the coupling in the tadpole-
improved action, βTI. The result is that for the noncompact
gauge action the insulator/semimetal transition occurs at a
physical coupling that is significantly smaller than the g2 of
suspended graphene. The apparent absence of a spectral gap in
the experimental results for suspended graphene near the Dirac
K points10 is in conflict with the lattice simulations, and we
will not be able to provide an explanation for this discrepancy.

The topic of stout link smearing, which is also a type
of improvement, is discussed in Sec. VI. We find that this
is very effective at weak couplings, but that it is not useful
for restoring flavor symmetry at the strong coupling relevant
to either graphene or the second-order phase transition point
that occurs in the noncompact gauge action. We conclude in
Sec. VII with a number of observations, summarizing our
finding.

II. CONTINUUM ACTION

A. The effective coupling g

The Euclidean space-time action for the effective theory is
given by

S =
∫

dt d2x
∑

α=1,2

(
ψ̄αγ0Dtψα + h̄vF

∑
i=1,2

ψ̄αγi∂iψα

+mc2ψ̄αψα

)
+ ε0

2

∫
dt d3x

3∑
i=1

(∂iA0)2. (1)

Here γi, i = 0,1,2, are Euclidean Dirac matrices satisfying
the SO(3) Euclidean rotation group Clifford algebra {γi,γj } =
2δij . For instance, we could choose

γi =
(

0 iσi

−iσi 0

)
, i = 0,1,2, (2)

composed of Pauli matrices with σ0 ≡ σ3. Also note that due
to the nonrelativistic approximation, the covariant derivative
only involves the scalar potential A0,

Dt ≡ h̄∂t − ieA0. (3)

Next we make the redefinitions

x0 = vF t, A0 = h̄vF

e
A′

0, D0 = ∂0 − iA′
0 (4)

to obtain

1

h̄
S =

∫
d3x

∑
α=1,2

(
ψ̄αγ0D0ψα +

∑
i=1,2

ψ̄αγi∂iψα

+ mc2

h̄vF

ψ̄αψα

)
+ ε0h̄vF

2e2

∫
d4x

3∑
i=1

(∂iA
′
0)2. (5)

Recall that the Euclidean path integral that defines the theory
has as its integrand exp(−S/h̄). The rescalings have isolated
the sole coupling constant in the theory,

g2 ≡ e2

h̄vF ε0
= (c/vF )4πα, (6)

where α is the fine structure constant. A final redefinition

A′
0 = gÃ0, D̃0 = ∂0 − igÃ0 (7)

makes it clear that g is the coupling constant in the photon-
electron-electron vertex of this theory.

Perturbation theory would be valid in the limit where
αg ≡ g2

4π
= αc/vF � 1, which is clearly not the case for

graphene, where c/vF ≈ 300. Given that the coupling is in fact
strong, it is natural to appeal to lattice Monte Carlo methods,
as has been done in the case of the nuclear strong interaction,
quantum chromodynamics (QCD). It also becomes clear why
one would like to be able to adjust vF experimentally, since
the coupling of the theory determines the binding energy of
any possible bound states that might form from the massless
quasiparticles, analogous to hadrons in QCD. In fact, Refs. 1–4
argue that the theory is quite similar to QCD in that when
the coupling is strong enough, one creates a nonzero chiral
condensate 〈ψ̄αψβ〉 �= 0, so that the theory is in a Mott
insulator phase. (Properly speaking, chirality does not exist
in 2 + 1 dimensions. It is, rather, a flavor symmetry that is
being spontaneously broken in the 2 + 1-dimensional effective
theory.)

B. Symmetries

The three-dimensional SO(3) 	 SU(2) rotation group act-
ing on the spinors has generators Sij = 1

2σij ⊗ 1, where

σij = −(i/2)[γi,γj ] = εijk diag (σk,σk) (8)

and the 1 factor in 1
2σij ⊗ 1 acts on the two-dimensional flavor

space. The action (2) has a U (4) flavor symmetry, with 16
generators that commute with those of the rotation group,
Eq. (8):

1 ⊗ 1, 1 ⊗ σi, γ4γ5 ⊗ 1, γ4γ5 ⊗ σi, (9)

