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Analytic model of plasmonic coupling: Surface relief gratings
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We develop an analytic model to describe the coupling of light to surface plasmon polaritons by surface
relief gratings. Plasmonic coupling efficiencies over 0.8 are predicted to within 15%, while the corresponding
computational times are more than 2 orders of magnitude shorter than needed in standard numerical approaches.
In addition, we are able both to provide simple equations for the physically significant constants of this problem,
such as the coupling strength and reradiation terms, and to predict the spatial dynamics of the plasmonic and
reflected fields.
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I. INTRODUCTION

While surface relief gratings are among the most commonly
used optical components, modeling their interaction with
electromagnetic radiation in an accurate and efficient manner
has proven to be an enduring challenge. The difficulty
stems from the periodic interface between the grating and
the overlaying media, across which there exist no analytic
solutions to Maxwell’s equations. In 1907, Lord Rayleigh
first addressed this issue by calculating the diffracted fields in
terms of outgoing waves;1 this became known as the Rayleigh
hypothesis, which forms the basis for a host of theoretical
treatments of the diffraction of electromagnetic waves by
gratings.2–6 Although these methods can be valid even for
deep gratings,6 the advent of modern computing has led to
modeling methods such as the C-Method,7,8 rigorous coupled-
wave analysis (RCWA),9–11 and finite-domain time-difference
(FDTD)12 calculations that are numerical in nature. Although
these methods can deal with a vast array of grating geometries,
they are all computationally intensive. Moreover, they offer
little physical insight into the process that they model: Due to
the nature of these methods, the only way to explore the effect
of varying a parameter on the system is to repeat the entire
calculation with a range of parameters and then analyze the
complete set of results.

An exciting application of gratings that has been integral to
numerous studies is the use of grating couplers to convert free-
space radiation into surface plasmon polaritons (SPPs).13–16

SPPs are collective electronic excitations that are coupled
to the electromagnetic field and bound to a metal-dielectric
interface, along which they propagate. The momentum of these
modes along the interface is different from that component of
incident free-space radiation, and consequently a grating is
often used to provide the extra momentum and couple the
two fields. Generally, the presence of SPPs is deduced from
the light that is reflected from a grating, where the missing
energy has been coupled to the SPP instead of being reflected.
Consequently, it is the reflection from the grating that is usually
simulated, using one of the standard methods,7–12 and the SPP
coupling efficiency is subsequently extracted from the dip in
the reflectivity. It is worth noting that while many Rayleigh
expansion–based methods, be they semianalytic2,4 or fully
analytic,5 are formulated to deal with plasmonic coupling,
they are not widely employed in current literature that reports

on experimental plasmonic studies. This is particularly true
of plasmonic experiments involving nanostructures, where the
finite spatial extant of the incident beams must be considered,
and a formalism to deal with arbitrarily shaped beams is
lacking.

In this work we introduce an approach that allows for
analytic calculations of light-grating interactions leading to
SPP coupling. Using a Green function–based formalism
developed earlier,17,18 we reduce the problem to a simple
differential equation; the parameters of this equation have clear
physical significance and can be calculated analytically. In
contrast with both the Rayleigh expansion–based method and
the numeric model already cited, our model is concerned with
the coupling of light to SPPs and not with grating diffraction in
general; thus, the model presented herein deals only with the
specular reflection and the SPP field and not with the different
diffraction orders, as do the previous cited works, though
it could be extended to allow for diffraction. Consequently,
this approach circumvents the need to solve large eigenvalue
problems, as in the C-Method or RWCA-based calculations,
the finite-element algorithm of FDTD calculations, or indeed
the majority of the Rayleigh expansion techniques, and thus
dramatically reduces computation times.

Even where the computational times are not significantly
improved, as in the case for the model of Sheng et al.,5

which deals specifically with SPPs excited on square gratings,
our model offers a unique blend of advantages: First, we
provide a functional link between the parameters of the system,
such as the grating amplitude and dielectric constant of the
metal, and the SPP coupling properties, such as the strength
of the coupling and the spectral width of the resonance.
Second, our method is constructed to be very general and
can easily be extended to cover many practical situations
encountered in the laboratory; in this paper, we present the
formalism required to calculate the plasmonic coupling from
a p-polarized continuous-wave beam of either finite or infinite
spatial extant, but this work can be easily extended for arbitrary
polarizations or direction of propagation, and even to pulsed
excitations. This is in contrast with the previously cited
methods, which deal only with continuous and plane-wave
excitation. Finally, and most importantly, this method allows
for the spatial variation of the associated fields. That is, given
an excitation beam of finite extent, we are able to predict the
spatial evolution of both the reflected and the SPP field.
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FIG. 1. (Color online) A metallic surface relief grating beneath a
dielectric. The grating profile, h(y), shown (dashed line) is sinusoidal
but may be any periodic function. Also sketched are the wave vectors
and polarization vectors associated with the electric fields. In general
these vectors can be complex, and consequently this figure is meant
simply as a visualization aid and not an exact representation.

II. STATEMENT OF THE PROBLEM

Our goal is to calculate both the SPP and the reflected fields
that can result when light is incident on a metallic grating. We
show the surface relief grating and the notation relevant to this
problem in Fig. 1. The metallic grating and substrate have a
frequency-dependent dielectric constant εm(ω) and are below
a transparent medium with a real dielectric constant, εd (ω).
The grating has amplitude h0 in the z direction and period
� in the y direction, with a surface profile h(y) that can be
written as a Fourier series,

h(y) =
∑

p

hpGeipGy, (1)

where G = 2π/� is the grating wave vector.
This system can be thought of as three distinct regions:

(1) the region above the grating, z > h0, where only the
dielectric is present; (2) the region of the grating, h0 � z � 0,
where both the dielectric and the metal are present; and
(3) the region below the grating, z < 0, where only the metal
is present. To solve for the electric fields in these regions,
given an incident field, we treat the grating as a perturbation.
For a planar interface between the metal and the dielectric,
the electromagnetic fields are determined by the Fresnel
coefficients (see Appendix A); the presence of the grating
in region 2 results in a small correction. That is, we begin by
treating the material in region 2 as dielectric and then consider
the presence of the metal grating as inducing a polarization
that then acts like a source term, driving the electric fields.

