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Anomalous thermal transport in disordered harmonic chains and carbon nanotubes
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We report the coherent potential approximation method of treating quantum thermal transport properties
of nanoscale systems with mass disorder. Instead of massive efforts required in brute-force calculations,
configuration averaging of disordered systems can be efficiently handled in a self-consistent manner by setting
up the phonon version of nonequilibrium vertex correction theory. The accuracy of the method is verified by
comparing with the exact results and Monte Carlo experiments in one-dimensional atomic chains. Results obtained
for disordered harmonic chains and carbon nanotubes provide evidence of anomalous thermal transport in such
systems. We also observe crossover in the transport where phonon scattering by disorder becomes important.
Our results show that disorder plays a role in thermal conductance reduction.
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I. INTRODUCTION

Recent years have witnessed a renaissance of interest in
studying matter that is disordered in either composition or
structure, because the intentional incorporation of atomic
impurities is routinely used to control and manipulate the
electrical, thermal, optical, and magnetic properties of semi-
conductors. For example, the long-range electrostatic potential
due to charged dopants can lead to a dramatic suppression of
minority carriers.1 Thermal conductivity of silicon nanowires
can be reduced exponentially by isotopic disorder;2 spin scat-
tering by disorder can invert magnetoresistance in magnetic
nanojunctions.3 When an experiment is carried out to measure
a physical quantity of a sample in a particular configuration of
disorder, only the average trend of that quantity is of interest.
Since disorder configurations can be taken to be random, the
average trend of the measured physical quantities is found
by averaging over all possible configurations. If one carries
out this average by randomly generating a configuration for a
given concentration C of disorder and averaging the resulting
physical quantity for a large sample of configurations, it is
neither worth the computational effort when C is small nor
practical owing to the possibilities of misleading errors when
it comes to relatively large systems, like carbon nanotubes, or
systems with a large surface-to-volume ratio. This is because
the transport quantities are not quite similar when the dopants
are found at the surface or in the bulk.

Enormous efforts were made4 in the 1970s to derive
better approximation methods in order to carry out the
configurational average. The brute-force method of config-
uration averaging is obviously not preferred because a large
number of configurations exist. For example, we consider a
substitutionally disordered binary alloy with N sites; there
are 2N configurations. One of the most important approxi-
mation methods is the introduction of the coherent potential
approximation5 (CPA) for treating elementary excitations

in disordered systems. However, the CPA has only been
applied to near-equilibrium electronic and thermal transport
calculations; in view of today’s nanodevices that operate
far from equilibrium, the full nonequilibrium description
is required. Recently, the so-called nonequilibrium vertex
correction6 (NVC) theory was derived based on the CPA to
calculate the atomistic nonequilibrium configurational average
of a two-particle Green’s function, which is required to
evaluate the quantum electronic transport problem. In order
to complete this scheme, we here report the results of the
analogous quantum thermal transport problem. Since the
CPA is applied to regimes where conventional perturbation
theory is not directly accessible, we will comment on its
accuracy based on the number of moments of the density of
states (DOS) exactly reproduced. For diagonal disorder, CPA
reproduces exactly seven moments of the average DOS.7 It
is also noteworthy that the inverse coordination number Z−1

seems to be a suitable small parameter to perturbatively probe
those inaccessible regimes defined by other parameters.8

The organization of the paper is as follows: In Sec. II, we
will first introduce briefly the mass impurity model and the
notion and notation of configuration averaging. We will then
incorporate configuration averaging into the quantum dynam-
ics and impose the CPA to get a self-consistent relation. The
retarded single-particle Green’s function is calculated in this
way. The Caroli formula,16 derived from the nonequilibrium
Green’s function formalism (NEGF), is the nonequilibrium
quantity that we use to calculate the transport properties. The
extra step is to impose the CPA and configuration averaging.
To carry out this step, we need the thermal transport version of
NVC. Proceeding to Sec. III, we first compare the case in short
one-dimensional (1D) atomic chains where exact results can
be evaluated by averaging over every possible configuration.
We show that the larger the system is, the more accurate the
theoretical value is. Section IV follows with the results of
implementing the theory on 1D mass-disordered harmonic
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chains. The result shows that the behavior of the thermal
conductivity κ with increasing system size is significantly
affected by the properties of the heat bath. As a special
case, we recover the earlier result9–11 that gave κ ∼ N

