
PHYSICAL REVIEW B 83, 045302 (2011)

Rectification in Y-junctions of Luttinger liquid wires
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We investigate rectification of a low-frequency ac bias in Y-junctions of one-channel Luttinger liquid wires
with repulsive electron interaction. Rectification emerges due to three scatterers in the wires. We find that it
is possible to achieve a higher rectification current in a Y-junction than in a single wire with an asymmetric
scatterer at the same interaction strength and voltage bias. The rectification effect is the strongest in the absence
of the time-reversal symmetry. In that case, the maximal rectification current can be comparable to the total
current ∼e2V/h even for low voltages, weak scatterers, and modest interaction strength. In a certain range of
low voltages, the rectification current can grow as the voltage decreases. This leads to a bump in the I -V curve.

DOI: 10.1103/PhysRevB.83.045302 PACS number(s): 73.63.Nm, 73.40.Ei, 71.10.Pm

I. INTRODUCTION

Recently, there was much interest in rectification in
nanoscale systems.1–22 Nonlinear mesoscopic transport
exhibits very interesting physics, such as a peculiar magnetic
field dependence of the current16,17 and negative differential
resistance for the rectification current at low voltages.18,19 An-
other motivation for the investigation of the mesoscopic diode
or ratchet23 effect comes from possible practical applications
in nanoelectronics and energy conversion. Following the pio-
neering paper by Christen and Büttiker,4 most of the attention
has focused on a simpler case of a Fermi-liquid conductor.
At the same time, the diode effect requires a combination
of spacial asymmetry and strong electron interactions in the
conductor. Hence, we may expect a stronger ratchet current in
strongly interacting Luttinger liquid systems. This expectation
has been confirmed by a recent study of transport asymmetries
in one-channel quantum wires.18–20 Refs. 18–20 have focused
on a one-channel Luttinger liquid in a linear conductor in
the presence of a single asymmetric scatterer. This is the
conceptually simplest situation giving rise to rectification. At
the same time, changing geometry may increase asymmetry
and hence the rectification current. In this paper we consider an
asymmetric setup based on a Y-junction of three quantum wires
with three impurities. We show that a stronger diode effect can
be achieved in such a system than in a linear Luttinger liquid
and that rectification is possible even in the case of symmetric
point scatterers.

We focus on the simplest one-channel Y-junctions. More-
complicated Luttinger liquid junctions, such as Y-junctions
of single-wall carbon nanotubes, are also of interest. In
particular, it might be easier to make such junctions in a
reproducible way.

Y-junctions are among the basic elements of electric
circuits; however, a theoretical investigation of Luttinger liquid
Y-junctions24–42 has begun only during the last decade. By
now, there is a good understanding of linear conductance
near various fixed points as well as the tunneling density of
states.33,37 In this paper we extend the previous research to the
problem of transport asymmetries. Specifically, we consider
a setup of the type shown in Fig. 1. We assume that one of
the three terminals is kept at zero voltage; ac voltages with
amplitudes V and γV , γ ∼ 1, are applied to the remaining two

terminals. In a general case, a dc current is generated in each of
the three wires in the junction (Fig. 1). The three currents are
different but can be computed in a similar way. We calculate
such rectification dc currents for various types of Y-junctions.
We focus on the limit of a low-frequency ac voltage bias. In
order to determine the amplitude of the rectification effect in
that limit, it is sufficient to find the difference of the dc currents
at the opposite dc bias voltages, i.e., compare the current when
the potentials at the terminals are time independent and equal
0, V , and γV with the current when the potentials are 0,
−V , and −γV (cf. Refs. 18 and 19). This corresponds to a
dc current generated by low-frequency square voltage waves.
We find that in some classes of Y-junctions the rectification
current is higher than in a linear wire with the same strength of
the repulsive electron interaction at the same voltage bias. In a
certain interval of low voltages the rectification current exhibits
a power-law dependence on the bias: I ∼ V z. The exponent
z can be negative. Clearly, such dependence with a negative
exponent cannot extend all the way to zero voltage as I = 0 at
V = 0. Hence, the rectification current reaches a maximum at a
certain voltage. We demonstrate that in junctions without time-
reversal symmetry, the maximal rectification current can be
comparable to the total current ∼e2V/h even for low voltages
and modest interaction strength in the wires. In particular,
such rectification current can be achieved in the “island
setup,” illustrated in Fig. 1, which can be experimentally
realized in quantum Hall systems.34 For comparison, in a linear
wire, the rectification current18,19 is always much lower than
e2V/h. The diode effect in Y-junctions is not as strong in the
presence of time-reversal symmetry as in its absence. Still,
the maximal rectification current is higher than in a linear
conductor.

The paper is organized as follows: First, after a brief
qualitative discussion, we describe our setup and formulate
a model. We then review the properties of Y-junctions and
derive a general expression for the rectification current. Next,
we apply the general formalism to the model of three weakly
connected wires. Then we determine the leading contributions
to the rectification current at different interaction strengths
and matching conditions at the junction. We discover several
regimes with different voltage dependences of the current.
Finally, we discuss how to build a junction with the maximal
rectification current.
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FIG. 1. Schematic of a Y-junction of quantum wires with three
impurities. Voltage bias ±V is applied to the first wire. Wires 2 and
3 are connected to the ground. We calculate the dc current in wire 1.
We can view AB, CD, and EF as edges of an integer quantum Hall
liquid. This corresponds to an “island junction.”34

II. RECTIFICATION IN MESOSCOPIC CONDUCTORS

We consider a junction of N one-channel wires. In the
subsequent sections we will specialize to the case of N = 3
and assume that the system is spin polarized or, equivalently,
that charge carriers are spinless fermions. In all cases we
assume that long-range Coulomb interaction in the conductor
is screened by the gates. In such a situation the applied voltage
bias affects not only the current but also the charge density in
the system.

Rectification is possible if a change of the voltage bias
sign results in a change of not only the sign but also the
absolute value of the current. The latter obviously requires
left-right asymmetry in the system. Asymmetry may have
two origins: asymmetry caused by the way the bias is
applied and geometric asymmetry due to, e.g., an asymmetric
scatterer.18,19 In particular, we can consider a situation in
which several terminals are kept at zero electric potential
and the potential of the other terminals changes between +V

and −V . The charge density is different for the opposite
voltage signs. This, in turn, affects the current and leads to
rectification. Such density-driven rectification is possible in a
broad range of situations, including systems without electron
interaction in the presence of time-reversal symmetry. It has
been investigated in the context of a carbon nanotube junction
in the noninteracting-electrons approximation in Ref. 12. At
a high voltage bias a strong rectification effect was found. In
this paper, on the other hand, we focus on the low-voltage
regime and, in particular, the universal behavior at low bias.
In that limit the density-driven rectification effect is of little
importance as it results in a small rectification current ∼V 2

in a noninteracting system. In addition, the density-driven
rectification requires a specific way to apply bias. If we are
interested, for example, in the transformation of incoming
electromagnetic radiation into a dc current, then clearly, the
potential oscillates in all terminals. Thus, in this paper we focus
on the rectification mechanism due to geometric asymmetry.