The electric fields are described both by wave vectors and
by polarization vectors. As shown in Fig. 1, the total wave
vector of the light in the dielectric (metal) is νd(m) = ω̃nd(m),
where ω̃ = 2π/λ is the wave vector of light, of wavelength λ,
in a vacuum, and n is the index of refraction of the material.
The total wave vector is split into the y component, κy , and
the z component, wd(m), which is then given by

wi =
√

ω̃2εi − κ2
y , (2)
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Ι
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Δ
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FIG. 2. (Color online) The electric fields and polarizations, in
k space, that need to be calculated. Superscripts I and O show that
the relevant quantities are evaluated at the incident and SPP wave
vectors, respectively.

where i = d,m. Here the square root is defined so that
�{wi} � 0, and �{wi} � 0 if �{wi} = 0. Likewise, we define
the unit polarization vectors as

p̂i± = κy ẑ ∓ wi κ̂

νi

, (3)

where p̂+(−) is the polarization vector for radiation traveling
in the positive (negative) z direction. We have restricted
ourselves to p-polarized light, as this is most commonly used
in plasmonic experiments.13 It is, however, possible to couple
s-polarized light to SPPs when it is obliquely incident on
the grating, as long as the wave vectors of the light and the
SPP, in the direction of the propagation of the SPP, match.
Our approach can be readily extended to this situation by
replacing the p-polarized Fresnel coefficients with those for
s-polarized light (see Appendix A) and carefully accounting
for the component of the vectors in the direction of plasmonic
propagation.

We have restricted ourselves to p-polarized light, as
s-polarized light has no electric field component in the
direction of the grating and can therefore not couple to a
SPP13. It is easier to develop our model in terms of the Fourier
components of the fields (κ space) and obtain the field
dependence in real space by a Fourier transform. Using this
approach, we show a schematic of our method in Fig. 2. We
consider the electric fields, and the induced polarizations,
at the incident wave vector, κI , separate from those at the
SPP wave vector, κO . That is, the electric fields and the
polarizations are written as

E = EI + EO, (4)

P = P I + PO, (5)

and as shown in Fig. 2, it is assumed that the components do
not overlap in κ space.

The SPP wave vector is given by the familiar dispersion
relation,

κSP = ω̃

(
εdεm

εd + εm

) 1
2

, (6)

and we define κO = �{κSP} and γ = �{κSP}. As expected,
κO > ω̃ and a unit of grating momentum G is required to excite
a SPP. We allow for a small detuning, which we define as


 = κI − κO + G. (7)

The effect of the grating can be described as follows: (1) An
electric field is incident at κI and, through grating-assisted
momentum transfer, induces a polarization at κO . (2) This
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polarization drives the SPP field at κO . (3) Through reverse
scattering, the field at κO sets up a polarization at κI . (4) The
polarization at κI drives an electric field at this wave vector that
contributes to the reflected electric field. In the following sec-
tion, we present the mathematical formulation of this scenario.

III. BASIC EQUATIONS

For monochromatic electric fields we have

E(r,t) = E(r)e−iωt + c.c., (8)

where we take

E(r) =
∫

dκy

2π
eiκyy E(κy,z). (9)

Here the spatial components have been explicitly separated,
and the y dependence of the field is Fourier transformed, as
this allows us to employ the Fourier coefficients of the grating
profile [Eq. (1)] instead of its profile.

We proceed by writing general expressions for the elec-
tric fields in the three regions of the problem. Using a
Green function formalism,18 the field above the grating,
for z > h0, is

E(κy,z) = p̂d−Einc(κy)e−iwdz + p̂d+rdmEinc(κy)eiwdz

+ iω̃2

2ε0wd

p̂d+ p̂d+eiwdz

∫ h0

0
e−iwdz′

P(κy,z
′) dz′

+ iω̃2

2ε0wd

p̂d+rdm p̂d−eiwdz

∫ h0

0
eiwdz′

P(κy,z
′) dz′,

(10)

where Einc is the incident electric field, ε0 is the permittivity
of free space, and rdm is the κy-dependent Fresnel coefficient
of reflection (Appendix A). The polarization vector P(κy,z

′)
should be understood to be dotted with the preceding unit
vector (e.g., p̂d+). Each of the four terms in Eq. (10) has a clear
physical significance. The first term represents the electric
field that is incident on the system; the second term is the
reflection from the planar metal dielectric interface at z = 0,
which occurs as though there was no grating present; and the
last two terms are the corrections due to the presence of the
grating, where the first corresponds to the field generated by
the polarization in the grating that propagates up, away from
this region, while the last is due to this induced field, which
initially propagates down and is then reflected by the metal.

In the region of the grating, for h0 � z � 0, the electric
field is

E(κy,z)

= p̂d−Einc(κy)e−iwdz + p̂d+rdmEinc(κy)eiwdz

+ iω̃2

2ε0wd

p̂d+ p̂d+
∫ h0

0
θ (z − z′)eiwd (z−z′) P(κy,z

′) dz′

+ iω̃2

2ε0wd

p̂d− p̂d−
∫ h0

0
θ (z′ − z)e−iwd (z−z′) P(κy,z

′) dz′

− ẑ ẑ
ε0εd

P(κy,z) + iω̃2

2ε0wd

p̂d+rdm p̂d−
∫ h0

0
eiwd (z+z′)

× P(κy,z
′) dz′, (11)

where the Heaviside function used is

θ (z − z′) =
{

0 for z < z′,
1 for z > z′. (12)

While the first two terms, as well as the last, have the same
physical significance as those in Eq. (10), the remaining
three terms must be interpreted separately. The first represents
the electric field, generated in this region, which propagates
upward; for this region, we need only consider the field
generated below the point of interest (i.e., z > z′), which will
then propagate to z. Conversely, the second term represents the
generated electric field that then propagates downward but has
not been reflected yet. Finally, the ẑ ẑ term describes the part of
the field not associated with the aforementioned propagating
waves.