1
2 for

the free-boundary condition. Other cases where we add an
extremely small pinning on the first and last atoms give rise
to a turning point and change the power law behavior. This
size effect indicates that the exponent may not necessarily be
a constant under a fixed number of pinning potential centers.
This is unlike the argument predicted previously: κ ∼ N−n+ 3

2 ,
where n � 2 is the number of pinning centers.13 Finally, in Sec.
V, the theory is employed to study the effect of isotope disorder
on the thermal transport properties of carbon nanotubes,
one of most promising nanoscale materials discovered in
the past decade. Much theoretical and experimental work
has been done to predict their thermal properties.14,15 As a
possible application of this theory, we attempt to address
the outstanding issue of how impurity dopants affect the
transition from ballistic thermal transport to superdiffusive
thermal transport.

II. FORMALISM AND MODEL

We consider a central scattering region sandwiched by two
semi-infinite thermal leads. The two leads serve as heat baths
providing a temperature difference across the central region
and the two leads are uncorrelated. The Hamiltonian of the
full model is given as

H = HL + HLC + HC + HCR + HR, (1)

where HL and HR are the terms representing the left and
right semi-infinite harmonic heat baths. HLC and HCR are
the terms for the linear couplings of the central region to the
leads. For the explicit form of these terms, see Ref. 16. Here,
we will simply incorporate the effects of the leads using the
NEGF-derived16 form of the Landauer formalism. HC is the
term for the mass-disordered central region in the harmonic
approximation.

A. Configurational average

Note that we assume that impurities only exist inside the
central scattering region and not in the left or right leads.
Any atomic position (degree of freedom) s in the scattering
region may be occupied by one of the two atomic species
Q = A,B with concentration or probability CA

s and CB
s such

that CA
s + CB

s = 1.
For any quantity Xs defined on a single site s, its

configurational average is therefore carried out as

X̄s =
∑

Q=A,B

CQ
s XQ

s , (2)

indicating that an averaged single-site quantity is a sum of
contributions from the two possible occupants.

B. Formulation of the CPA and derivation of Ḡ r

Now, let us consider the Hamiltonian in the central region
as follows:

HC =
∑

s

1

2
Msẋ

C
s ẋC

s +
∑
s,s ′

1

2
xC

s KC
ss ′x

C
s ′ , (3)

where Ms is a binomial random variable for the mass at site
s, xC is the Heisenberg displacement operator in the central
region, and KC is the spring constant matrix for the central
region. We take atom A to be the host lattice and atom B to
be the impurity atom. We use the effective medium idea to
derive the CPA. Working in the frequency domain and using
the equation of motion method, with self-energy of the leads
incorporated,17 the inverse matrix of the full “xC,xC” Green’s
function is given as

G (ω)−1 = Mω2 − KC − �L − �R

= MAω21 − KC − �L − �R − �Mω2

= MAω21 − KC − �L − �R − �CPA

−�Mω2 + �CPA, (4)

where 1 is the identity matrix of sites and the random variable
�Ms is the matrix element of the diagonal matrix �M,taking
the value 0 when site s is occupied by atom A and the value
MA − MB when site s is occupied by atom B. The aim of the
manipulation above is to single out the terms that represent
the host lattice Green’s function (with leads) and to introduce
a CPA self-energy term that is understood to be a diagonal
matrix with matrix elements �CPA

s,s ′ = �CPA
s δs,s ′ . This CPA self-

energy term is a frequency-dependent mean field. We let Vs =
�Msω

2 − �CPA
s and define the host lattice Green’s function

(with leads) as

G 0(ω) = [MAω21 − KC − �L − �R − �CPA]−1. (5)