Y-junctions have a “built-in” geometric asymmetry. Indeed,
let us focus on the current I1 in one of the three wires connected
by the junction. The current I1 = I2 + I3 equals the sum of

the currents in the other two wires. Thus, the same current
enters the junction through two wires and leaves through only
one. This means that the two sides of the junction are not
equivalent since they correspond to one and two wires. Thus,
we may expect that the geometric mechanism of rectification
applies to any Y-junction. However, as we demonstrate below,
the geometric mechanism only works if electron interaction is
present or time-reversal symmetry is broken.

Indeed, let us consider a time-reversal-invariant system of
noninteracting spinless fermions in an N -terminal mesoscopic
junction. We calculate the current between terminals 1, . . . ,K

and K + 1, . . . ,N . We compare the current in the situation
when terminals 1, . . . ,K are kept at the voltage V and
terminals K + 1, . . . ,N are kept at zero bias (case 1) with
the current in the situation when terminals 1, . . . ,K are kept at
zero bias and terminals K + 1, . . . ,N are kept at the voltage
V (case 2). For noninteracting fermions the current reduces
to the sum of the single-particle contributions corresponding
to each energy in the window 0 < E < V . We thus compare
such contributions for two opposite voltage biases. The wave
function of an electron incoming from terminal l with the
momentum k is ψk,l = exp(−ikxl) +∑N

m=1 Slm exp(ikxm),
where xm > 0 is the coordinate in wire number m and Slm

is a unitary scattering matrix. These notations for the wave
function imply that the probability to find an electron with
the wave function ψk,l in wire number m �= l is determined
by the outgoing wave and is proportional to |Slm|2. For
l = m, the probability is determined by both the incoming
and outgoing waves. The time-reversal symmetry implies that
ψ∗

k,l = exp(ikxl) +∑N
m=1 S∗

lm exp(−ikxm) is also a solution
of the Schrödinger equation. The solution is made of N

incoming waves and one outgoing wave. It can be represented
as a linear combination of waves ψk,m with different m.
Hence, the outgoing wave satisfies the equation exp(ikxl) =
exp(ikxl)

∑N
m=1 S∗

lmSml . The absence of outgoing waves in the
channels with numbers n �= l implies that

∑
m S∗

lmSmn = 0.
Hence, S∗ = S−1 = S†, i.e., S is a symmetric matrix. Now we
can compare the contributions to the current from particles
with the energy E = h̄2k2/2m for two opposite signs of the
bias. Electrons, incoming from different terminals, are not
coherent. Hence, in case 1, I1 ∼∑K

l=1

∑N
m=K+1 |Slm|2. In case

2, I2 ∼∑K
l=1

∑N
m=K+1 |Sml|2. The currents are equal from the

symmetry of the scattering matrix, and hence the diode effect
is absent.

In the presence of electron interaction, the rectification
effect becomes possible. This can be understood from a simple
model with two point scatterers of unequal strength in a linear
wire (Fig. 2). Similar rectification mechanisms operate in
more-complex junctions of Luttinger liquids. We will assume
that long-range Coulomb interactions are screened by the
gates and thus the charge density depends on the voltage.
In Fig. 2(a) we consider the situation with the incoming
current from the left. Backscattering off two impurities results
in a “staircase” charge-density profile (we have averaged
over Friedel oscillations). The staircase goes up as we move
from the right to the left. For the opposite voltage sign, the
incoming current arrives from the right [Fig. 2(b)]. We again
have a staircase charge-density profile, but now the staircase
goes down as we move from the right to the left. In the
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FIG. 2. Schematic of a linear wire with two scatterers of unequal
strength. Charge density, averaged over Fiedel oscillations, follows
a “staircase” profile. The direction of the staircase depends on the
voltage sign.

absence of electron interactions, the transmission coefficients
must be the same in both cases, and rectification is absent.
Let us now consider the effect of electron interactions in a
simple mean-field Hartree picture. Since long-range Coulomb
interactions are screened, the relation between the charge
density ρ(x) and the electric potential W (x) is local. Assuming
small charge-density variations, we thus find W (x) ∼ ρ(x).
Incoming electrons are scattered by a combined potential
of the two impurities and the Hartree potential W (x). The
latter depends on the incoming charge density and hence the
applied voltage. Hence, for opposite voltage signs, electrons
feel different backscattering potentials. This results in different
transmission coefficients and thus rectification.

Another mechanism of transport asymmetries comes from
time-reversal symmetry breaking. The latter is possible in
the presence of a magnetic field. We illustrate asymmetric
transport in the absence of the time-reversal symmetry with
a model system depicted in Fig. 3. While it is not a realistic
model of any mesoscopic conductor, it is very simple and
exhibits strong transport asymmetries. We assume no electron
interactions in the model.

We consider a box with four holes in its sides. Each hole
corresponds to a terminal in a more-realistic description of
a junction. We assume that all charge carriers, which enter
the box through the holes, have exactly the same speed,
perpendicular to the wall in which the hole is made. The
speed v = √−2meV , where V plays a role similar to the
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FIG. 3. Charge transport through the box (a,b) exhibits no
asymmetries at zero magnetic field and (c,d) is asymmetric at a finite
field in shaded areas.

electrostatic potential of a terminal in a realistic junction. At
V = 0 the speed v = 0, and hence, no current is injected.
In a Y-junction, charge density, injected from each terminal,
depends on its electrostatic potential. A comparison between
opposite voltage signs in a realistic junction corresponds in our
model to the comparison between the situations with the charge
injected through the right and left holes [Figs. 3(a) and 3(c)]
and through the top and bottom holes [Figs. 3(b) and 3(d)]. In
the absence of a magnetic field, the current through each hole
is zero in both situations: Currents of the particles, injected
through the opposite holes, cancel, as shown in Figs. 3(a) and
3(b). Let us now turn on a magnetic field in shaded areas
[Figs. 3(c) and 3(d)]. If the charge carriers are injected from
the top and bottom holes, then the current remains zero even in
the presence of a magnetic field [Fig. 3(d)]. Indeed, the carriers
never enter the region with the field. However, if the carriers
arrive from the left and right holes, then they are deflected by
the field [Fig. 3(c)], and the electric currents are nonzero in
all four holes. This illustrates how magnetic field can result in
transport asymmetry.