γ4 ⊗ 1, γ4 ⊗ σi, γ5 ⊗ 1, γ5 ⊗ σi, (10)

where γ4,5 are given by

γ4 =
(

0 1

1 0

)
, γ5 =

(−1 0

0 1

)
(11)

when we choose the Dirac matrices (2). A mass term
m

∑
α ψ̄αψα reduces the symmetry to U (2) ⊗ U (2) since the

generators (10) are broken. However, we still expect a fourfold
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degeneracy in the spectrum of the Dirac operator

M = γ0D0 +
∑
i=1,2

γi∂i + mc2

h̄vF

(12)

because the 4 representation of U (4) decomposes to a
(2,2) representation of the subgroup SU(2) ⊗ SU(2). [In spin
language, this is the (j1,j2) = (1/2,1/2) representation of
SU(2)1 ⊗ SU(2)2.] This is important in our considerations
below because the Monte Carlo simulations are done at
a nonzero mass, in order to avoid numerical difficulties
(inversion of a poorly conditioned Dirac matrix). We will
examine the spectrum of the Dirac operator on the lattice and
compare to this fourfold degeneracy of the continuum theory
with a mass term.

The formation of a chiral condensate 〈ψ̄αψβ〉 �= 0 in the
m → 0 limit would signal a spontaneous breaking of the U (4)
symmetry. In the case 〈ψ̄αψβ〉 ∝ δαβ the symmetry is reduced
to U (2) ⊗ U (2), and in the massless limit m → 0 there will be
eight massless Goldstone pseudoscalar modes, parametrizing
the coset U (4)/U (2) ⊗ U (2), with a low-energy dynamics
described by the corresponding chiral perturbation theory.

The formation of the chiral condensate requires a sufficiently
strong value of g, so there is a phase boundary at which the
condensation “turns on.” The works1–4 have located this phase
boundary using lattice Monte Carlo methods.

III. DISCRETIZATION

The fermionic part of the action (1) is easily discretized
using the staggered fermion formulation.11 The gauge-field
part of the action can be discretized in two ways, compact and
noncompact, both of which will be described and used here.
From this point on, we work in units where h̄ = c = 1, and use
a lattice spacing at in the time direction and as in the spatial
directions. Thus we have lattice fields at the sites t = atn0,
xi = asni (i = 1,2,3), where n0, . . . ,n3 are integers. We are
permitting as �= at because the anisotropy parameter as/at

will provide us with the handle to remove the Fermi velocity
vF from the lattice action, so that the only parameters that
will appear are the coupling (6) and the fermion mass (which
must eventually be taken to zero). This mirrors the continuum
redefinition x0 = vF t which appears in Eq. (4). The lattice
action takes the form

S = 1

2

∑
n0n1n2

ata
2
s

{
1

at

[χ̄(n)U (n)χ (n + 0̂) − χ̄ (n)U (n − 0̂)χ (n − 0̂)]

+vF

1

as

2∑
i=1

ηi(n) [χ̄ (n)χ (n + ı̂) − χ̄(n)χ (n − ı̂)] + mχ̄(n)χ (n)

}
+

∑
n0···n3

ata
3
s

ε0

2

3∑
i=1

(
θ (n) − θ (n − ı̂)

as

)2

. (13)

The notation employs four-vectors n = (n0,n1,n2,n3) and
unit vectors 0̂ = (1,0,0,0), etc. Here χ,χ̄ are one-component
fermions and as site-dependent coefficients one has the stag-
gered phase factors η1(n) = (−1)n0 and η2(n) = (−1)n0+n1 .
The reason that one-component fermions can be used is
because staggered fermions “suffer” from doubling, so that
in three dimensions there are eight continuum modes, which
organize themselves into two four-component fermions under
a change of basis.12 The link fields are defined as U (n) =
exp [ieat θ (n)], where θ (n) is the lattice version of the scalar
potential A0(x). Here we have used the noncompact form of
the gauge action in the last term. The compact form will be
discussed at a later point below.

We next rescale to dimensionless fields, χ → χ/as and
θ → θ/ate to obtain

S = 1

2

∑
n0n1n2

{
χ̄ (n)U (n)χ (n + 0̂) − χ̄ (n)U (n − 0̂)χ (n − 0̂)

+vF

at

as

2∑
i=1

ηi(n) [χ̄(n)χ (n + ı̂) − χ̄ (n)χ (n − ı̂)]

+mat χ̄ (n)χ (n)

}
+

∑
n0···n3

as

at

ε0

2

3∑
i=1

[θ (n) − θ (n − ı̂)]2 .