The full Green’s function can thus be written in the form of a
Dyson equation,

G (ω) = G 0(ω) + G 0(ω)V G (ω), (6)

where V is diagonal with elements Vs . Then, written in the
scattering T -matrix form, the Green’s function is

G = G 0 + G 0T G 0, (7)

where T = V (1 − V G 0)−1. Since the random variables are in
T only, we can take the configurational average easily:

Ḡ = G 0 + G 0T̄ G 0. (8)

Since we are free to choose the term �CPA, we shall make
a simple approximation by choosing �CPA such that T̄ = 0.
This condition implies a simple approximation for the
configuration-averaged Green’s function,

Ḡ = G 0. (9)

However, the condition T̄ = 0 is still intractable for the explicit
evaluation of �CPA. Thus, we make further approximations to
the T matrix. Define a single-site T matrix ts as a matrix of
all zero elements except at the (s,s) entry, where it takes the
value

ts = Vs

1 − VsG 0
ss

. (10)
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Expanding and iterating the Dyson equation in terms of ts and
comparing with the T -matrix equation, we get

T =
∑

s

ts +
∑

s

∑
s ′ �=s

tsG
0
ss ′ ts ′

+
∑

s

∑
s ′ �=s

∑
s ′′ �=s ′

tsG
0
ss ′ ts ′G 0

s ′s ′′ ts ′′ + · · · . (11)

We now take the configurational average and apply the single-
site approximation (SSA) to the above equation to decouple
the single-site scattering in the coupled equation, as follows:

T̄ ≈
∑

s

t̄s +
∑

s

∑
s ′ �=s

t̄sG
0
ss ′ t̄s ′

+
∑

s

∑
s ′ �=s

∑
s ′′ �=s ′

t̄sG
0
ss ′ t̄s ′G 0

s ′s ′′ t̄s ′′ + · · · . (12)

From the condition T̄ = 0, which now simplifies to t̄s = 0, we
obtain the self-consistent relation

0 = CA
s

−�CPA
s

1 + �CPA
s G 0

ss

+ CB
s

(MA − MB)ω2 − �CPA
s

1 − [
(MA − MB)ω2 − �CPA

s

]
G 0

ss

. (13)

This is the phonon analog of Eq. (3.22b) in the review paper
Ref. 4. As shown in the review paper,4 we can put it into a form
symmetric in atom A and atom B. We can also think of the CPA
self-energy as introducing a frequency-dependent effective
mass, Ms which is defined by �CPA

s = (MA − Ms)ω2. By
rewriting Eq. (13) in terms of Ms , we get the above-mentioned
symmetric form,

Ms = M̄ + (Ms − MA)G 0
ss(Ms − MB)ω2, (14)

where M̄ = CA
s MA + CB

s MB . For retarded (superscript r) and
advanced (superscript a) functions, we simply replace ω2 with
(ω + iη)2 and (ω − iη)2, respectively.

C. Average transmission coefficient: nonequilibrium
vertex correction

The previous subsection illustrates the (frequency-
dependent) mean field approximation used in calculating
the (approximate) configuration-averaged Green’s function.
However, in calculating the configuration-averaged thermal
conductance, σ [Eq. (137) in Ref. 16], we need to configuration
average the Caroli formula [= Tr(G r	LG a	R), see also
Eq. (57) in Ref. 16], i.e.,

σ =
∫ ∞

0

dω

2π
h̄ωTr (G r	LG a	R)

∂f

∂T
, (15)

where f is the Bose-Einstein distribution and 	L,R =
i(�r

L,R − �a
L,R). The configuration averaging of the Caroli

formula involves a product of two Green’s functions (with
other nonrandom terms), this is known as vertex correction in
diagrammatic many-body field theory.