Finally, below the grating and in the metal, for z < 0, the
electric field is

E(κy,z) = p̂m−tdmEinc(κy)e−iwmz+ iω̃2

2ε0wd

p̂m−tdm p̂d−e−iwmz

×
∫ h0

0
eiwdz′

P(κy,z
′) dz′. (13)

Here the first term represents the part of the incident field that
is transmitted across the metal-dielectric interface, while the
second term provides the correction to this field due to the
grating.

It is interesting to consider the nature of the fields in the
preceding equations. Since the dielectric function of the metal
is complex, so too is wm, and hence the terms in Eq. (13) all
represent evanescent fields. In the dielectric and the region
of the grating [Eqs. (10) and (11)], the situation is more
complicated. Since, in general, the dielectric function in these
regions is real, the nature of wd depends on the wave vector
being considered. For example, at the incident wave vector, wd

is real and the fields are propagating, while at the SPP wave
vector, wd is imaginary and hence the fields are evanescent.

We note that at this point the equations are exact. If
the polarization P(κy,z) were known, then Eqs. (10)–(13)
would give the full electric field. We will see that a model
we introduce, based on including only κy associated with a
few center wave numbers, can accurately predict plasmonic
coupling. This is in contrast with numerical models that
describe grating diffraction, which often require the explicit
inclusion of tens if not hundreds of κy to converge. The reason
for this is that here we are describing a resonant phenomenon,
in contrast to the general problem of grating diffraction, and
hence the exact form of the local, evanescent fields on the
surface of the grating is less important. The characterization
of the local fields near the surface is an important one for
certain applications, and in a future publication we plan
to turn to the accuracy of our method in describing them.
But it is not central to the coupling problem to which we
now turn.

IV. THE MODEL

We adopt the following strategy: We approximate the
electric fields at the incident and SPP wave vectors, κI and κO ,
respectively, based on the supposition of a small grating height
(wdh0 � 1). These fields are coupled by the polarization that
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exists in the region of the grating. The polarization itself is
expressed in terms of the generating fields, as well as the
Fourier coefficients of the surface profile. This self-consistent
approach leads to a simple dynamic equation for the evolution
of the SPP envelope function, as well as to an equation for the
envelope function of the reflected field.

To simplify the calculations we define the following:

C(κy,z) ≡ E(κy,z) + ẑ ẑ
εoεd

P(κy,z), (14)

Q(κy) ≡
∫ h0

0
P(κy,z) dz, (15)

where C(κy,z) will allow us to combine the electric fields
in the two regions above the metal, and Q(κy) will lead to
a simplified equation for the grating-induced polarization in
k space.

A. Surface plasmon field

We calculate the electric field at κO , EO , assuming that
the grating perturbation is small, wO

d h0 � 1. Recalling that
Einc(κO) = 0 and making use of Eqs. (14) and (15) allows us
to rewrite Eqs. (10)–(13) as

CO(κy,z) = iω̃2

2ε0w
O
d

p̂O
d+ p̂O

d+eiwO
d z QO(κy)

+ iω̃2

2ε0w
O
d

p̂O
d+rdm p̂O

d−eiwO
d z QO(κy),

for z > h0. For h0 � z � 0,

CO(κy,z)

= iω̃2

2ε0w
O
d

p̂O
d+ p̂O

d+eiwO
d z

∫ h0

0
θ (z − z′)PO(κy,z

′) dz′

+ iω̃2

2ε0w
O
d

p̂O
d− p̂O

d−e−iwO
d z

∫ h0

0
θ (z′ − z)PO(κy,z

′) dz′

+ iω̃2

2ε0w
O
d

p̂O
d+rdm p̂O

d−eiwO
d z QO(κy),

and for z < 0,

CO(κy,z) = iω̃2

2ε0w
O
d

p̂O
m−tdm p̂O

d−e−iwO
m z QO(κy). (16)

Since SPPs are resonant modes, they are signaled by poles in
the Fresnel coefficients (see Appendix A) at κSP. Consequently,
if the preceding equations are multiplied by (κy − κSP), only
the terms containing Fresnel coefficients do not vanish, and
they can be combined to yield

(κy − κSP)CO(κy,z) = iω̃2ρdm

2ε0w
O
d

eO(z) p̂O
d− QO(κy), (17)

for all z, where we have defined a new field:

eO(z) ≡ p̂O
d+eiwO

d zθ (z) + p̂O
m−e−iwO

m z τdm

ρdm

θ (−z). (18)

This field decays exponentially both into the metal and into
the dielectric; it is the SPP electric field. We introduce an

envelope function, fO , which allows us to express the total field
at κO as

CO(κy,z) = eO (z) fO(κy − κO). (19)

By inserting this into Eq. (17), we arrive at the equation for
the SPP envelope function,

(κy − iγ )fO(κy) = F (κy), (20)

where

F (κy) = iω̃2ρdm

2ε0w
O
d

p̂O
d− · QO(κy + κO). (21)

That is, once F (κy) is known, the SPP envelope function can
be calculated. We take the Fourier transform of this equation to
arrive at the differential equation for the SPP envelope function
in real space,

dfO(y)

dy
= −γfO(y) + iF (y). (22)

B. Polarization

We proceed by finding the dependence of the polarizations
on the electric fields, as this is required to calculate F (κy)
[see Eqs. (15) and (21)]. Using the susceptibility of the metal,
χm = εm − 1, the polarization induced by an electric field is

P(y,z) = ε0(χm − χd )θ [h(y) − z]θ (z)E(y,z). (23)

