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Light squeezing via a biexciton in a semiconductor microcavity
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We theoretically investigate the squeezing of light by the interaction between a biexciton and cavity polaritons.
As a model system, we consider a CuCl-quantum-well microcavity in which a biexciton can stably exist. An
effective biexciton-polariton coupled state can be formed by controlling the polariton level structure by modifying
the quantum-well thickness. We analyze in detail the nonlinear optical response obtained from the coupled state,
and evaluate the light squeezing by directly calculating the variance of quantum noise in the output field, in
terms of the dependence of the squeezing on the incident light intensity. We clarify an optimal condition yielding
maximum squeezing and show that squeezing is enhanced by utilizing biexciton nonlinearity, compared with the
squeezing achieved in a system having no biexciton.
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I. INTRODUCTION

Light squeezing can be realized in various nonlinear optical
processes such as parametric down-conversion, parametric
amplification, and degenerate four-wave mixing (FWM).
For device applications, the generation of squeezed light in
semiconductors is desirable though it becomes more difficult
to achieve light squeezing in semiconductors because of
thermal noise. However, recent development of semiconductor
microcavities enables us to create a cavity polariton, in which
an exciton is strongly coupled to a cavity photon so that
the exciton-photon coupling can overcome thermal noise.
Cavity polaritons allow us to achieve efficient light squeezing
because of the strong optical nonlinearity of excitons. In fact,
polariton parametric amplification1 and polariton degenerate
FWM2 have been experimentally demonstrated, and polariton
squeezing by using semiconductor microcavity systems has
recently been extensively investigated.3–5

Most of the above polariton-squeezing methods are based
on polariton-polariton scattering. To our knowledge, there are
only a few methods that exploit the optical nonlinearity of a
biexciton. This is because a biexciton is generally unstable,
and the implementation of an exciton-cavity system with
a stable biexciton is quite difficult. Recently, however, a
CuCl-quantum-well microcavity system has been reported.6

This system has a stable biexciton and allows us to achieve
an interaction between the biexciton and cavity photons in
a low-dimensional nanoscale structure. Further, it is possible
to create a biexciton-polariton coupled state by selecting the
appropriate cavity parameters and thickness and number of
the quantum well. Biexciton nonlinearity can be strongly
enhanced by utilizing the cavity quantum electrodynamics
effect.7

In this study, we theoretically investigate the polariton
squeezing utilizing biexciton nonlinearity. Generally, degener-
ate FWM is simple and suitable2 in the generation of squeezed
light in an exciton-cavity system. Therefore we consider a
normally incident FWM as depicted in Fig. 1. Further, we
focus on a CuCl-quantum-well microcavity system. In order
to clarify the effect of the biexciton on light squeezing, we
compare squeezing in a system having a stable biexciton with
that in a system having no biexciton. We analyze in detail the

nonlinear optical response of a biexciton-polariton coupled
state, and evaluate the light squeezing by directly calculating
the variance of quantum noise in an output field, in terms of
the dependence of the squeezing on the incident light intensity.
We show that there is an optimal condition under which light
squeezing is maximum, and the squeezing can be enhanced
by using biexciton nonlinearity, compared with the squeezing
achieved in a system having no biexciton.

The rest of this paper is organized as follows. In Sec. II, we
describe an exciton-cavity system forming cavity polaritons
and a biexciton, the optical master equation combined with the
input-output relation, and light squeezing in the output field. In
Sec. III, we analyze in detail the nonlinear optical response of
the cavity polaritons and the dependence of squeezing on the
incident light intensity. In Sec. IV, we summarize our results.

II. MODEL

A. One-dimensional model

As a model system, we consider an exciton system confined
in a one-sided microcavity, as depicted in Fig. 1, where a
λ/2 cavity is assumed and the exciton system is placed at
the center of the cavity. Pump and probe beams are normally
incident on the surface of the cavity and penetrate into the
cavity. The incident photons are coupled to excitons, forming
cavity polaritons, and are then emitted into the output field. In
this study, we focus on a signal normally emitted on the same
side as the incident light beams. For simplicity, in these optical
processes, we ignore the nonradiative decay of excitons.