We shall evaluate the vertex correction in the spirit of
the CPA. Inserting G r = G 0r + G 0rT rG 0r and G a = G 0a +
G 0aT aG 0a into the averaged Caroli formula, and using the

CPA condition T̄ r = 0 = T̄ a , we obtain

Tr(G r	LG a	R) = Tr(Ḡ r	LḠ a	R) + Tr(Ḡ r�NVCḠ a	R),
(16)

where we have defined the nonequilibrium vertex correction
matrix �NVC as

�NVC = T r Ḡ r	LḠ aT a. (17)

We apply SSA and the CPA condition to further simplify �NVC.
For details, see the supplemental document accompanying
Ref. 6. After the simplification, we can find that �NVC is
actually a site-diagonal matrix

�NVC ≈
∑

s

�NVC,s =
∑

s


r
s Ḡ

r	LḠ a
a
s , (18)

where 
r,a
s = t r,as (1 + Ḡ r,a

∑
s ′(�=s) 


r,a
s ′ ). Applying the SSA to

�NVC,s , we decouple the average of t rs and tas ′ with s = s ′ in
pairs and we can find that it satisfies a self-consistent equation:

�NVC,s = t rs Ḡ
r	LḠ atas + t rs Ḡ

r
∑
s ′ �=s

�NVC,s ′ Ḡ atas . (19)

Since the quantity in the above equation is the average over a
single-site quantity, it can be rewritten as a sum of contributions
from each species:

�NVC,s =
∑

Q=A,B

CQ
s tQ,r

s Ḡ r	LḠ atQ,a
s

+
∑

Q=A,B

CQ
s tQ,r

s Ḡ r
∑
s ′ �=s

�NVC,s ′ Ḡ atQ,a
s . (20)

III. TEST RUNS AND COMPARISON

Based on the formalism given in the previous section,
we shall evaluate the configuration-averaged thermal conduc-
tance σ . The procedure is as follows: solve the self-consistent
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C

FIG. 1. (Color online) Difference γ of the thermal conductances
between the exact brute-force results and the numerical solutions of
the theory, defined as γ = |σCPA − σexact|/σexact, for three- (circles),
five- (triangles) and seven-atom (squares) 1D harmonic atomic
chains of MA = 1 doped with impurities of MB = 2. The whole
concentration range is varied and the values are taken at room
temperature (300 K).
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equation (13) to get �CPA, then evaluate the configuration-
averaged Green’s function by using (5) [this is due to (9)],
then ts is evaluated from (10), and so �NVC,s can be evaluated
from the self-consistent equation (20). Finally, the conductance
is calculated using (16) and then (15). Figure 1 is a plot of
the percentage difference γ between the numerical solutions
and the exact brute-force results on one-dimensional atomic
chains of MA = 1 doped with impurities of MB = 2. The latter
is calculated by averaging the coefficients over all possible
configurations of the system. We can tell that although the
numerical solutions give us slightly smaller values (which is
expected since the CPA is an undercorrection), even for a small
system containing only three atoms, the error is less than 20%.
For a system containing five atoms, the error is reduced to
less than 10%, and when the system size increases to seven
atoms, the error is within 3%. This verifies that this method
is very accurate to describe relatively large systems. After
these cross-checks, we can confidently proceed to apply it to
the topic that attracts a lot of attention—the isotopic disorder
effect on the thermal transport behavior in harmonic chains
and carbon nanotubes.

IV. ONE-DIMENSIONAL DISORDERED
HARMONIC CHAINS

The method is first employed to study the heat conduction
in disordered harmonic chains with atomic mass MA = 1 and
isotopic mass MB = M . This problem has attracted a lot of
attention for almost 30 years.9–11,18–20 One main issue here
is to determine the dependence of the thermal conductivity
κ defined as κ = σN, where σ is the thermal conductance,
on system size N . A large number of studies9–12 suggest that,
in one dimension, Fourier’s law may be violated in the form
of κ ∼ Nα , with 0 < α < 1. The most important argument
is that the exponent α depends on the properties of the heat
baths.11 Here, it is proved again in Fig. 2, for the Rubin-Greer
model,9 where the surface Green’s function takes the form
1
2 (2 − ω2 + iω