These arguments make it plausible that the rectification ef-
fect is the strongest if both strong electron interaction is present
and time-reversal symmetry is broken. This is confirmed by
our calculations below for Y-junctions of quantum wires with
and without time-reversal symmetry.

III. Y-JUNCTIONS

In this section we formulate our model and review basic
properties of Y-junctions.

We consider a Y-junction with the action

L =
∫

dt

( ∑
k=1,2,3

Lk −
∑

k=1,2,3

Tk

)
, (1)

where Lk are the actions of three uniform wires and Tk describe
three impurities in the wires close to the junction point x = 0.
This action must be supplied by matching conditions for three
wires. They will be discussed below (Sec. III). The action of a
uniform wire is given by

Lk =
∫ ∞

0
dx
[
iψ

k†
I (∂t − vF ∂x)ψk

I + iψ
k†
O (∂t + vF ∂x)ψk

O

− vF λ
(
ψ

k†
I ψk

I + ψ
k†
O ψk

O

)2]
, (2)

where ψk
I,O are the operators of incoming and outgoing chiral

electron fields, vF is the effective Fermi velocity, and vF λ

defines the interaction strength. We set h̄ = 1 and the electron
charge e = 1 in most of the following text. We assume that the
long-range part of the Coulomb force is screened by the gates.
Hence, the electron density depends on the voltage bias. The
impurity Hamiltonians

Tk =
∫ ∞

0
dxUk(x)

(
ψ

k†
I ψk

O + H.c.
)
, (3)

where Uk(x) is the potential of the impurity in wire number
k, with the impurity being located close to the junction at
x = 0. We only take the backscattering part of the impurity
Hamiltonian into account as the forward-scattering terms do
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not affect our results. We assume the same interaction strength
and Fermi velocity in each wire.

In order to treat the case of strong interaction it is convenient
to bosonize43 the action in terms of the chiral fields φk

O,I such
that ψk

O/I = Fk
O/I exp(±ikF x + iφk

O/I ), where the opposite
signs should be chosen for the in and out fields, the commutator[

φk
O/I (y),∂xφ

l
O/I (x)

] = ∓2πiδ(y − x)δkl, (4)

and kF plays the role of the effective Fermi momentum and
determines the average charge density in the wires. FI,O are
Klein factors, which are necessary to ensure the proper Fermi
commutation relations. The local densities of incoming and
outgoing particles in point x are ρO/I = (kF ± ∂xφO/I )/2π .
The action now assumes the form

Lk =
∫

dx
1

4π

[
∂xφ

k
I (∂t − vF ∂x)φk

I

+ ∂xφ
k
O(−∂t − vF ∂x)φk

O − vF λ

π

(
∂xφ

k
I − ∂xφ

k
O

)2 ]
, (5)

Tk=
∑

n

Ũn

(
F

k†
O F k

I

)n
exp
{
in
[
φk

I (x = 0) − φk
O(x = 0)

]}+ H.c.,

(6)

where Ũn = Un exp(iαn), with real Un and αn, are of
the order of the Fourier components of the asymmetric
potential, kF

∫
exp(i2nkF x)U (x) dx. Note that αn can be

nonzero even for a symmetric potential U (x), which is in
contrast to the situation considered in Refs. 18 and 19. For
example, for U ∼ δ(x − x0), α1 = 2kF x0. Expression (6)
for the backscattering operators Tk includes multiparticle
backscattering processes.18,19 Such multiparticle contributions
to the action are inevitably generated under the action of
the renormalization group by the interplay of a short-range
Coulomb interaction and impurity potential (see Ref. 19
for a discussion). All prefactors Un have the same order
of magnitude and are proportional to U (x). We assume
that backscattering amplitudes Un have the same order of
magnitude in all three wires. The use of the fields φ at x = 0
in the backscattering operators is justified if the distance from
the impurities to the junction is lower than the scale h̄vF /(eV )
set by the voltage bias. We assume that Un are sufficiently
small so that a perturbative expansion in powers of Un can be
developed for the calculation of the current. The conditions
on Un will be formulated below (Sec. V, VIII, and IX).

Following the standard notation conventions, the Hamilto-
nian, corresponding to Eq. (5), can be written as

Hk = v

8π

∫
dx

[
g
(
∂xφ

k
I + ∂xφ

k
O

)2 + 1

g

(
∂xφ

k
I − ∂xφ

k
O

)2]
,

(7)

where the dimensionless interaction strength g =
1/

√
1 + 2λ/π < 1 and v = vF /g.

This action alone is not enough to describe the system, and
matching conditions at the junction are necessary. As we will
see, matching conditions are subject to several restrictions. The
most general matching condition has the form F [φk

I,O(x = 0),
∂xφ

k
I,O(x = 0),∂2

xφk
I,O, . . .] = 0, where F is an arbitrary func-

tion. Here we will focus on the situation in which the system
is close to a fixed point. Then only the most relevant operators

should be kept in the matching conditions, and hence, all
derivatives of the Bose fields φk

I,O can be neglected. Next,
we note that the shift of any field φk

I,O by a constant φ(x) →
φ(x) + C is a gauge transformation that does not change the
physics of the system. Hence, the matching conditions must
be invariant with respect to such gauge transformations. This
singles out the boundary conditions of the form37

φk
O =
∑

j

Mkjφ
j

I , (8)

where M is a matrix with real matrix elements. With this
matching condition, it is easy to solve the equations of motion
for the chiral fields φk

O in the absence of the interaction (λ = 0)
and impurities for arbitrary initial conditions for fields φk

I,O .
Substituting the solution into the commutation relation (4) for
incoming and outgoing fields, we find that they are compatible,
provided that the matrix M is orthogonal. The same condition
for the matching matrix must hold for a general case with
an arbitrary interaction strength37 since the problem can be
reduced to a model of noninteracting bosons by diagonalizing
Eq. (7) in each wire (see Sec. IV).

Thus, we established that M is a real orthogonal matrix.
We next demonstrate that the sum of the elements of each
of its rows and columns equals 1.37 It is again convenient
to consider the situation without electron interaction and
tunneling. In that case the currents of incoming and outgoing
electrons in each wire are I k

I/O = ∓vF ρk
I/O = ±∂tφ

k
I/O/2π .