(14)

Finally, we can absorb the Fermi speed vF into the anisotropy
parameter, choosing as/at = vF , to obtain the lattice action in

its most convenient form,

S = 1

2

∑
n0n1n2

{
χ̄(n)U (n)χ (n + 0̂) − χ̄ (n)U (n − 0̂)χ (n − 0̂)

+
2∑

i=1

ηi(n) [χ̄(n)χ (n + ı̂) − χ̄ (n)χ (n − ı̂)]

+ m̂χ̄(n)χ (n)

}
+

∑
n0···n3

β

2

3∑
i=1

[θ (n) − θ (n − ı̂)]2, (15)

where

β = 1

g2
= vF ε0

e2
, m̂ = mat . (16)

A slightly different choice for the anisotropy parameter as/at

will be made below when we come to tadpole improvement.
We also consider the case of a compact gauge action, where

the last term in Eq. (15) is replaced by

−β
∑

n0···n3

3∑
i=1

Re U (n)U ∗(n − ı̂). (17)

In the weak-field limit [small θ (n)], which corresponds to large
β, the two formulations are equivalent. However, at small β it
is expected that there will be qualitative differences.
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IV. FLAVOR-SYMMETRY VIOLATION

As previously stated, a single staggered fermion automat-
ically yields two flavors, as the staggered formulation does
not fully solve the doubling problem. In the continuum, the
massless theory with two flavors has a U (4) flavor symmetry,
which is reflected in a degeneracy of the spectrum of the Dirac
operator. On the other hand, it is known that the leading order
spectral degeneracies of the lattice Dirac operator are broken
by flavor violating higher-order terms (in the lattice spacings
at ,as). In the massless limit but at nonzero lattice spacing, only
a U (1) ⊗ U (1) flavor symmetry remains (in addition to some
discrete symmetries).13 Long ago it was shown in the 3 + 1-
dimensional case that the flavor-symmetry breaking can be
seen by going to the “flavor basis.”14 For 2 + 1 dimensions, see,
for example, Ref. 15, where staggered fermion flavor-breaking
terms were previously considered in the context of the Thirring
model. Thus in the present paper we are reiterating concerns
that were already raised in Ref. 15, though here our principal
concern is the effect in the context of graphene effective lattice
field theory. Although the flavor-symmetry breaking terms
are irrelevant operators (i.e., they are suppressed by at ,as),
at one loop and at finite lattice spacing they have important
effects on the self-energy of the fermions.13 The effect of this
flavor-symmetry violation on the order parameter 〈ψ̄ψ〉 that is
used to distinguish the semimetal versus insulator phases is not
known, though in our Conclusions we will make a conjecture
for what might occur. The flavor-changing interactions are a
lattice artifact that is known to disappear in the continuum
limit. Hence, if one could send the lattice spacings at ,as of the
discretized effective theory (not to be confused with the lattice
constant of the graphene system itself) to zero, one would
recover the full U (4) symmetry.13 However, the Monte Carlo
simulations are performed at finite at ,as , and so this lattice arti-
fact must be taken into account. Thus it is not quite accurate to
say that one is simulating the effective theory with two (1 + 3)-
dimensional Dirac fermions constrained to a plane, equivalent
to four massless (1 + 2)-dimensional Dirac fermions. An
extrapolation in the lattice spacing or suppression of the lattice
artifacts is needed. One would like a systematic way to remove
these lattice artifacts. This motivates the present study.

We determine the size of the flavor splitting by studying
the eigenvalues of the lattice Dirac operator, which is the dis-
cretization of Eq. (12) corresponding to the lattice action (15).
In Fig. 1 the “unimproved” data shows the average spectrum
of the staggered Dirac operator, for the lowest-lying modes.
Here a Monte Carlo simulation was performed with β = 0.11,
and eigenvalues were obtained for each configuration of the
gauge field. The error bars in the figure indicate the standard
deviation in the eigenvalues. It can be seen that there is a linear
rise in eigenvalues, with no degeneracies whatsoever. Thus at
strong coupling the flavor symmetry of the continuum is badly
broken.

Next we consider the case of weak coupling, β = 4.0. In
Fig. 3 the unimproved data shows evidence of approximate
degeneracies. The weaker coupling leads to smoother config-
urations of the gauge field. Rough gauge fields are farther away
from the continuum limit, so that theO(at ,as) flavor-symmetry
violation (FSV) is more pronounced.