√
4 − ω2), the exponent α is 1/2, which is

exactly the value of the slope of the upper line in Fig. 2.
Furthermore, we test the sensitivity of the heat bath depen-
dence on κ . We first add a small enough 10−5 on-site potential
to each atom in the heat baths. This causes the vanishing of
the low-frequency part of the transmission coefficient, which
leads to a turning point of the exponent α. We then restrict
this small on-site potential to only the first and last atoms
in the center by simply adding in an imaginary part η = 10−5 to
the frequency ω in Rubin’s model, and the self-energy of the
leads has the small-expansion form of 1 − η + O(ω). The
low-frequency phonons survive in this case, but the turning
point is still present, although it appears at a much larger N .
The positions of the turning points can also be affected20 by M

and this length scale can be fitted with 1√
Mη

. Therefore, even
slight changes that break the translational invariance of the
central system lead to the reduction of the low-frequency part
in the transmission coefficient and consequently a change in the
power law. This evidence confirms the previous statements11,20

that the major contribution to the exponent α comes from
the low-frequency phonons. However, the authors of Refs. 11
and 20 also indicated cases where the exponent α may not

 0.25

 0.5

 1

 2

 125  625  3125

κ

N

N0.5

FIG. 2. (Color online) Thermal conductivity of one-dimensional
disordered harmonic chains of MA = 1 doped with impurities of
MB = 50 and concentration C = 40% at room temperature (300 K),
plotted in log-log scale: from top to bottom, disordered chain
(calculated with the CPA) with free-boundary conditions (circles),
disordered chain (calculated with the CPA) with only the first and
last atom in the center added with a 10−5 on-site potential (crosses),
and disordered chain (calculated with the CPA) with all the atoms in
the leads added with a 10−5 on-site potential (triangles). Monte Carlo
simulations of the same systems are also plotted for comparison
(squares with error bars).

be a constant for the same type of heat bath and for a
fixed number of pinning centers. The exponent value indeed
varies with different system sizes. We also performed Monte
Carlo experiments to check all these three cases. Different
configurations are generated according to their probabilities.
For example, if we assume that the concentration of impurities
is C, then the probability of obtaining the configuration
with n impurities over N sites is ( N

n )(1 − C)N−nCn. The
experiments are realized by averaging the conductivities from
each generated configuration. The two methods agree with
each other very well.

V. EFFECT OF ISOTOPE DISORDER ON
CARBON NANOTUBES

Now we apply the theory to (5,5) carbon nanotubes of
different lengths, and let 14C be a random dopant in the pure
12C environment. Force constant matrices are obtained from
the Brenner empirical potential as implemented in the “General
Utility Lattice Program” (GULP).21 Figure 3(a) shows the
relation between averaged thermal conductance σ and the
concentration C of the dopant 14C. For the short length around
1 nm, the resistance between leads and central part plays a
more important role, while the effects due to isotope disorder
are minor. However, when the length of the nanotube is longer,
scattering due to isotope disorder dominates the transport
properties, where the largest reduction of thermal conductance
happens when the concentration is around 50%. Because of
the lack of disorder scattering, the conductance values in the
two extreme cases of concentration are the same regardless
of the length of the nanotube. The thermal conductivity κ
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FIG. 3. (Color online) Thermal transport properties of carbon
nanotubes with different lengths at room temperature (300 K): 0.9
(circles), 2.46 (triangles), 3.94 (squares), and 19.68 nm (crosses).
(a) The thermal conductance σ of 12C nanotubes doped with
different concentrations of 14C. (b) The thermal conductivity κ of
12C nanotubes doped with different concentrations of 14C.

of doped carbon nanotubes is plotted in Fig. 3(b). It is
calculated from σL/S, where L is the tube length and S is
the cross-sectional area of the tube. We choose d = 1.44 Å
as the tube thickness; thus, the cross section is 2πrd, where r

is the radius of the tube. Comparing over different lengths of
nanotubes, one can tell that, as the length becomes longer, the
proportional reduction of thermal conductance increases. For
the nanotube around 20 nm long, isotope disorder can reduce
the thermal conductance by approximately 50%, which agrees
with a previous classical molecular dynamics simulation14 and
the experimental results15 on isotopically doped boron nitride
nanotubes.