Charge conservation implies that the sum of the currents in
all wires is zero at x = 0. Taking into account Eq. (8), we
find that

∑
k Mkj = 1. Multiplying Eq. (8) by M−1 = MT and

repeating the same argument, we also find that
∑

j Mkj = 1.
Again, electron interactions do not affect this result.37

The origin of the matching conditions can be understood if
we note that they can be imposed by adding to the Hamiltonian
a term of the form

−A
∑

k

cos

(
n

[
φk

O(x = 0) −
∑

j

Mkjφ
j

I (x = 0)

])
, (9)

where A is a large constant. Each cosine tends to keep its
argument at zero. This can be achieved simultaneously for
each cosine only if their arguments commute. This happens for
a unitary M . The cosines describe tunneling between different
wires. Thus, charge conservation implies

∑
j Mkj = 1. This

provides an alternative derivation of the matching conditions.
Since we plan to separately investigate time-reversal-

invariant and time-reversal-noninvariant systems, we next
need to determine what matching conditions satisfy the
time-reversal symmetry. This is easy as the time-reversal
transformation corresponds to the change of variables φk

I/O →
φk

O/I . From Eq. (8) we then see that in time-reversal-invariant
systems M = M−1. Taking into account that M is orthogonal,
we conclude that in time-reversal-invariant systems it is also
symmetric.41 The action (1) is always time reversal invariant.
Thus, the behavior of the whole junction with respect to time
reversal is determined solely by the symmetry of the matching
matrix M .

At this point we are in a position to give a full classification
of fixed-point matching matrices.41 For time-reversal-invariant
systems, it is convenient to use a parametrization from Ref. 40.
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We discover three possibilities with time-reversal symmetry:

M =

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ , (10)

M = 1

3

⎛
⎜⎝

−1 2 2

2 −1 2

2 2 −1

⎞
⎟⎠ , (11)

M =

⎛
⎜⎝

b a c

a c b

c b a

⎞
⎟⎠ , (12)

where b = α(α + 1)/(1 + α + α2), a = (α + 1)/(1 + α +
α2) and c = −α/(1 + α + α2). Equation (10) corresponds
to three disconnected wires. The cases of α = 0, − 1,∞
correspond to a junction of two wires and a detached third
wire. The physics is the same as for one linear wire and will
not be discussed here.

In the absence of time-reversal symmetry we use the
parametrization from Ref. 37:

M =

⎛
⎜⎝

a b c

c a b

b c a

⎞
⎟⎠ , (13)

where a = (1 + 2 cos θ )/3, b(c) = (1 − cos θ ± √
3 sin θ )/3

and θ �= 0,π . The case of b = 1, a = c = 0 corresponds to
the island setup, which is depicted in Fig. 1. Note that the
matching matrix (11) has the form (13) with θ = π , so we will
consider it with the case of no time-reversal symmetry.

In general, matching matrices contain negative matrix
elements. This means that the incoming current in one wire
may suppress outgoing current in that or other wires. Such a
situation is possible in the presence of Andreev scattering if,
for example, a part of the junction is superconducting. Negative
matrix elements were also predicted in Y-shaped beam splitters
for cold bosonic atoms.44 Note that for noninteracting electrons
no negative matrix elements are allowed45 since in the absence
of interaction the elements of the matrix M reduce to the
squares of the absolute values of the elements of the scattering
matrix (cf. Sec. II).

IV. ELECTRIC CURRENT

In order to calculate the current we need to include a voltage
bias. We model Fermi-liquid leads by assuming that electron
interaction in the wires is zero at large distances x from the
junction.46–48 We will assume that leads 2 and 3 are kept at
a zero voltage. The bias voltage ±V is applied to lead 1.
The results do not change in a more general model with the
potential ±V applied to lead 1, the potential ±γV , γ ∼ 1,
applied to lead 2, and a zero potential applied to lead 3. We
will use the language of zero γ since it is simpler. Our approach
can be easily extended to a general γ .

The calculations will be based on a renormalization group
approach with the voltage V playing the role of the infrared
cutoff. Thus, we will assume that the temperature T < V . We
would like to emphasize that the role of the voltage does not

reduce solely to that of a cutoff; otherwise the density-driven
rectification would be lost [see the discussion after Eq. (18)]. It
is well known that in Luttinger liquids a voltage bias can play a
more prominent role than just a cutoff (see, e.g., Refs. 49–52).
At the same time, the leading contribution to the total current
at zero temperature can be estimated by simply setting the
renormalization group cutoff to the value of the voltage.53

Here we find that the rectification current is comparable with
the total current in certain regimes in the absence of the time-
reversal symmetry. This certainly means that in those regimes
the rectification current can be computed by assuming that the
voltage plays the role of a cutoff only. (We, however, do not
make such an assumption.)

For a general γ , we do not expect the current to depend
significantly on the temperature at T < V . Such dependence
can emerge at particular values of γ . In particular, in the island
setup (Fig. 1), this happens at γ = 0,1. This can be seen from
the Keldysh perturbation theory.53 The infrared cutoff in some
integrals in the perturbation expansion is set by max(T ,γV ),
and in some others it is set by max[T ,(1 − γ )V ]. Hence, at
γ = 0,1 our approach applies only for V ∼ T in the island
setup.

We want to find the current in the first wire. At low
frequencies the current conserves, and hence, it is sufficient
to find the current in lead 1. It is given by the sum of the chiral
incoming and outgoing currents ±vF ρI/O . The incoming
current can be found from the Landauer formula and is linear
in voltage. It does not contribute to the rectification current.
We thus focus on the outgoing current in lead 1. It can be found
with a generalization of the approach of Ref. 54. Our approach
is also related to that of Ref. 55.

In what follows we set the temperature T = 0 to simplify
notations. Our method can be easily generalized to finite
temperatures.

Let us introduce an auxiliary field φ̃1(x):

φ̃1(x) = φ1
O(x), x > 0;

(14)
φ̃1(x) =

∑
k

M1kφ
k
I ( − x), x < 0.