For h̄ = c = 1, the Hamiltonian for the fundamental mode
of a λ/2 cavity field is given by

ĤC = ωcĉ
†ĉ, (1)

where ĉ(ĉ†) is the annihilation (creation) operator of the
cavity photon with the energy ωc. The interaction Hamiltonian
describing the exciton-cavity coupling is given by

Ĥint =
∑

k

gk(ĉ†b̂k + ĉb̂
†
k), (2)

where k is the quantum number of the exciton states, gk is
the exciton-cavity coupling energy, and b̂k(b̂†k) is the exciton
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FIG. 1. Schematic of pump-probe assignment. k is the wave
number of exciton states. g is the coupling energy.

annihilation (creation) operator. When g is larger than the
spontaneous emission of excitons and the cavity damping,
an exciton is strongly coupled to a cavity photon, and a
cavity polariton is formed. If the spontaneous emission of
excitons is negligibly small, the system can be reduced to a
one-dimensional input-output system.

B. Biexciton and cavity polaritons

For an exciton system, we adopt a one-dimensional
discrete-lattice model with only one degree of freedom per-
pendicular to the cavity surface. This model well approximates
the center-of-mass motion of excitons in a CuCl and has the
advantage that it provides solutions of bound and unbound
two-exciton states as a complete set. Further, in this model, we
ignore the spin degree of freedom of excitons, for simplicity.
The Hamiltonian of the exciton system can be described as

ĤX = ε
∑

�

b̂
†
�b̂� − t

∑
�

(b̂†�+1b̂� + b̂
†
�b̂�+1)

+V
∑

�

b̂
†
�b̂

†
�b̂�b̂� − �

∑
�

b̂
†
�b

†
�+1b̂�+1b̂�, (3)

where b�(b†�) is the exciton annihilation (creation) operator at
the �th site, ε is the excitation energy of each site, and t is
the transfer energy of an exciton from a site to neighboring
sites. The third term is the repulsive interaction between two
excitons occupying the same site. The last term is the attractive
interaction between two neighboring excitons, which leads to
the formation of a biexciton. By setting the boundary condition
that the exciton states are zero at sites � = 0 and � = N + 1,
the eigenenergy and eigenstate for the one-exciton state can
be respectively given by

ωk = ε − 2t cos ka, (4)

|k〉 =
√

2

N + 1

∑
�

sin(k�a)b̂†�|0〉, (5)

where k = nπ/(N + 1)a is the discrete wave number of
excitons, characterized by integer n, a is the lattice constant,
and N is the size of the exciton system. For the repulsive
exciton-exciton interaction, we consider the limit of V → ∞.
This prohibition of two excitons at the same site corresponds to
the Pauli exclusion principle. The eigenstates for a two-exciton
state can then be simply written as |μ〉 = ∑

�<m C
(μ)
�,m|�,m〉,

where |�,m〉 ≡ |�〉 ⊗ |m〉 and the states of |m,m〉 for any m

are excluded. The coefficients C
(μ)
�,m are numerically calculated

and determined so {|μ〉}μ forms a complete system. The k

FIG. 2. Energy levels as a function of the size of exciton system
N . (a) Energy ωμ of two-exciton states |μ〉 measured from 2ωk1 .
(b) Energy ω1p of cavity-polariton states |1p〉 measured from ωc.
(c) Energy ω2p of two-cavity-polariton states |2p〉 measured from
ωLPB − ωc. (d) Energy ω2p of two-cavity-polariton states with no
biexciton measured from ωLPB − ωc. The exciton parameters are
t = 0.057 eV, � = 0.189 eV, and ε = 3.2 + 2t eV, leading to �B =
0.03 eV. In (b), (c), and (d), ωc = ωk1 and g is set to gk1 = 0.004 eV
at N = 2. ωLPB denotes the energy of LPB. Dashed line in (c)
corresponds to the LPB in (b).
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representation can be obtained simply by Fourier transforming
C

(μ)
�,m to C

(μ)
k,k′ . Figure 2(a) shows the eigenenergies ωμ of |μ〉

as a function of N . The biexciton binding energy is uniquely
determined by t and �. We define the binding energy of the
biexciton with the lowest energy for N � 1 as �B .