We shall now consider the modification of the divergent
behavior due to disorder scattering. The thermal conductivity
of 40% doped carbon nanotubes vs their lengths is plotted
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L0.9

FIG. 4. (Color online) The thermal conductivity of carbon nan-
otubes vs their lengths at room temperature (300 K) with doping
concentration 40%. The dashed line represents the fitting results for
different length scales.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  300  600  900  1200  1500  1800

T
[ω

]

ω (cm-1)

FIG. 5. (Color online) The transmission coefficient of a perfect
infinite (5,5) carbon nanotube (solid line) and that of a nanotube of
length 11.8 nm with 14C doped at the concentration of 40% (dashed
line).

in Fig. 4. The fitting line in the figure clearly shows the
change in its divergent behavior: when the length of the
carbon nanotube is within 4 nm, the conductivity varies with
the length as κ ∼ L0.9, and when the length of the carbon
nanotube is longer than 8 nm, the exponent changes from 0.9
to 0.7. This range is consistent with the experimental results
in Ref. 22 where the authors found the exponent to be between
0.6 and 0.8. However, it seems as if our numerical results
show a “transition” in divergent behavior. We suggest that the
transition in divergent behavior could be due to the change
in relative weights of the frequency spectrum as the length
of the nanotube changes. The argument for our suggestion
is as follows: We are working with a harmonic system with
independent modes so that phonon–phonon interaction is
excluded, and we think that different modes would contribute
to the divergent behavior differently and, with the fact that
the length affects the weights of the frequency spectrum, we
suspect that the change in relative weights is the reason behind
the transition. This is an important area for further numerical
and theoretical investigations.

The phonon transmission coefficient of a perfect infinite
carbon nanotube and that of an isotopically doped carbon
nanotube are compared in Fig. 5, where the dramatic reduction
effect due to the localization of high-frequency modes is
clearly shown, and the longer the carbon nanotube is, the larger
the proportion of high-frequency modes not contributing to
transmission. We can also see from Fig. 5 that high-frequency
phonons are localized preferentially over the low-frequency
phonons in the presence of isotope disorder.

VI. CONCLUSION

In conclusion, we have developed a nonequilibrium theory
that can take care of the configurational averaging of thermal
transport coefficients in disordered nanoscale systems. The
configurational averaging is achieved approximately via the
CPA. To that end, we achieved the configurational averaging
of the Caroli formula by solving two self-consistent equations.
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It should be noted that in the Kubo formula treatment,23

where thermal conductivity is calculated from the correlation
of thermal-current-density operators, due to crystal inversion
symmetry, vertex correction terms vanish, whereas in this
paper, vertex corrections entering the Caroli formula do not
vanish under crystal inversion symmetry. The accuracy of
this theory is then tested with exact results and with Monte
Carlo experiments on one-dimensional disordered harmonic
chains, and the suitability of this method in handling relatively
large systems is shown. The previously proposed power law
form of thermal conductivity has been recovered and we
also indicate the possibility of varying the exponent for
larger system size. We applied our method to the quantum
thermal transport in carbon nanotubes. Anomalous thermal
transport has been shown and we also observe the transition

between different transport regimes due to the scattering
of phonons by impurities. This effect reduces the thermal
conductance of carbon nanotubes, which verifies doping as a
feasible way of manipulating the performance of nanodevices,
especially in applications that make use of thermoelectricity.
Therefore, this proposed method can be widely used because it
provides relatively accurate results but requires only a one-time
calculation rather than thousands of repeated calculations
in the brute-force method for predicting quantum thermal
transport properties of disordered nanoscale systems.
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