The field φ̃1 satisfies a simple matching condition φ̃1(+0) =
φ̃1(−0). Thus, the auxiliary field is a chiral field propagating
through the junction. In the stationary regime the average
time derivative of any operator is zero. Let us now consider
the operator Ô = ∫ a

−a
dx∂xφ̃1/2π , where the integration ex-

tends between points taken in the noninteracting leads. Its
meaning is the charge carried by the mode φ̃1. The equa-
tion 0 = 〈dÔ/dt〉 = i〈[H,Ô]〉, where the Hamiltonian H =∑

k(Hk + Tk) describes the whole system, including the leads,
wires, and scatterers, reduces to the following relation:

vF

〈
ρ1

O(a)
〉 =
〈
vF

∑
k

M1kρ
k
I (a)

〉
+ i

〈[∑
k

Tk,Ô

]〉
. (15)

The left-hand side is the outgoing current we want to find.
The first term on the right-hand side is linear in the voltage
bias and cannot contribute to the rectification current. Thus, we
have to calculate only the second contribution to the right-hand
side. In other words, our problem reduces to the calculation
of the average backscattering current whose operator equals
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I =∑ Il , where

Il = i
[
Ul

(
F

k†
O F k

I

)n
exp
(
iαl + in

{
φk

I (0) − φk
O(0)
})+ H.c.,Ô

]
= i

[
Ul

(
F

k†
O F k

I

)n
exp

(
iαl + in

{∑
p

(M−1)kpφ
p

O(0) − φk
O(0)

})
+ H.c.,Ô

]

= inUl

(
F

k†
O F k

I

)n
exp

(
iαl + in

[∑
p

(M−1)kpφ
p

O(0) − φk
O(0)

])
[(M−1)k1 − δk1] + H.c. (16)

Note that for any l the current operator expresses via all
backscattering operators in all three wires.

In order to find the average current 〈Il〉, we will assume
that the backscattering operators Tk are absent at t = −∞ and
are then gradually turned on. Without the operators Tk the
system can be viewed as an equilibrium one in the ground
state of an appropriate effective Hamiltonian. In order to find
it we introduce another auxiliary field with a structure similar
to φ̃1:

φ̄1(x) = φ1
I (−x), x < 0;

(17)
φ̄1(x) =

∑
k

(M̂−1)1kφ
k
O(x), x > 0.

In the absence of the backscattering operators Tk , the operator
Â = ∫∞

−∞ dx∂xφ̄1/2π commutes with the Hamiltonian. It can

be understood as the charge of a chiral mode propagating
through the junction. In other words, it is an additive integral
of motion. Hence, the system can be described by a Gibbs
distribution with an appropriate thermodynamic potential
conjugated to Â. The physical meaning of that thermodynamic
potential is the applied voltage bias V . At zero temperature,
we find that the system is in the ground state of the
effective Hamiltonian H ′ = H − V Â, where H is the actual
Hamiltonian of the Y-junction.

The current, i.e., the average of the sum of the operators
i[Tk,Ô], can now be calculated with the Keldysh technique.56

It is convenient to apply the interaction representation H →
H − V Â. The interaction representation introduces time
dependence into the operators Tk and Il according to the
rule

exp

(
in

[∑
p

(M−1)kpφ
p

O(0) − φk
O(0)

])
→ exp(iV Ât) exp

(
in

[
φk

I (0) −
∑

p

Mkpφ
p

I (0)

])
exp(−iV Ât)

= exp

(
in

[∑
p

(M−1)kpφ
p

O(0) − φk
O(0) + V t(Mk1 − δk1)

])
. (18)

After such time dependence is added into all backscattering
operators, the contribution of the form −V Â can be removed
from the action by a linear shift of all fields φk

O/I . This does
not mean, however, that the voltage would only enter the
action through the time dependence of Tk . Indeed, since the
charge density depends on the voltage, the amplitudes Uk of
the operators Tk may get corrections proportional to the small
voltage bias. This effect is discussed in Ref. 19.

The current can now be found with a perturbative expansion
in powers of Uk from the standard expression

Il = 〈0|S(−∞,0)ÎlS(0, − ∞)|0〉, (19)

where S(t,t ′) is the evolution operator from time t ′ to time
t and |0〉 is the ground state of the effective Hamiltonian
H − V Â. To complete the calculation, we need the Green
functions determined by the quadratic part of the action (5) and
the matching conditions (8). They have been found in Ref. 37.
A Bogoliubov transformation of the form φO/I = (1/2

√
g)

[(1 + g) φ̃O/I + (1 − g) φ̃I/O] in each wire allows us to obtain
free chiral fields φ̃I/O with correct Luttinger liquid commuta-

tion relations.37 The correlation function of the incoming fields
at x = 0 is given by the free particle relation〈

φ̃k
I (t)φ̃p

I (t ′)
〉 = −δkp ln[i(t − t ′)/τc + δ], (20)

where τc is the ultraviolet cutoff time of the order of the inverse
bandwidth and δ is infinitesimal. The matching conditions for
the new fields have the form37

φ̃k
O(x = 0) =

∑
p

M̃kpφ̃
p

I (x = 0), (21)

M̃ = [(1 + g) − (1 − g)M]−1[(1 + g)M − (1 − g)]. (22)

In the time-reversal-invariant case M̃ = M . In the absence of
the time-reversal symmetry, M̃ has the same general structure
(13) as M and satisfies the same set of constraints, but the
matrix elements are different:

ã = 3g2 − 1 + (3g2 + 1) cos θ

3[1 + g2 + (g2 − 1) cos θ ]
, (23)

b̃(c̃) = 2(1 − cos θ ± √
3g sin θ )

3[1 + g2 + (g2 − 1) cos θ ]
. (24)
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At this point we can write an expression for the current
as an expansion in powers of backscattering amplitudes Ul .
Evaluation of the terms of that expansion is technically difficult
and not very informative. Indeed, neither the amplitudes
nor the ultraviolet cutoff are known exactly. As a result,
it is only possible to estimate the order of magnitude of
each contribution. At the same time, such estimation can
be performed without explicitly calculating integrals over the
Keldysh contour and will be sufficient to find the leading power
dependence of the rectification current on the bias voltage at
small Ul and low voltages near each of the fixed points. Such
estimation will be the focus of the rest of this paper.

V. SCALING DIMENSIONS

It is convenient to use a renormalization group point of view
for the calculation of the current.53 In the renormalization
group procedure, the coefficient Ul in the Hamiltonian and
the operators Il scale as Ezl−1, where E is the energy
scale and zl is the scaling dimension. At the energy scale
E ∼ V the renormalization group procedure stops. Different
perturbative contributions to the current can be estimated from
the scattering theory.18,19 The current can be expressed as an
infinite sum of the contributions, proportional to the products
of different combinations of Ul :

I ∼ V
∑

const ×
∏

l

(UlV
zl−1). (25)

Strictly speaking, it is not enough to include only backscatter-
ing operators from the bare tunneling Hamiltonian (6) in the
expansion (25). All operators generated by the renormalization
group must also be included. Their general structure is

Ŵl = Wl exp

(
iαl + i

∑
k

nk

[
φk

O(x = 0) − φk
I (x = 0)

])

= Wl exp

(
iαl + i

√
g
∑

k

∑
p

nk(M̃kp − δkp)φ̃p

I

)
. (26)

For simplicity we use the same notation αl for the phases
of Wl and Uk . Note that it is always sufficient to keep
only two different values of k in the sum in Eq. (26) since∑3

k=1(M̃kp − δkp) = 0. This means that each possible operator
Ŵp can be generated from a product of two operators Tk (6)
and hence Wp ∼ U 2

l . Since Klein factors do not change the
scaling dimensions of Wl , we omit them in Eq. (26).