The eigenstates of the exciton-cavity system can now be ob-
tained by diagonalizing the Hamiltonian, Ĥsys = ĤX + ĤC +
Ĥint. Rewriting the exciton operator b̂k using the Hubbard
operators as8

b̂k = |G〉〈k| +
∑
k′

〈k′|b̂k|k,k′〉|k′〉〈k,k′| + · · · , (6)

the eigenstates can be expressed, in form, as

|1p±〉 = αx|k; 0〉 ± αc|G; 1〉, (7)

|2p〉 = αxx|k,k′; 0〉 + αxc|k; 1〉 + αcc|G; 2〉, (8)

where |G〉 is the ground state and the separation by a semicolon
denotes |exciton; photon〉. |1p−〉 is the lower polariton branch
(LPB) and |1p+〉 is the upper polariton branch (UPB).
Figure 2(b) shows the eigenenergies ω1p of |1p〉 as a function
of N . |2p〉 is the two-cavity-polariton state consisting of the
two-exciton state |k,k′; 0〉, the one-exciton-one-photon state
|k; 1〉, and the two-photon state |G; 2〉. In this study, since
we focus on the nonlinear optical response of a biexciton
and cavity polaritons, cavity-polariton states up to |2p〉 are
required.9 Figure 2(c) shows the eigenenergies ω2p of |2p〉 as a
function of N . For comparison, the eigenenergies for a system
with � = 0 (no biexciton) is shown in Fig. 2(d). One can
find the polariton energy structure in Fig. 2(c) is drastically
modified by biexciton states. The value of gk is dependent
on N through the dipole transition matrix of an exciton,∑

�〈G|b̂�|k〉, and it is proportional to
∑

�〈G|b̂�|k〉. The value
of gμk for |2p〉 can be calculated from gμk = 〈k; 1|Ĥint|μ; 0〉.
Thus the coupling energy is varied in accordance with N , and
the polariton energy structure can also be modified by varying
N . The difference between the exciton-cavity couplings in
one- and two-exciton states, gk and gμk , strongly affects the
strength of nonlinearity.7

C. Master equation and input-output relation

The nonlinear optical response of the exciton-cavity system
can be analyzed by using the optical master equation coupled
with the input-output theory.10 The master equation is given by

dρ̂

dt
= −i[Ĥsys + Ĥext,ρ̂] + κ(2ĉρ̂ĉ† − ĉ†ĉρ̂ − ρ̂ĉ†ĉ), (9)

where κ is the cavity damping energy. For a CuCl microcavity
system considered in this study, the spontaneous emission of
excitons into noncavity modes is negligibly smaller than g, κ ,
and �B . Therefore we ignore it in Eq. (9), for simplicity. Ĥext

is the interaction Hamiltonian between intracavity photons
and classical cw incident light beams, ξin(t), given by

Ĥext = i
√

2κĉ ξin(t) + H.c., (10)

where ξin(t) = ξpump(t) + ξprobe(t). For the calculation of third-
order nonlinear optical response, we consider Ĥext as a
perturbation term and calculate the density operator ρ̂(3). As
is well known, the optical nonlinearity is evaluated using the

susceptibility χ . In exciton-cavity systems, however, there is
no counterpart of χ . Therefore we directly evaluate the third-
order output field by using the input-output theory. According
to the input-output theory, the output field operator is given by

ξ̂out = ξ̂in +
√

2κĉρ̂. (11)

Using Eq. (11) with 〈ξ̂in〉 = ξin, the third-order output field
after eliminating ξin can be described as

ξ
(3)
out =

√
2κ〈ĉ〉(3), (12)

where 〈ĉ〉(3) = Tr[ĉρ̂(3)]. From the third-order nonlinear
response, we first identify an optimal system size N where a
strong optical nonlinearity is achieved.