Using Eq. (14) and grouping by directional unit vectors, this
is written as

P(y,z) = ε0θ [h(y) − z]θ (z)L · C(y,z), (24)

where

L = (εm − εd )(x̂ x̂ + ŷ ŷ) + εd (εm − εd )

εm

ẑ ẑ. (25)

In k space, the electric field requires a single grating
scattering event, gaining or losing G, to set up the polarization.
Thus, the relevant polarization terms in our equations are

QO(κy) = ε0hGL · CI (κy − G,0), (26)

QI (κy) = ε0h−GL · CO(κy + G,0). (27)

Here we make one of the fundamental assumptions of
this model: We explicitly take the electric field and the
polarization in the region of the grating to be uniform in z. That
is, we assume that C(κ,z) ≈ C(κ,0). A more sophisticated
assumption can be made, and the functional form of the
field expanded and used in Eq. (24); if some knowledge of
the form of the field is known a priori, for example, from
FDTD simulations, then this could lead to a more accurate,
yet complicated, solution.

C. Field at κ I

To correctly determine the SPP field, the electric field at the
incident wave vector, κI , must be known, as this is the field
that induces PO [Eq. (26)]. Once energy passes into the metal
(i.e., for z < 0), it is absorbed and subsequently lost to heat,
and therefore only the field above the metal surface needs be
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determined. However, the incident field does not vanish here,
and consequently all terms need to be considered.

In the region of the grating, at κI , using Eq. (3) and noting
that θ (z − z′) + θ (z′ − z) = 1, Eq. (11) can be written as

CI (κy,z) = p̂I
d−Einc(κy) + p̂I

d+rI
dmEinc(κy) + i

2ε0εd

×
(

κ2
I

wI
d

ẑ ẑ + wI
d κ̂ κ̂ + ω̃2εd

wI
d

p̂I
d+rI

dm p̂I
d−

)
QI (κy)

− iκI

2ε0εd

( ẑκ̂ + κ̂ ẑ)
∫ h0

0
θ (z − z′)P I (κy,z

′) dz′

+ iκI

2ε0εd

( ẑκ̂ + κ̂ ẑ)
∫ h0

0
θ (z′ − z)P I (κy,z

′) dz′.

The sum of the final two terms in this expression is identically
0 if the polarization is assumed to be uniform in z. Even
for arbitrary polarizations, the sum of these terms at z = 0 is
the negative value of the sum of the terms at z = h0. Hence,
we neglect these terms and simplify the field in the grating
region to

CI (κy,z) = p̂I
d−Einc(κy) + p̂I

d+rI
dmEinc(κy)

+ 1

ε0εd

N · QI (κy), (28)

where

N = i

2

(
κ2

I

wI
d

ẑ ẑ + wI
d κ̂ κ̂ + ω̃2εd

wI
d

p̂I
d+rI

dm p̂I
d−

)
. (29)

To calculate the field above the grating, we first introduce
the envelope function for the incident field,

Einc(κy) = finc(κy − κI ), (30)

which is taken to be strongly peaked at κy = κI . We insert this
envelope function into Eq. (10), evaluate all other quantities on
the right-hand side at κI and use Eqs. (7) and (27)to determine
the field above the grating,

EI (κy + κI ,z) = p̂I
d−finc(κy)e−iwI

d z

+ p̂I
d+eiwI

dz
[
rI
dmfinc(κy) + sOfO(κy + 
)

]
,

(31)

where

sO = iω̃2h−G

2wI
d

(
p̂I

d+ + rI
dm p̂I

d−
) · L · p̂O

d+. (32)

Hence, the field above the grating, near κI , has two com-
ponents: the first, propagating downward, is the incident
field; the second, propagating upward, is the reflected field.
This reflection is further split into two terms: the first, with
coefficient rI

dm, is the reflection that would occur from a planar
interface, while the second, with coefficient sO , gives the
correction due to the presence of the grating. In essence, this
second term represents the feedback from the SPP field to the
field at κI .

D. Self-consistency

Now that the fields at κI are known, we can use them to find
the closed dynamical equation for the SPP field. As it is the

field in the region of the grating that leads to the polarization
that leads to the SPP field, we insert Eqs. (7) and (26)–(28)
into Eq. (21), resulting in

F (κy) = �Xfinc(κy − 
) + �SfO(κy), (33)

where

�X = iω̃2ρdmhG

2wO
d

p̂O
d− · L · (

p̂I
d− + p̂I

d+rI
dm

)
, (34)

�S = iω̃2ρdmhGh−G

2εdw
O
d

p̂O
d− · L · N · L · p̂O

d+, (35)

which, for convenience, are expanded and simplified in
Appendix B. Transforming back into real space,

F (y) = �Xei
yfinc(y) + �SfO(y). (36)

These are inserted into Eq. (22) to arrive at the final, dynamic
equation for the SPP envelope function,

dfO (y)

dy
= [−γ + i�S]fO(y) + i�Xei
yfinc(y), (37)

a one-dimensional ordinary differential equation. Thus, given
a grating and excitation geometry, as well as the incident field,
finc, the SPP field, fO , can be calculated by solving Eq. (37);
this can be done analytically for a large number of cases and,
failing that, numerically.

The physical significance of the three terms in Eq. (37) is
as follows: the two terms preceding fO relate to the losses
of the SPP fields. First are the ohmic losses intrinsic to the
propagation of the SPP along a planar metal surface, which
are given by γ . Second, �S gives a correction that is composed
of both the reradiation of the SPP into a propagating mode and
a correction due to the redistribution of the field in the presence
of a grating. The latter may be either a further loss or even a gain
if the electric field distribution is such that the field amplitude
in the metal is lower than would be the case without a grating;
consequently, the net effect of �S can be either to increase
or to decrease the losses. The final term in the equation, �X,
gives the strength of the grating-assisted coupling of free-space
radiation to the SPP mode. Often, a comparison of the relative
magnitude of these three terms will suffice to determine the
relative efficiency of the grating coupler, without having to
completely solve the system; an example is given in Sec VII.