To complete the calculation of the current we need to find
zl . A straightforward calculation based on Eq. (20) yields, for
the operator (26) with an arbitrary choice of nk ,

zl = g
(∑

(ni)
2 −
∑

ninj M̃ij

)
. (27)

In the absence of the time-reversal symmetry this expression
greatly simplifies:

zl = g(1 − ã)
(
n2

1 + n2
2 + n2

3 − n1n2 − n2n3 − n3n1
)
. (28)

In the low-voltage regime, the main contribution comes from
the operators with the smallest zl . We can easily see that it
equals

zmin = g(1 − ã) (29)

and is achieved if two of the coefficients ni = 0, with the
remaining one being ±1.

In the time-reversal-invariant system, the expression for the
scaling dimensions is more complicated. It can be simplified
by setting m = n1 − n2 and k = n2 − n3. Using the matching
matrix (12), we find

z = g
[k(b + c) + mc]2

b + c
= g

1 + α + α2
(kα − m)2. (30)

We will assume for simplicity that α is irrational. We will
thus avoid situations with z = 0 at some k and m. Certainly,
such situations correspond to the operators Wl with no φ

dependence. Such operators cannot affect transport.
The renormalization group procedure only applies if all Ul

are small at the initial energy scale ∼1/τc and remain small
up to the scale V . In the case without time-reversal symmetry,
this condition can be easily expressed in terms of zmin:

Ulτc < const(V τc)1−zmin = constV 1−g(1−ã). (31)

This equation assumes that 1 − zmin > 0, i.e., Ul is relevant.
If 1 − zmin < 0, then the only restriction on Ul is Ulτc < 1.
What happens in the presence of the time-reversal symmetry
will be addressed in Sec. IX.

VI. RECTIFICATION CURRENT

The above discussion applies to all contributions to the
current, both even and odd in the voltage bias. We are
interested in the even contribution, i.e., the rectification current
Ir (V ) = [I (V ) + I (−V )]/2. What terms of the perturbation
expansion contribute to the rectification current? The answer
to this question can be obtained from symmetry considerations.

In what follows we will need the commutation
relations for the Klein factors in (6). Using the
commutation relations ψ

k†
O (0)ψk

I (ε) = −ψk
I (ε)ψk†

O (0) and
[φk

I (x),φk
I (y)] = −iπsign(x − y), an expression for ψk

O

in terms of φk
I , and the Baker-Hausdorff formula, we

find

F
k†
O F k

I = exp[iπ (1 − Mkk)]Fk
I F

k†
O . (32)

Next, some terms of the perturbative expansion (25) are zero
identically as only certain combinations of the vertex operators
in Tk and Il produce nonzero results after averaging with
respect to the quadratic part of the action (5). The condition is
well known:〈∏

l

exp

(
i
∑

k

clkφ
k
I (0)

)〉
�= 0 only if for each k

∑
l

clk = 0.

(33)

Let us now apply these results to possible contributions of dif-
ferent orders of the perturbation theory to the rectification cur-
rent. Strong limitations emerge for second-order contributions.
Indeed, Eq. (33) implies that any second-order contribution,
proportional to an operator Ul , must also contain its Hermitian
conjugated operator U

†
l . Hence, the phase factors exp(±iαl)

cancel each other and drop out from the expression for the
current. Thus, we can just set αl = 0. Let us now compare
the currents at the bias voltages V and −V . In the case with
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the bias −V , we make the change of variables φk
I/O → −φk

I/O .
This transformation does not affect the form of the quadratic
part of the action (5) and the linear matching conditions. Let
us also change the order of the Klein factors in the tunneling
and current operators using the commutation relation (32)
and redefine F → F †,F † → F . Since Ul pairs up with U

†
l

in the nonzero second-order contribution to the current, we
can easily see that the phase factors exp[±iπ (1 − Mkk)] in
the commutation relation (32) drop out. At the same time, if
we omit the phase factors exp(±iαl) and exp[±iπ (1 − Mkk)]
from the action and current operators, we discover that the
action assumes precisely the same form as for the voltage bias
V . On the other hand, the current operator Il (16) changes its
sign. This means that the average of Il also changes its sign
and hence the second-order term of the order U 2

l V 2zl−1 does
not contribute to the rectification current.

This argument assumes that the backscattering amplitudes
Ul are independent of the voltage bias. Since the injected
charge density depends on the voltage in our setup, Ul can
exhibit a weak linear dependence on the bias voltage. This
means that second-order terms can, in fact, lead to a “density-
driven” rectification effect, but its amplitude is suppressed by
an additional factor V τc, where the ultraviolet cutoff τc is of
the order of the inverse band width. Thus, the second-order
contribution to the ratchet current scales as

I (2) ∼ U 2
l V 2zl . (34)

Beyond the second order, no additional general restrictions
on possible contributions to the rectification current can be
derived. Particular contributions to the ratchet current can
disappear at particular values of the phases αl and interaction
strength g.

VII. THREE WEAKLY CONNECTED WIRES

So far we have discussed general features of Y-junctions.
We now determine the rectification current in different
setups. As a warm-up exercise we investigate the simplest
situation of three almost-disconnected wires (Fig. 4). This
situation corresponds to the matching matrix (10). The
rectification current is much weaker in this limit than for other
matching conditions. At the same time, the qualitative picture
is quite similar.

There is no current at all in our original model with the
action (1) and backscattering operators (3) as it describes
three disconnected conductors. We thus modify the model in
this section. Instead of the backscattering operators (3), we
consider weak tunneling between the wires. The tunneling
operators have the form

T =
3∑

k=1

Tk,

Tk = F
†
k+1FkUke

iαk exp[iφk(0) − iφk+1(0)] + H.c., (35)

where φk(0) = φk
I (0) = φk

O(0), Fk are Klein factors, and we
use the convention 3 + 1 ≡ 1. The commutation relations for
the Klein factors are FkFq = −FqFk, k �= q. We assume that
wire 3 is kept at zero voltage. The chemical potential of the
first wire is ±V . The second wire experiences the bias ±γV .

±V

±γV

A

B

C

D

E

F
1

2

3

FIG. 4. Schematic of a Y-junction of three weakly connected
wires. Voltage bias ±V is applied to wire 1, and bias ±γV is applied
to wire 2. Wire 3 is connected to the ground. We calculate the dc
current in wire 1.