D. Variance of quantum noise and light squeezing

The main interest and applications of squeezed light lie in
its quadrature-operator properties. Therefore we focus on the
quadrature squeezing of output field. The output field operators
can be rewritten by using the quadrature operators X̂out and
Ŷout as11

ξ̂out = 1
2 (X̂out + iŶout)ei(θ−ωt), (13)

ξ̂
†
out = 1

2 (X̂out − iŶout)e−i(θ−ωt), (14)

where θ is the reference phase and ω is the reference energy.
In this study, we evaluate the squeezing by directly calculating
the quadrature variances given by

�X2 = 〈
X̂2

out

〉 − 〈X̂out〉2, (15)

�Y 2 = 〈
Ŷ 2

out

〉 − 〈Ŷout〉2. (16)

Using Eqs. (11), (13), and (14), Eqs. (15) and (16) can be
rewritten as

�X2 = 2κ(2〈ĉ†ĉ〉 − 2〈ĉ†〉〈ĉ〉 + 1)

+ Re[4κ(〈ĉĉ〉 − 〈ĉ〉〈ĉ〉)e−2i(θ−ωt)], (17)

�Y 2 = 2κ(2〈ĉ†ĉ〉 − 2〈ĉ†〉〈ĉ〉 + 1)

− Re[4κ(〈ĉĉ〉 − 〈ĉ〉〈ĉ〉)e−2i(θ−ωt)]. (18)

Note that the factor of 2κ originates from the input-output
relation in Eq. (11). In both Eqs. (17) and (18), the first term
on the right-hand side indicates the incoherence of output field
and the last term determines the squeezing of the output field.
If the condition �X2/2κ < 1 or �Y 2/2κ < 1 is fulfilled, the
emitted light becomes quadrature-squeezed light.

III. RESULTS

In this section, we first analyze the third-order nonlinear
optical response of cavity polaritons for different system sizes
and show that there exists an optimal size of the exciton system
where the nonlinear strength is maximum. Finally, we evaluate
the light squeezing around the optimal size of the exciton
system, in terms of the dependence of the squeezing on the
incident light intensity.

Figure 3 shows the spectra of |ξ (3)
out|2 as a function of N .

The pump energy is tuned to the energy of LPB, ωLPB. For
a system having no biexciton [Fig. 3(a)], strong nonlinearity
is obtained only for small values of N . |ξ (3)

out|2 has its peak
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FIG. 3. |ξ (3)|2 as a function of N for (a) a system having no
biexciton and (b) a system having a stable biexciton. The parameters
are κ = 0.004 eV, corresponding to a quality factor of Q = 400. The
other parameters are the same as those used in Fig. 2.

at N = 6 and ωprobe ≈ ωc − 0.004 eV. As N increases, the
nonlinear strength gradually decreases owing to the decrease in
the unharmonicity originating from the discrete exciton states.

FIG. 4. �X2/2κ as a function of |ξin|2/2κ and θ for a system with
no biexciton. (a) N = 2, (b) N = 6, and (c) N = 10. ω = ωpump =
ωprobe = ωLPB.

For a system with a stable biexciton [Fig. 3(b)], however,
a strong nonlinearity is obtained widely for large values of
N . |ξ (3)

out|2 has its peak at N = 60 and ωprobe ≈ ωc − 0.015 eV.
Compared with Figs. 2(b) and 2(c), the value of N maximizing
|ξ (3)

out|2 corresponds to that of N at which the biexciton states
and the LPB [dashed line in Fig. 2(c)] intersect each other.
Therefore an effective biexciton-polariton coupled state can
be formed around the intersection point.7

The results in Fig. 3 imply that there exists an optimal
size of the exciton system for a set of given parameters, for
which the nonlinear strength becomes maximal: N = 6 for
the system having no biexciton and N = 60 for that having a
stable biexciton. Strong squeezing could be expected around
these optimal sizes.