E. Intensities and plane-wave excitation

In the previous section we developed a theory to calculate
the electric fields, both reflected and SPP, associated with a
metallic grating coupler. However, it is the relevant intensities,
not fields, that are most often measured, or even calculated
numerically. Here, we give expressions for the intensities
associated with this problem. We also give the form of the
solution for the intensities under excitation by a plane wave.
This is useful as numerical models, such as the C-Method and
RCWA, assume a plane-wave excitation; consequently, for us
to test the accuracy of our method, we must do the same.

Given an incident field envelope, finc (f 1y), the incident
intensity is

Iinc(y) = |finc(y)|2. (38)
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The reflected intensity can be read directly from the latter part
of Eq. (31),

Iref(y) = ∣∣rI
dmfinc(y) + sOe−i
yfO(y)

∣∣2
, (39)

and the SPP intensity is

ISP(y) = |fO(y)|2. (40)

It is the coefficient of reflection,

R = Iref

Iinc
, (41)

predicted by our method that we compare with the numerical
models. Plane-wave excitation requires that finc(y) = finc, and
with this used in Eq. (37) it is evident that the SPP envelope
must have the form

fO(y) = FOei
y. (42)

Solving the differential equation yields the following SPP
envelope function:

fO(y) = i�Xei
y

γ − i�S + i

finc, (43)

and consequently, from Eq. (39), the coefficient of reflection
for the grating coupler, due to plane-wave excitation, is

R =
∣∣∣∣rI

dm + i�XsO

γ − i�S + i


∣∣∣∣
2

. (44)

Note that for a planar interface, the coefficient of reflection
would be simply, Rplanar = |rI

dm|2, and it is the second term in
R that accounts for the effect of the grating and the presence
of the SPP. Thus, a comparison of R and Rplanar will yield
information into the magnitude of the SPP coupling.

V. USER’S GUIDE

Here we present a brief summary of the method. Some of
the equations that we refer to are given in the Appendixes.

1. From the given grating parameters, h(y) and �, calculate
the grating wave vector, G, and Fourier coefficients, h±G, of
Eq. (1).

2. From the material properties as well as the angle of
incidence, calculate ω̃ and κI and use these to find κSP [Eq. (6)]
and 
 [Eq. (7)].

3. Split κSP into κO = �{κSP} and γ = �{κSP}.
4. Find the w’s for both materials and at both κI and κO

using Eq. (2).
5. With these, find the Fresnel coefficients and ρdm from

Eqs. (A1) and (A5), respectively.
6. Calculate �X [Eq. (B1)], �S [Eq. (B2)], and sO

[Eq. (B3)].
7. With these, solve the differential equation [Eq. (37)] to

find the SPP envelope, fO(y). Note that a solution for plane-
wave excitation has already been given in Eq. (43).

8. Finally, solve for the reflected intensity [Eq. (39)]. This
can then be used to find the coefficient of reflection, as we
have done for excitation by a plane wave [Eq. (44)].

9. If required, a discussion of the range of grating ampli-
tudes for which this method is valid is presented at the end of
Sec. VI A.

VI. COMPARISON WITH NUMERICAL METHODS

To ensure the validity of our model we compare our results
with those obtained via C-Method calculations8 and RCWA
calculations.11 We first compare simulations of a sinusoidal
grating between our method and the C-Method, then compare
similar simulations of a square grating, contrasting our results
with those from RCWA calculations.

A. Sinusoidal grating

Whereas we treat a grating as a small perturbation to an
otherwise flat surface and extract an approximate analytic
expression for the generated SPP field, the C-Method relies
on a coordinate transformation that maps the periodic grating
boundary to a flat interface. Unfortunately, the electromagnetic
fields are also transformed, and an analytic solution is still
impossible. However, by expanding the incident, reflected,
and transmitted modes into a finite number of Bloch modes
of the system, a solution can be calculated. Consequently,
the C-Method yields very accurate reflection and transmission
coefficients, although it is computationally intensive.

To contrast our results with those of the C-Method we must
use incident plane waves to excite the SPP. We simulate a
sinusoidal gold grating and assume that the adjacent dielectric
is air. The grating period is 1200 nm, and we vary the amplitude
between 0.1 and 60 nm to determine when our model breaks
down. We use an incident wavelength λ = 1000 nm, at which
gold has a dielectric constant19 εm = −41.8 + 2.95i. For this
wavelength the SPP resonance occurs at an angle of incidence
10.3◦; consequently, we perform our simulations for angles
ranging from 8◦ to 12◦ to ensure that we capture the entire
resonance. Typical results are shown in Fig. 3. In (a) we
display the p-polarized coefficient of reflection for a range
of incident angles; both Rplanar (dashed line) and R [solid
line; Eq. (44)] are shown. As expected, near 10.3◦, there is
a dip in R, relative to Rplanar. This is because R includes the
grating effects, and consequently for this angle of incidence
the momentum matching conditions are met, κI + G = κO ,
and some of the incident radiation is coupled to the SPP. Thus,
some energy that would otherwise be present in the reflected
beam—as in Rplanar, which does not include grating effects—is
lost.

In Fig. 3(b), we plot 
R = R − Rplanar for several different
grating amplitudes; in essence, what is displayed here is solely
the grating-induced adjustment to the reflected intensity and,
as such, can be directly interpreted as the intensity transferred
to the SPP by the grating. As expected, the higher the grating,
the stronger its effect on the incident radiation and the more
light that is coupled to the SPP.