Note the different meaning of the amplitudes Uk and phases
αk from the model with three weak scatterers discussed above.
In Eq. (35), the phases αk describe the Aharonov-Bohm effect
due to the magnetic field through the junction. On the other
hand, in the model with weak scatterers, all information about
the magnetic flux is contained in the matching conditions.
The voltage bias can be included in the action in the form
of the time dependence of the tunneling operators, similar to
the discussion above. We will not need explicit expressions
below. The operator of the current, tunneling between wire 1
and wires 2 and 3, is

I = iT1 − iT
†

1 − iT3 + iT
†

3 . (36)

The current can be estimated from a renormalization
group procedure that stops at the scale E ∼ V . At that
scale, Uk → Uk(V τc)1/g−1, where g < 1 characterizes the
interaction strength. The second-order contribution to the
rectification current can now be easily found and scales as

I (2) ∼ U 2V 2/gτ 2/g+1
c , (37)

where U ∼ Ul 
 1/τc.
The nth order contribution to the current cannot exceed

∼(Uτc)n(V τc)n/g−n+1/τc, n � 3. Thus, the leading higher-
order contribution corresponds to n = 3:

I (3) ∼ U 3V 3/g−2τ 3/g
c . (38)

Interestingly, at low voltages and g > 1/2, the third-order
contribution exceeds the second-order contribution.

The above discussion of this section ignored the issue of the
time-reversal symmetry. Depending on the presence or absence
of the magnetic field through the junction, the system can
have or not have time-reversal symmetry.28,29 It is instructive
to investigate the effect of the symmetry breaking. In the
presence of the time-reversal symmetry the magnetic flux is
zero and all αk = 0. Indeed, the time-reversal transformation
can be represented as φk

I → φk
O, φk

O → φk
I , αk → −αk . Since

φk
I (0) = φk

O(0), we conclude that αk = −αk = 0 at zero
magnetic field. On the other hand, in the presence of the
magnetic field αk �= 0.
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The second-order contribution to the rectification current
does not depend on the phases αk . Let us compare the
third-order contributions for different values of αk . Nonzero
third-order contributions to the current originate only from
the product of all three operators Tk or all three operators
T

†
k in the perturbative expansion of the Keldysh expres-

sion for the current (19). The first contribution, I
(3)
1 , is

proportional to exp(i
∑

k αk), I
(3)
1 (V ) = exp(i

∑
k αk)J1, and

the second contribution is proportional to exp(−i
∑

k αk),
I

(3)
2 (V ) = exp(−i

∑
k αk)J2. Let us change the voltage sign.

Simultaneously, we change φk
O/I → −φk

O/I , change the order

of Klein factors in all operators, and redefine Fk → F
†
k ,F

†
k →

Fk . This transformation is equivalent to changing the sign of
αk in all operators and simultaneously changing the overall
sign of the tunneling Hamiltonian (35) but not the sign of the
current operator. Hence, the third-order current I

(3)
1 (−V ) +

I
(3)
2 (−V ) = exp(−i

∑
k αk)J1 + exp(i

∑
k αk)J2. We see that

the current is an even function of the voltage in the presence of
the time-reversal symmetry, i.e., at

∑
k αk = 0. The third-order

current is an odd function of the voltage and does not
contribute to the rectification effect if

∑
k αk = ±π/2. Thus,

for three weakly connected wires, magnetic field suppresses
rectification. We will see below (Sec. VIII and IX) that,
typically, it has an opposite effect and rectification is stronger
in the absence of the time-reversal symmetry. Note that in this
example, the ratchet current returns to its maximal value at∑

k αk = π .
Let us finally compare our results with the case of a linear

wire with a high asymmetric potential barrier or, equivalently,
two weakly connected wires. In that case the rectification
current is given18 by Eq. (37). Thus, at g > 1/2 the rectification
effect is stronger in a Y-junction than in a linear wire with the
same interaction strength.

VIII. RECTIFICATION EFFECT IN THE ABSENCE OF
THE TIME-REVERSAL SYMMETRY

Here we address matching matrices of the form (13). In
particular, the results of this section are relevant for the
island setup (Fig. 1). Our analysis also applies to the time-
reversal-invariant situation with the matching matrix (11).
In this section we find that at sufficiently low voltages the
rectification current scales as Eq. (39), where U is the impurity
potential strength, V is the voltage, g < 1 is the Luttinger
liquid parameter, characterizing electrostatic interactions, τc

is the ultraviolet cutoff of the order of the inverse band width,
and ã is determined by the matching conditions according to
Eq. (23).

Similar to Sec. VII we need to compare the leading
second- and third-order contributions to the rectification
current. They are determined by the operators of the form
Tk ∼ exp[i(φk

I − φk
O)] with the minimal scaling dimension

(29). The leading second-order contribution scales as I (2) ∼
(Uτc)2(V τc)2g(1−ã)/τc, where ã is given by Eq. (23) and
satisfies −1/3 � ã � 1. The leading third-order contribution
comes from the terms in the perturbation expansion propor-
tional to the product of all three Tk (or all three T

†
k ). It scales as

I (3) ∼ U 3V 3g(1−ã)−2τ 3g(1−ã)
c . (39)

At small U the second-order contribution always exceeds
higher-order contributions. Interestingly, however, at greater
U , which are still within the region of validity of the
perturbation expansion, the third-order contribution is leading.

Let us show that the third-order contribution dominates. We
will focus on the largest Ul accessible with the perturbation ex-
pansion: Ul ∼ 1/τc at g(1 − ã) > 1 when Ul is irrelevant and
Ul ∼ (V τc)1−g(1−ã)/τc at g(1 − ã) < 1 when Ul is relevant.
In all cases the electron interaction is repulsive, i.e., g < 1.
Let us first consider the case of g(1 − ã) > 1. According to
Eq. (23), ã � −1/3. Hence g(1 − ã) < 4/3. The ratio of the
second-order contribution to the third-order contribution scales
as (Uτc)−1(V τc)2−g(1−ã) ∼ (V τc)2−g(1−ã) < 1. Thus, the third-
order contribution dominates indeed. The case of g(1 − ã) < 1
is also easy. In the limit of Ul ∼ (V τc)1−g(1−ã)/τc we find
τcI

(2) ∼ (V τc)2 and I (3) ∼ V � I (2). Interestingly, the third-
order current may become comparable to the total ac current
∼e2V/h through the junction at g(1 − ã) < 1. Note also that
the exponent 3g(1 − ã) − 2 in the voltage dependence of the
dc current (39) is negative at g(1 − ã) < 2/3. This corresponds
to an increase in the dc current as the ac voltage decreases.