We have examined the spectrum for other values of β. The
general pattern is that for strong coupling the flavor symmetry
is badly broken. Our next task is to attempt to restore it, since

the β corresponding to graphene and the phase transition of
the effective theory is at a strong coupling value.

V. IMPROVEMENT

Some time ago the lattice QCD community set aside
unimproved staggered fermions due to unwanted lattice
artifacts. Modern staggered fermions are improved in various
ways in order to suppress these effects.16,17 So-called AsqTad
staggered fermions were popular for several years for the study
of K and B physics (e.g., Ref. 18). Further improvements
have been introduced to produce highly improved staggered
quarks (HISQ) staggered fermions.19 Detailed studies of the
low-lying eigenvalue spectrum of various staggered Dirac
operators have, for instance, been conducted in Ref. 20. In each
case, an important effect is to restore the flavor degeneracy by
suppressing flavor-changing interactions. The present work
represents a first attempt in that direction; however, we will
find that improvement of staggered fermions in the present
context is more difficult. The reason is that for the study of
graphene and the phase transition of the effective theory the
coupling is strong, where the flavor symmetry is badly broken.

In lattice QCD it is known that flavor-symmetry breaking
can be ameliorated by making improvements to the lattice
action that reduce lattice artifacts. An expansion in the lattice
spacing a (or at ,as in our case) and gauge coupling g allows for
coefficients of various improvement terms to be determined in
perturbation theory. However, asymptotic freedom should be
important, since in that case it is clear how one makes these
coefficients small in matching onto the desired continuum
theory. It is then an important question whether for the strongly
coupled theory of graphene, where there is no asymptotic
freedom, the lattice action can be improved so as to reduce
the flavor-symmetry-breaking effects. Certainly perturbative
improvement is out of the question.

A. Tadpole improvement

Tadpoles arise from 〈A2
0(x)〉 ∼ 〈θ2(n)〉 ∼ 1/a2

t , where the
estimate is made on dimensional grounds. As previously
mentioned, we study both the compact and noncompact
gauge actions. In the noncompact case, gauge-field tadpoles
only enter the perturbation series through the gauge links
U (n) = exp [iat eθ (n)] that are contained within the fermion
action. In the compact case there are additional multiphoton
vertices coming from expansion of the gauge action (17).
Consider the following example in the fermion timelike
hopping terms. In this, we reintroduce the dimensions and
canonical kinetic term for θ (n) through θ (n) → atgθ (n).
Then, expanding the link U (n) = exp[iatgθ (n)] and focusing
on the contribution to the fermion self-energy, we obtain a
term atg

2〈θ2(n)〉χ̄ (n)χ (n + 0̂) ∼ (g2/at )χ̄(n)χ (n + 0̂). That
is, there is a large correction to the hopping term, even though
the θ2χ̄χ vertex is irrelevant by power counting. There is also
a large effect on the marginal θχ̄χ vertex:

igθ (n)1 − 1
2a2

t g
2〈θ2(n)〉 + · · · χ̄(n)χ (n + 0̂)

= igθ (n)1 + O(g2)χ̄(n)χ (n + 0̂). (18)

Here again, the correction is O(g2) rather than O(g2a2
t ), due to

the tadpole 〈θ2(n)〉 ∼ 1/a2
t . The tadpoles associated with the

irrelevant fermion vertices thus give significant contributions
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to the renormalization of g, causing the matching onto
continuum perturbation theory to be problematic. This can
be circumvented through a change in renormalization scheme,
known as tadpole improvement.21 In fact, since for graphene
the value of g is large, the tadpole corrections are out of
perturbative control and must be evaluated nonperturbatively.

We will now show that the translation between the bare
lattice β = 1/g2 (i.e., the parameter that appears in the
action that is simulated) and its tadpole-improved value βTI

is somewhat different depending on whether the compact
or noncompact form of the gauge action is used, more so
at stronger values of the coupling. From this, the physical
coupling—as estimated by the tadpole-improved value βTI—is
different from the bare coupling, due to radiative effects. In
fact, we will reproduce the results of Ref. 3 regarding the
relationships between βTI and β.

We begin with the expectation value 〈P 〉 of the plaquette
operator P = U (n)U ∗(n + ı̂), i = 1 or 2, which is related to
〈A2

0(x)〉. The average link u0 is defined through this quantity:

u0 = 〈P 〉1/2. (19)

Note that the square root is used here, in contrast to the fourth
root that appears in QCD applications, since the plaquette
operator is quadratic in the links that are allowed to fluctuate
in the present, nonrelativistic formulation.