We quantify the accuracy of our method by repeating
the R and 
R calculations, employing the C-Method, for
the same structure and incident conditions. For the case
of the 5-nm grating, we compare the results from the two
methods in Fig. 4. Clearly, the magnitudes of the peaks are in
excellent agreement: We calculate (
R)max = 0.030 39, while
C-Method calculations yield (
R)max = 0.030 07, an error of
only 1.0%. There are some differences between the curves
produced by the two methods, which offer insight into the
nature of the error. First, as is evident from the R curve
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FIG. 3. (Color online) Typical results for our simulations.
(a) Reflection spectra as a function of incidence angle for a gold
film with a 5-nm sinusoidal grating (solid line) and for a planar gold
film (dashed line), for λ = 1000 nm. (b) Different 
R curves, as
functions of the incident angle, for different amplitude gratings. The
arrow points in the direction of decreasing heights, following the
inset.

[Fig. 4(a)], there is a positive offset between the C-Method
curve and ours. That is, we find more energy in the reflection,
compared to the C-Method. This is easily explained, as the
C-Method solves for all the propagating modes of the system,
including the diffracted modes that we omit. Consequently,
we attribute energy from the diffracted modes to the reflected
mode. Since some energy from these diffracted modes also
couples to the SPP, we expect that the error in the plasmonic
coupling efficiency calculated with our method will be smaller
than the error in the amount of reflected intensity. As we expect,
and as we show here, the offset, and hence the error, becomes
more significant as the grating amplitude increases and more
light is coupled to the diffracted modes.

Second, as is more noticeable in the 
R plot [Fig. 4(b)],
the C-Method curve has features that our calculations do not.
Specifically, for smaller incident angles, there is a bump near
9.7◦ that our work does not reproduce. Again, we explain this as
being due to the full modal nature of the C-Method calculation.
This bump corresponds to a Wood-Rayleigh anomaly, where
a scattered mode propagates along the surface of the grating.
Since our model includes only the reflected and SPP mode,
this feature is not reproduced.

FIG. 4. (Color online) Comparison of (a) R and (b) 
R curves
calculated using both our method and the C-Method, for a 5-nm
sinusoidal grating.

To determine the range of heights over which our method
remains accurate, we repeat the preceding calculations for
grating heights reaching 60 nm, comparing the amplitude of
the dip as calculated by both methods (Fig. 5). From Fig. 5,
it is evident that the two methods agree very well up to an
amplitude of ∼50 nm, which, for λ = 1000 nm, is about four
times longer than the skin depth of gold. Further, (
R)max >

0.5 are predicted to within 10%, while (
R)max > 0.8 are
predicted to within 15%, which is very good considering the
simplicity of our model and that our calculations are more than
250 times faster than those of the C-Method. Taking account
of the energy coupled from the higher diffracted orders, we
estimate a peak error in the plasmonic coupling efficiency
of ∼13%.

For grating amplitudes in excess of 50 nm our model begins
to break down. This breakdown occurs due to the linearity in
h of the grating scattering [Eqs. (26) and (27)]. We remind the
reader that this is a result of the assumption that the local field
in the region of the grating is constant, which clearly becomes
less valid as the grating amplitude increases. Consequently,
as h increases, so do parameters such as �S or �X; where in
reality these parameters must have a maximum value, in our
model they can grow indefinitely, leading to breakdown. This
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FIG. 5. (Color online) Magnitude of the dip in the reflection
spectra calculated both with our method (line) and with the C-Method
(circles) for excitation by a 1000-nm plane wave and a sinusoidal
grating with a 1200-nm period and amplitudes ranging from 0.1 to
60 nm. Inset: Error between our method and the C-Method.

manifests in one of two ways, depending on the sign of �{�s}
[Eq. (35)].

1. �{�s} > 0: This corresponds to grating-induced losses
in the system. Since this constant grows like h2, given our
assumptions, at some point it will be comparable in value to
the natural losses of the propagating plasmon γ . Since the
product sO�X also grows as h2, near the resonant angle the
ratio of this product to �S will dominate the second term in R,
[Eq. (44)], which will then approach or even exceed unity.

2. �{�s} < 0: This corresponds to a decrease in losses in
the system. While this might seem unreasonable, correspond-
ing to gain in the system, this is not the case. In this model we
assume that both the electric field and the polarization in the
region of the grating are uniform. A consequence of this is that
less field can be in the metal than would otherwise be the case
for a planar film, and the lessening of the ohmic losses can
dominate over the reradiation losses, resulting in what appears
to be a gain term. As the grating amplitude increases, the
assumption of electric field uniformity becomes increasingly
erroneous, until |�{�s}| > γ , and we obtain net gain and a
catastrophic failure of the theory.

B. Square gratings

The previous section shows that our approach to plasmonic
coupling calculations agrees with numerical methods for the
case of a sinusoidal grating. However, this might not seem
surprising, given that we only use the first Fourier coefficient
of the grating profile and that a sinusoidal grating only has one
component. This suggests changing the profile of the grating to
a more complicated structure, one that has higher order Fourier
components, and repeating the preceding analysis to see if the
first-order coefficient still dominates. An obvious choice for a
new surface profile is the square grating.

Since the only difference in our calculations will be in
the Fourier components of the grating profile, we do not
have to repeat the entire calculation. For a sinusoidal grating
h±G = h0/4, while for a square grating h±G = h0/π , and con-
sequently, the results of a calculation for a sinusoidal grating of

FIG. 6. (Color online) Magnitude of the dip in the reflection
spectra calculated both with our method (line) and with the RCWA
(circles) for excitation by a 1000-nm plane wave and a square grating
with a 1200-nm period and amplitudes ranging from 0.1 to 50 nm.
Inset: Error between our method and the RCWA.

height h
(sin)
0 will be identical to those of a square grating

of height, h
(sq)
0 = π/4 · h

(sin)
0 . This is a direct consequence

of including only the first-order Fourier coefficient and can
introduce additional errors for grating profiles with higher
harmonics.