Figure 4 shows �X2/2κ as a function of |ξin|2/2κ and
θ at N = 2,6, and 10 for a system having no biexciton. In
the absence of a biexciton, efficient squeezing is obtained in
two regions: (i) |ξin|2/2κ ≈ 0.015 and θ ≈ 160◦ for N = 2
[Fig. 4(a)] and N = 10 [Fig. 4(c)], and (ii) |ξin|2/2κ ≈ 0.004
and θ ≈ 30◦ for N = 6 [Fig. 4(b)]. In (i), squeezing originates
from saturation because it requires high intensity and can be
observed for a large value of N . Meanwhile, the squeezing
achieved at low intensity in (ii) is due to the exciton-exciton
interaction, where the third-order nonlinearity is maximum, as
shown in Fig. 3(a). Intriguingly, the squeezing remains almost
unchanged with N (approximately 1% squeezing) though the
third-order nonlinearity has its peak at N = 6.

FIG. 5. �X2/2κ as a function of |ξin|2/2κ and θ for a system
with a stable biexciton. (a) N = 50, (b) N = 60, and (c) N = 70.
ω = ωpump = ωprobe = ωLPB.
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Figure 5 shows �X2/2κ as a function of |ξin|2/2κ and θ at
N = 50,60, and 70 for a system having a stable biexciton. In
the presence of a biexciton, efficient squeezing is obtained only
in one region: |ξin|2/2κ ≈ 0.004 and θ ≈ 0◦. The squeezing
becomes five times higher than that achieved in a system
having no biexciton (approximately 5% squeezing). This is due
to the interaction between the biexciton and cavity polaritons,
and maximum squeezing can be achieved in this region
as long as an effective biexciton-polariton coupled state is
formed. Thus we can enhance light squeezing by utilizing the
strong nonlinearity of a biexciton effectively coupled to cavity
polaritons. It is simple to achieve efficient squeezing because
a strong nonlinearity is obtained widely for large values of N ,
making the accurate control of N unnecessary.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have theoretically investigated light
squeezing via an interaction between a biexciton and cavity
polaritons. We have analyzed in detail the nonlinear optical
response of a biexciton-polariton coupled state, in terms of the
dependence of the squeezing on the thickness of the quantum
well, and evaluated the light squeezing by directly calculating
the variance of quantum noise in an output field, in terms of
dependence of the squeezing on the incident light intensity. We
have shown that the squeezing utilizing the biexciton-polariton
coupled state is five times higher than that achieved in a system
having no biexciton. Such enhanced squeezing is achieved by
controlling polariton level structure.

Throughout this work, we have considered a CuCl-
quantum-well microcavity in which a biexciton can stably
exist. If we consider a more general semiconductor system,
such as a GaAS-quantum-well system, we would need to
adopt a Wannier-like exciton model, and a calculation based
on the dynamics-controlled truncation method12 would be

required. Further, a more exact fermionic treatment of excitons
would then be necessary. In fact, a recent theoretical work has
shown that fermionic statistics are related to the generation of
squeezed light.13 In this study, fermionic property is artificially
introduced by prohibiting the presence of two excitons at
the same site, corresponding to the Pauli exclusion principle.
However, it would be interesting to use microscopic theories of
excitons starting with electrons and holes, properly including
spin degree of freedom, Coulomb interaction between exci-
tons, and biexciton formation. These factors might lead to
further enhancement of the light squeezing. In addition, we
have to take into account radiative and nonradiative decays of
excitons because the Rabi slitting and biexciton binding energy
become smaller than those of CuCl-cavity systems, and hence
the effect of exciton damping on the light squeezing cannot be
ignored. These are topics of our future studies.

Recently, a similar scheme using Feshbach resonance has
been proposed,14 where the Rabi splitting formed by strong
coupling of a biexciton and cavity polaritons is exploited. If
the Q factor of a CuCl cavity system can be increased, this
scheme could be achieved directly in our system. It might be
interesting to compare with the results of this work.

Finally, the size dependence of nonlinearity might be more
drastically changed in higher dimensions of the exciton system,
and therefore further analyses of higher dimensional systems
would be interesting. We hope that the results in this study help
to identify some of the practical requirements for a squeezed-
light source utilizing a biexciton nonlinearity.
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