Tadpole improvement21 can be understood as integrating
out ultraviolet modes of the link operator U (x), to obtain an
effective infrared link operator. The quantity u0 represents the
ultraviolet divergent effects of tadpoles 〈A2

0〉. Thus, the link is
related to an infrared (IR) field V (n) or θ IR(n):

U (n) ≡ u0V (n) ≈ u0[1 + iat eθ
IR(n)]. (20)

When the lattice is formulated using instead the V (n) =
U (n)/u0 links, one has

S =
∑

n0n1n2

{
a2

s

u0
[χ̄(n)U (n)χ (n + 0̂) − χ̄ (n)U (n − 0̂)χ (n − 0̂)]

+ vF atas

2∑
i=1

ηi(n)[χ̄(n)χ (n + ı̂) − χ̄ (n)χ (n − ı̂)]

+mata
2
s χ̄(n)χ (n)

}
+

∑
n0···n3

atas

ε0

2

3∑
i=1

[θ (n) − θ (n− ı̂)]2.

(21)

The redefinition of variables is now

χ =
√

u0

as

χ ′, θ = 1

ate
θ ′ (22)

One finds that as/at = vF u0 simplifies the spatial derivative
term and that the result is Eq. (15) except that β and m̂ are
replaced by

β = u0
vF ε0

e2
= u0β

nc
TI , m̂ = u0m̂TI. (23)

Note that βnc
TI and m̂TI are what would have appeared in the

lattice action had we not included u0 in the redefinition (22).
Hence these are the inverse coupling and dimensionless mass
of the tadpole-improved action. By contrast, β and m̂ are the
inverse coupling and mass that are used in the simulation after
going to the redefined variables where the action takes its
simplest form (i.e., u0 does not appear explicitly). Thus in the
massless limit, for the noncompact gauge action, the entire
effect of the tadpole improvement is to rescale the inverse
coupling according to this equation. Something similar occurs
in the compact gauge action case. There we have, in addition,
a factor 1/u2

0 in front of the gauge term,

∑
n0···n3

1

u2
0

as

at

ε0

2e2

3∑
i=1

U (n)U ∗(n + î). (24)

Here then the result is

β = 1

u0
βc

TI. (25)

These rescalings of β agree with those found recently in Ref. 3.

B. Naik improvement

The Naik22 fermion action improvement reduces dis-
cretization errors and when the tadpole improvement is also
performed it is given by

SN = a2
s

∑
n0n1n2

χ̄ (n)
1

2

{
c1

u0
[U (n)χ (n + 0̂) − U ∗(n − 0̂)χ (n − 0̂)]

+ c2

u3
0

[U (x)U (n + 0̂)U (n + 20̂)χ (n + 30̂) − U ∗(n − 0̂)U ∗(n − 20̂)U ∗(n − 30̂)χ (n − 30̂)]

}

+ vF asat

∑
i,n0n1n2

ηi(n)χ̄(n)
1

2
{c1[χ (n + ı̂) − χ (n − ı̂)] + c2[χ (n + 3ı̂) − χ (n − 3ı̂)]} + a2

s atm
∑

n0n1n2

χ̄ (n)χ (n). (26)

Tree-level improvement makes the action O(a2) accurate by setting c1 = 9/8 and c2 = −1/24.
Next we make the redefinitions (22), together with setting as/at = vF u0 as before, to obtain

SN =
∑

n0n1n2

χ̄ ′(n)
1

2

{
c1[U (n)χ ′(n + 0̂) − U ∗(n − 0̂)χ ′(n − 0̂)] + c2

u2
0

[U (x)U (n + 0̂)U (n + 20̂)χ ′(n + 30̂)

−U ∗(n − 0̂)U ∗(n − 20̂)U ∗(n − 30̂)χ ′(n − 30̂)]

}

+
∑

i,n0n1n2

ηi(n)χ̄ ′(n)
1

2
{c1[χ ′(n + ı̂) − χ (n − ı̂)] + c2[χ ′(n + 3ı̂) − χ ′(n − 3ı̂)]} + m̂

∑
n0n1n2

χ̄ ′(n)χ ′(n), (27)
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FIG. 1. Spectrum of lowest-lying modes of the three massless
Dirac operators we consider, for compact gauge action. The con-
figurations of gauge fields were dynamically generated at β = 0.11
and m = 0.01 on a 123 × 8 lattice with the unimproved staggered
fermion action and plaquette gauge term. The tadpole improvement
of the Naik Dirac operators used u0 = 0.256. Average eigenvalues
are shown, and the error bars represent standard deviations.

where again, m̂ = matu0. This is the “Naik-tadpole improve-
ment”; note that u0 appears explicitly in this action. To obtain
just the Naik improvement, one can set u0 = 1 in the previous
expressions.