This sharp profile presents difficulties for simulations using
the C-Method, and consequently we employ the RCWA ap-
proach. Results for a square grating, with the same parameters
as the sinusoidal grating, are shown in Fig. 6. Clearly, the
two theories are in good agreement, even for high coupling
efficiencies. That the theory breaks down earlier than for the
sinusoidal grating is expected, since the Fourier component
for a given grating amplitude is large for the square grating.
Further, the sharp edges of this profile tend to result in hot
spots, areas where the field is concentrated, and consequently
we would expect our assumption of a uniform field (and
polarization) to be worse than for a smoothly varying grating.
Regardless, the agreement is still very good to upward of
30-nm square gratings, where the coupling efficiency is in
excess of 0.8.

Even with the improved algorithm, the RCWA technique
does not converge quickly for all grating heights, and as such,
Fig. 6 contains data calculated with both truncation number
N = 101 and N = 151. Even for the prior case, the calculation
time for our technique is ∼3.5 × 103 times faster than that for
the RCWA, while for the latter case the ratio is ∼104. For
comparison, a calculation with N = 41 using the RCWA is
still 500 times slower than using our method.

VII. EXAMPLE: SPATIAL EVOLUTION OF THE FIELDS

In the previous calculations we assumed plane-wave exci-
tation, which allowed for direct comparison with numerical
methods. Here, we present a more complex example that
demonstrates the physical insight that can be gleaned from our
approach. We use the same grating as in the previous sections,
a sinusoidal gold grating with � = 1200 nm and h0 = 20 nm
adjacent to air, and consider illumination with λ = 1000-nm
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radiation. However, instead of plane-wave excitation, we now
assume a Gaussian beam with a full-width at half-maximum
spot size of 5 μm. This allows for study of the spatial evolution
of both the plasmon and the reflected field; fO(y) is calculated
using Eq. (37), and fref(y) from Eq. (31).

At λ = 1000 nm, where the dielectric function of gold19

is εm = −41.8 + 2.95i, the surface plasmon wave vector is
κSP = (6.36 + 5.46 × 10−3i) μm−1. Consequently, the angle
of incidence that excites an SPP, and that is used in this
example, is 10.3◦. Further, from the imaginary part of κSP

we calculate a propagation length of 92 μm, while from
the real part we calculate the plasmonic wavelength, λSP =
988 nm.

Before calculating fO(y) and fref(y), we must find the
constants for this problem. The solution to Eq. (37) in a region
with no incident field is

fO (y) ∼ e−(γ−i�S )y, (45)

and therefore the SPP intensity is

ISP (y) ∼ e−2(γ+�{�S })y. (46)

Consequently, the effect of the grating on the decay of the
SPP is given by �S . For this situation �S = (5.37 × 10−3 +
1.83 × 10−4i) μm−1, with the positive sign of the imaginary
component corresponding to net losses due to reradiation and
the field distribution in the grating region. The imaginary
component of �S leads to a propagation length of 2.7 mm,
which is ≈100 times the intrinsic length of 92 μm.

From Eq. (37), it is evident that the coupling between the
incident field and the SPP field is described by i�X. Further,
since the coupling from the incident wave to the SPP is linear,
we define the coupling length, δ+

SP = 1/�{�X}, as the distance
over which the SPP envelope intensity will build to the same
value as a constant incident intensity. Here, �X = (−5.05 ×
10−2 − 6.64 × 10−3i) μm−1, which results in δ+

SP = 151 μm.
It is the interplay between �X and �S that determines the
total plasmonic intensity that can be generated, as the incident
beam must be large enough to allow sufficient coupling but
short enough to avoid unnecessary losses.

Finally, Eq. (31) predicts the reradiation of SPPs back into
propagating modes. For this example, the reradiation constant
is sO = 0.0030 − 0.0265i, and, consequently, |sO |2 = 7.1 ×
10−4 of the plasmonic intensity will be reradiated.

We solve Eq. (37) for fO(y) and use Eq. (31) to find
fref(y) and show the corresponding intensities in Fig. 7. In
Fig. 7(a), we show both the incident, Gaussian intensity and
the generated plasmonic intensity. The peak intensity of the
SPP is 0.13 of the incident intensity, and as expected, it decays
with a constant of 92 μm (see inset). In Fig. 7(b), we show both
the incident intensity (solid curve) and the reflected intensity
(dashed curve). In the bottom inset, the tail of the reflected
intensity is clearly shown and is due to the reradiation of the
SPP; from the dip in this curve we conclude that, as expected,
the plasmon is radiating out of phase with the incident field.
The top inset in Fig. 7(b) displays the difference between the
incident and the reflected intensities, at their peaks.

FIG. 7. (Color online) Spatial evolution of the intensities of
this problem. (a) SPP intensity built up from the original incident,
Gaussian intensity. Inset: Long-range decay of the SPP intensity.
(b) Incident (solid) and reflected (dashed) intensities. Top inset:
Zoom-in on the peak of the intensities. Bottom inset: Zoom-in on
the tail end of the intensities, showing the reradiation of the SPP.

We find the reflectance for the Gaussian excitation accord-
ing to


I = Iref − Iinc

Iinc
, (47)

where

Iref(inc) =
∫

Iref(inc) (y) dy, (48)

and Iref(inc) are the reflected and incident curves given in Fig. 7,
respectively. For our example we find that 
I = 0.034. It is
interesting to note that this value is much smaller than the
peak intensity of the SPP. This disparity is readily understood,
since the plasmonic mode is more tightly confinement than the
incident and reflected modes.

These results do suggest another important consideration
that is often neglected: the spatial extent of the coupling beam.
In the literature it is often implicitly assumed that the size of
the incident beam does not matter, possibly since most of the
simulations are performed assuming plane waves. However,
for the conditions in this example RPW = 0.263, which is
an order of magnitude larger than we calculate for a 5-μm
Gaussian beam. Indeed, if a quarter of the energy of the
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FIG. 8. (Color online) (a) Peak plasmonic intensity (assuming a
peak incident intensity of unity) as a function of the incident beam
size (FWHM) for grating amplitudes of 5, 10, and 20 μm. (b) 
I , as
defined in Eq. (47) (solid lines), and for plane-wave excitation [unity
minus Eq. (44); dashed lines], as functions of the incident beam size
for the same gratings as in (a).

incident beam is transferred to the SPP, which has a skin
depth of the order of 500 nm, we would expect that the peak
plasmonic intensity be higher than the peak incident intensity.

The disparity between the plane-wave and the Gaussian
results is bridged if we remember that the plasmon intensity
is not created instantly, but rather builds up as the plasmon
propagated along the surface of the grating [see Eq. (37)], as
long as the incident field is present. In essence, the beam size
in this example is too small for a high plasmonic intensity to
build up. To verify this we repeat the preceding calculations
for beam sizes (FWHM) ranging from 1 to 400 μm (Fig. 8).
We present both [Fig. 8(a)] the peak plasmonic intensity,
keeping the peak incident intensity at unity, and [Fig. 8(b)]
the R curves, for different amplitude gratings. Clearly, as the
beam size grows, so too does the peak plasmonic intensity,
increasing to more than 40 times the incident intensity for
a 20-μm grating. Correspondingly, 
I for a Gaussian beam
also increases with the beam size, eventually surpassing that
of a plane-wave excitation. This should not be too surprising
since if the coupling and decoupling constants are sufficiently
large, then non-negligible amounts of light can be reradiated
in spatial regions where the incident beam is not present. As
expected, lower amplitude gratings do not show this effect.

VIII. CONCLUSION

In conclusion, we have developed an analytic model that
describes the coupling of light to SPPs via surface relief

gratings. Our approach is based on the assumption that
the fields in the grating region are uniform, and while this
clearly fails to capture the behavior of the local fields as the
grating height increases, we can accurately predict plasmonic
coupling efficiencies as high as 0.8, to within a 15% error of
standard numerical techniques, and with computational times
that are more than 2 orders of magnitude shorter. Perhaps
more importantly, we describe the process of grating-mediated
plasmonic coupling with simple differential equations whose
coefficients both have clear physical significance and are
expressed in an analytic form in terms of constants that relate
to the geometry and material properties of the system; this
allows for a quick yet meaningful interpretation of the behavior
of the grating coupler, as a function of these fundamental
constants. Finally, and in contrast with previous models, we
quantitatively describe the spatial growth and decay of the SPP
field (and hence the spatial dependence of the reflected field)
for arbitrarily shaped incident fields, not just plane waves. This
is an important capability for the description of the effects of
focused light on nanostructures.

We suggest that this is a powerful tool for future plasmonic
research: From a practical perspective, this approach can be
used to rapidly optimize a grating-based plasmonic coupler,
with the final fine-tuning performed with a numerical method,
cutting the total calculation times by orders of magnitude. Con-
versely, from a more fundamental perspective, this technique
allows for quick and efficient investigations of the underlaying
physics of grating-assisted plasmonic coupling.
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APPENDIX A: FRESNEL COEFFICIENTS

Using our notation, the Fresnel coefficients for p-polarized
radiation incident on the dielectric-metal interface are

rij = wiεj − wjεi

wiεj + wjεi

,

(A1)

tij = 2ninjwi

wiεj + wjεi

.

Since SPP coupling is a resonant phenomena, the coefficients
in Eqs. (A1) must have poles at wave vectors where SPPs are
excited. To find these poles we note that the denominator, f =
wdεm + wmεd , must vanish as κ → κSP. Recalling Eq. (2), this
results in the expected SPP dispersion relation:

κSP = ω̃

(
εdεm

εd + εm

) 1
2

. (A2)

Consequently, the Taylor expansion of the denominator about
κSP is, to first order,

f (κy) ≈
(

∂f

∂κy

)
κSP

(κy − κSP), (A3)

where (
∂f

∂κy

)
κSP

= −κSP

(
εm

wd

+ εd

wm

)
κSP

. (A4)
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The relevant coefficients to this problem can then be
written as

rdm ≈ ρdm

κy − κSP
,

tdm ≈ τdm

κy − κSP
,

where

ρdm = 2 (wdεm)κSP(
∂f

∂κy

)
κSP

,

(A5)

τdm = 2ndnm (wd )κSP(
∂f

∂κy

)
κSP

.

Similarly, this analysis can be repeated with the s-polarized
Fresnel coefficients:

rs
ij = wi − wj

wi + wj

,

(A6)

t sij = 2wi

wi + wj

.

APPENDIX B: SIMPLIFIED PARAMETERS

The parameters �X, �S , and sO are required for the
calculation of the SPP field and coupling efficiency. Here we

simplify these parameters, expressing them in terms of the
fundamental constants of this problem.

To simplify the grating coupling term, �X, we use Eqs. (3)
and (25) in Eq. (34), while to simplify the decoupling term for
the SPP field, �S , we use Eqs. (3), (25), and (29) in Eq. (35).
Finally, to simplify sO we note the similarity between Eq. (32)
and Eq. (34) and the commutability of the polarization vectors:

�X = iρdmhG

2wO
d

[
εm − εd

εm

(
1 + rI

dm

)
κI κO

+ εm − εd

εd

(
1 − rI

dm

)
wI

dw
O
d

]
, (B1)

�S = −ρdmhGh−G

4

[(
εm − εd

εm

)2(
1 + rI

dm

) κ2
I κ2

O

wI
dw

O
d

−2
(εm − εd )2

εdεm

rI
dmκI κO −

(
εm − εd

εd

)2

×(
1 − rI

dm

)
wI

dw
O
d

]
, (B2)

sO = ih−G

2wI
d

[
εm − εd

εm

(
1 + rI

dm

)
κI κO

+ εm − εd

εd

(
1 − rI

dm

)
wI

dw
O
d

]
. (B3)
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