C. Spectrum results

We have computed the low-lying eigenvalues of the
spectrum of the Dirac operator on dynamical configurations
at various values of β, in order to see the size of the
flavor-symmetry violating effect. Figure 1 shows the spectrum
of average eigenvalues for β = 0.11, m̂ = 0.01 on 123 × 8
lattices, with compact gauge action, as well as the standard
deviation (by error bars). Figure 2 shows the same thing except
that the noncompact gauge action was used. In either case, one

FIG. 2. Same as Fig. 1 except that here we use the noncompact
gauge action.

can see that there is no hint of the fourfold degeneracy of
the continuum theory and that the splitting is of the order
0.02. By comparison, the explicit mass in the simulations of
Ref. 1 ranged from 0.0025 to 0.02. Thus the flavor-changing
interactions split the spectrum at the order of the mass or
greater, and one is far from the desired theory. Since according
the to Banks-Casher relation23 the condensate on the lattice is
determined by the density of near-zero modes, a significant
systematic error will be introduced by the flavor splitting
that we observe. We note that for the “improved” Dirac
operators the splitting is not at all improved. This would
seem to indicate that the lattice is actually quite coarse, so
that suppressing lattice artifacts cannot be achieved by simple
power counting in the lattice spacings at ,as , such as is done in
the Naik improvement. It is also worth mentioning that large
scaling violations were seen in Ref. 1 for strong coupling
(very small values of β) which would be a further indication
that lattice artifacts are playing a dominant role. However,
the fact that Ref. 1 observed scaling in a regime where we
see large flavor violations is interesting, as it suggests that
there is a universal description but that it is one with less
flavor symmetry than the U (4) of the target graphene effective
theory.

As a further check, we have also computed the spectrum
from a simulation at the weak coupling β = 4, where the flavor
violation is expected to be small due to weak interactions.
We also note that at this weak value of the coupling the
compact and noncompact formulations of the gauge action
are completely equivalent. Thus the flavor-symmetry breaking
that we next describe is universal. At large β the fluctuations
in the gauge-field strength are suppressed and a perturbative
expansion of the link operators U0(x) ≈ 1 + iagAμ(x) should
be valid. Results for the low-lying eigenvalues of the three
types of Dirac operators are shown in Figs. 3 and 4, and
these certainly show a closer approximation to the fourfold
degeneracy. However, the improved Dirac operators do not
show any superiority to the unimproved one. This somewhat
surprising result suggests that a further improvement may be
needed, such as smearing, which is something we explore in
the next section.

FIG. 3. Similar to Fig. 1 (compact gauge action) except that
β = 4.0 and u0 = 0.974.
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FIG. 4. Similar to Fig. 2 (noncompact gauge action) except that
β = 4.0 and u0 = 0.974.

It is also interesting to have a statistical measure for what
happens to flavor symmetry over an ensemble. For this purpose
we have computed

RFSV = λ̄4 − λ̄1
1
4 (λ̄1 + λ̄2 + λ̄3 + λ̄4)

, (28)

where λ̄i is the average value of the ith eigenvalue. This
measures the relative flavor-symmetry breaking in the first
four eigenvalues. On the β = 0.11 (compact) lattice we
obtain RFSV ≈ 1.4(1). On the β = 4.0 (compact) lattice we
obtain RFSV ≈ 0.18(2). These results are independent of the
improvement, which is curious at the larger β.

D. Relation between β’s

Previously, we found that the value of βTI in the tadpole-
improved action can be related to another value β obtained
after redefinitions, given by Eqs. (23) and (25). The latter
should be used in the simulation with an action that is
equivalent to one without tadpole improvement (or only a
factor 1/u2

0 on the temporal Naik term). We are therefore
interested in the effective value βTI as a function of β so that
we know how to interpret simulations done at β in terms of
the underlying βTI. For instance, Drut and Lähde find a critical
value of the coupling for which a condensate forms, and this
should be interpreted as a value of β at which the simulation
is done (i.e., in an action without u0 appearing explicitly). To
see what this physically corresponds to, one must translate
back to βnc

TI in order to find the value of the coupling in
the tadpole-improved action, where ultraviolet artifacts are
minimized.

Results for the compact and noncompact actions are
summarized in Tables I and II, respectively. Thus to simulate
graphene, which has βTI ≈ 0.037, we should choose the
modified values β given in the first rows of Tables I or II,
depending on the form of the gauge action. This gives β ≈ 0.12
for compact and β ≈ 0.004 for noncompact gauge actions.
The simulation coupling where Drut and Lähde have found
a phase transition is βc ≈ 0.074. The physical value of the
inverse coupling is then approximately βnc

TI ≈ 0.21, which is at

TABLE I. The average plaquette 〈P 〉 and the tadpole correction
factor u0 that is derived from it, as a function of β, for the compact
gauge action. This then gives a value for tadpole-improved inverse
coupling β = βc

TI. For instance, for graphene we want βc
TI = 0.037

and the inverse coupling that should be used in the simulation is
β ≈ 0.12.

β 〈P 〉 u0 βc
TI

0.037 0.0306(40) 0.175(11) 0.006 47(42)
0.058 0.034(3) 0.183(7) 0.010 61(41)
0.11 0.066(4) 0.256(8) 0.028 16(88)
0.15 0.0901(44) 0.3002(73) 0.0450(11)
0.25 0.1492(43) 0.3863(56) 0.0965(15)
0.5 0.504(6) 0.710(4) 0.355(2)
1.0 0.814(3) 0.9023(14) 0.9023(14)
2.0 0.9120(13) 0.9550(7) 1.91(14)
4.0 0.949(2) 0.974(1) 3.896(4)

a coupling significantly weaker than graphene, βTI ≈ 0.037.
Thus the appearance of the condensate 〈ψ̄ψ〉 occurs for a
weaker value of the coupling, and will persist at the stronger
value of graphene. One concludes that the lattice simulation is
indicative of an insulator phase. This is in agreement with the
findings of Ref. 3.

We also mention in passing that the value of 〈P 〉 and
hence u0 turned out to be essentially independent of which
fermion action (unimproved, Naik-improved, or Naik-tadpole-
improved) we used in the simulation. We also changed the mass
to 0.02 and find the same value of u0.

VI. STOUT LINK SMEARING

We have seen that at weak coupling (large β), the spectrum
degeneracies start to appear. This is the result of the fact that
in this regime the gauge fields are smooth, whereas at strong
coupling the gauge fields are rough. Clearly what is needed
at strong coupling is a way to smooth out the short-distance
(unphysical) roughness without destroying the long-distance

TABLE II. The average plaquette 〈P 〉 and the tadpole correction
factor u0 that is derived from it, as a function of β, for the noncompact
gauge action. This then gives a value for tadpole-improved inverse
coupling β = βnc

TI . For instance, for graphene βnc
TI = 0.037, and the

inverse coupling that should be used in the simulation is β ≈ 0.004.

β 〈P 〉 u0 βnc
TI

0.002 0.0131(37) 0.114(16) 0.0175(25)
0.004 0.0108(54) 0.104(26) 0.0385(96)
0.005 0.0121(41) 0.110(19) 0.0455(78)
0.01 0.0121(27) 0.110(12) 0.091(10)
0.02 0.0118(42) 0.108(19) 0.184(33)
0.037 0.0272(46) 0.165(14) 0.224(19)
0.058 0.0757(40) 0.2751(73) 0.2108(56)
0.11 0.2392(45) 0.4891(46) 0.2249(21)
0.25 0.5228(40) 0.7230(27) 0.3458(13)
0.5 0.7192(29) 0.8481(17) 0.5896(12)
1.0 0.8466(20) 0.9201(11) 1.0868(13)
2.0 0.9195(11) 0.9589(6) 2.0857(13)
4.0 0.94(2) 0.97(1) 4.124(43)
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FIG. 5. β = 4.0, compact gauge action, ten stout link smearings
with ρ = 1/6.

(physical) fluctuations of the gauge field. The way that this
can be done is to use smeared links in the fermion action.
Here we will study stout link smearing24 and will find that
it successfully restores the level degeneracies for moderate
to weak coupling, but that it fails at couplings as strong as
graphene, βTI = 0.037.

Stout link smearing in the present context introduces the
definitions

C(n) = ρ

3∑
i=1

[U (n + ı̂) + U (n − ı̂)], �(n) = C(n)U ∗(n),

(29)

Q(x) = i

2
[�∗(n) − �(n)],

and U (k)(n) at smearing step k are mapped into U (k+1)(n)
according to

U (k+1)(n) = exp[iQ(k)(n)]U (k)(n). (30)

It can be seen in Fig. 5 that smearing works very well at
weak coupling. The smeared eigenvalue data has ten smearing
iterations with smearing parameter ρ = 1/6, where the latter

FIG. 6. β = 0.11, noncompact gauge action, ten stout link smear-
ings with ρ = 1/6.

was found to be optimal based on trial and error. Less smearing
iterations obviously results in less degeneracy. Unfortunately,
as the coupling is made stronger, the smearing becomes
progressively less effective, as can be seen in Fig. 1.

By contrast for the noncompact gauge action, even at the
relatively small value of β = 0.11, one finds a significant
improvement from smearing (see Fig. 6). Since the phase
transition occurs at β ≈ 0.07 we expect smearing to be quite
useful for reducing flavor-symmetry breaking in the vicinity
of this point. On the other hand, from Table II we found that
graphene with βnc

TI = 0.037 corresponds to β ≈ 0.004, which
is far too strong for smearing to help. Indeed we have found
that there is no restoration of degeneracy in this case.

VII. CONCLUSIONS

We have found that at β <∼ 1 both the unimproved action,
and the tadpole-improved action with a Naik term show
significant flavor-symmetry breaking. We have also measured
the average plaquette term used for tadpole improvement and
have described how it calls for a reinterpretation of previous
lattice simulation results. Importantly, it indicates that the
insulator/semimetal phase transition observed on the lattice
occurs at a physical coupling that is significantly weaker than
the one that appears in suspended graphene. It follows that
the lattice simulations predict that the chiral symmetry is
spontaneously broken and that suspended graphene would be
in the insulating phase.

On the other hand, conjectured phase diagrams in the g

versus Nf plane would indicate that the critical g decreases
as Nf is decreased. So, if the staggered formulation really
simulates effectively less than Nf = 2 due to the flavor-
symmetry breaking, the lattice simulations would predict a
critical g that is weaker than that of graphene. Restoration of
the U (2Nf ) flavor symmetry would tend to increase the value
of the critical g. Thus it is still possible, though unlikely, that
lattice simulations would predict that suspended graphene is
in the semimetal phase, provided the full flavor symmetry is
intact. We think that it is unlikely since the critical βc would
have to shift all the way from β = 0.07 to β = 0.004 as a result
of restoring the flavor symmetries. Still, a study with overlap
fermions is of interest to settle the question.

We have conducted studies with both the compact and
noncompact formulations in their gauge action. In 1 + 3-
dimensional quantum electrodynamics, the compact formu-
lation has difficulties with a bulk phase transition in the
strong-coupling regime, separating it from the continuum
theory (see, for example, Ref. 25 and recent work in Ref. 26).
On the other hand, with the nonrelativistic constraint Ui(x) ≡
1 (i = 1,2,3) that we impose, the phase structure of the
compact theory will be quite different since, for instance,
magnetic monopoles will not exist. However, the presence of
vortices requires further investigations of the compact theory,
which we will leave to future work. At present what is known
from Ref. 3 is that the compact theory has a first-order
phase transition in contrast to the second-order transition
of the noncompact case. This very different phase structure
indicates that nonperturbative features, such as vortices, are
having a significant effect in distinguishing the two theories
at strong coupling. In the present paper we show results for

045420-8



EFFECTS OF FLAVOR-SYMMETRY VIOLATION FROM . . . PHYSICAL REVIEW B 83, 045420 (2011)

both compact and noncompact gauge action. We find that the
qualitative features do not change: the large flavor violations
are present in either formulation at strong coupling.
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APPENDIX: SIMULATION DETAILS

All of our results were obtained using hybrid Monte
Carlo simulations with dynamical staggered fermions. This
simulation method has been reviewed in the present context
in Ref. 2. The mass in our simulations was ma = 0.01, where
a is the lattice spacing. We have simulated on various sizes
of lattices (63 × 8, 83 × 8, 123 × 8, 163 × 8, and 243 × 8).
We checked that the configurations were fully thermalized by
comparing ordered and disordered starts.
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