This calculation applies for the voltage interval 1/τc >

V at g(1 − ã) > 1 and 1/τc > V > (Uτc)1/[1−g(1−ã)]/τc at
g(1 − ã) < 1. The left inequality is dictated by the appli-
cability of the Luttinger liquid model. The right inequality
is determined by the validity of the perturbation theory. We
cannot calculate the rectification current at lower voltages
with this perturbative approach. However, it is obvious that
I = 0 at V = 0. From this we conclude that there is a bump
on the voltage dependence of the rectification current at
g(1 − ã) < 2/3: It grows as a function of the voltage at low
voltages and achieves its maximal value of the order of e2V/h

at V = V ∗ ∼ U 1/[1−g(1−ã)]. In the last equation we omitted a
power of τc as this does not lead to a confusion.

Finally, let us compare the result with the case of a linear
wire with the same interaction strength g in the presence of an
asymmetric impurity. In that case the maximal rectification
current, calculated in the perturbative regime in Ref. 18,
scales as V 1+3g < V at g < 1/3 (we omit powers of τc). The
rectification current does not exceed V 2/τc at g > 1/3. In a
Y-junction, at 1 − g(1 − ã) > 0, the rectification current ∼V

at V ∼ V ∗ is always greater than in a linear wire. On the
other hand, a negative 1 − g(1 − ã) implies g > 3/4. The
maximal rectification current corresponds then to U ∼ 1/τc

and scales as ∼V 3g(1−ã)−2 > V 2. Thus, the maximal ratio
of the rectification and total currents is always higher in a
Y-junction than in a linear wire in the Luttinger liquid regime
V 
 1/τc.

IX. RECTIFICATION EFFECT IN THE PRESENCE
OF THE TIME-REVERSAL SYMMETRY

This case is more complicated than the situation without
the symmetry. The summary of the results is given in
Sec. IX C. We will need to take into account many different
backscattering operators. Thus, it is important to classify them.
The classification relies on the matching conditions at the
junction.

The matching matrix is given by equation (12), where
the expressions for a = f1(α),b = f2(α),c = f3(α) in the

045302-9



CHENJIE WANG AND D. E. FELDMAN PHYSICAL REVIEW B 83, 045302 (2011)

parametrization41 are given after the equation. It is always
possible to redefine α in such a way that a = fk(α),b =
fl(α),c = fn(α), where (k,l,n) is an arbitrary transposition of
(1,2,3). Indeed, the change of the variable α → 1/α exchanges
f1 and f2; α → −(1 + α) exchanges f1 and f3; and α →
−α/(1 + α) exchanges f2 and f3. Any other transposition
is a superposition of these three. Since M is an orthogonal
matrix, at least one of the elements must be negative or zero.
Otherwise, different rows cannot be orthogonal. Without loss
of generality we may assume that c � 0 and hence α � 0.
This can always be achieved by renumbering the wires and
redefining α. Note that a,b � 0. Similarly, without loss of
generality we may assume that a � b. Hence, α � 1. Note
that a � 2/3. Thus, the ranges of the parameters that we
consider are 0 � α � 1, −1/3 � c � 0, 0 � b � 2/3, and
2/3 � a � 1.

As has already been discussed, we need to deal with two
types of backscattering operators in the action and the current
operator:

(i) Ul ∼ U exp{ink[φk
O(x = 0) − φk

I (x = 0)]};
(ii) Wl ∼ U 2 exp{in1[φ1

O(x = 0) − φ1
I (x = 0)] +

in3[φ3
O(x = 0) − φ3

I (x = 0)]}.
Note that we do not need to include a contribution of the

form n2[φ2
O(x = 0) − φ2

I (x = 0)] in the exponent in Wl .
We will first concentrate on the operators of the first type

and determine the leading contribution to the ratchet current
in the absence of the operators of the form Wl . Next, we
will check what changes after Wl are taken into account. We
summarize our findings in Sec. IX C.

A. Contributions from operators Ul

The scaling dimensions of the operators Ul are simply

z1 = n2
1g(1 − b), z2 = n2

2g(1 − c), z3 = n2
3g(1 − a). (40)

The lowest scaling dimension is z3 with n3 = 1. It sets
the scale of the maximal U in the perturbation theory,
U ∼ (V τc)1−g(1−a)/τc. Strictly speaking, we need to know the
scaling behavior of the operators Wl to determine the maximal
allowed value of U in the perturbative regime. We will see
in Sec. IX B that the operators Wl do not change expression
(40) for the maximal U . We thus immediately find the leading
second-order contribution to the rectification current

I (2) ∼ 1

τc

(Uτc)2(V τc)2g(1−a). (41)

What about the third and higher orders? It turns out that the
leading contribution is third order and comes from the oper-
ators U exp{2i[φ3

O(x = 0) − φ3
I (x = 0)]}, U exp{−i[φ3

O(x =
0) − φ3

I (x = 0)]}, and U exp{−i[φ3
O(x = 0) − φ3

I (x = 0)]}. It
scales as

I (3) ∼ 1

τc

(Uτc)3(V τc)6g(1−a)−2. (42)

To see that (42) is the leading contribution, we first
note that I (3) exceeds I (2) at the maximal allowed U ∼
(V τc)1−g(1−a)/τc. Indeed, at such U , I (2)τc ∼ (V τc)2, while
I (3)τc ∼ (V τc)1+3g(1−a) > (V τc)1+3g×1/3 > (V τc)2. Next, let

us compare the contribution (42) with other higher-order
contributions to the current,

I ′ ∼ V
∏

l

(
UV zl−1τ zl

c

) ∼ V
∏

l

[(V τc)zl−g(1−a)]. (43)

If an operator with the scaling dimension zl = n2
2g(1 − c)

enters this expression, then (43) is smaller than (42). Indeed,
any contribution to the rectification current that contains
such operators satisfies the inequality I ′τc < (V τc)1+g(a−c) =
(V τc)1+g(1+2α)/(1+α+α2) < (V τc)1+3g(1−a). Thus, only contri-
butions with the operators Ul ∼ U exp{in1l[φ1

O(x = 0) −
φ1

I (x = 0)]} and Ul ∼ U exp{in3l[φ3
O(x = 0) − φ3

I (x = 0)]}
have to be considered. If one of the contributing op-
erators has |n1l| > 1 or |n3l| > 1, then it is obvious
that the contribution cannot exceed (42). We thus con-
sider the case with all n1l ,n3l = ±1. A nonzero con-
tribution to the current requires (

∑
l n1l)[φ1

O(x = 0) −
φ1

I (x = 0)] + (
∑

l n3l)[φ3
O(x = 0) − φ3

I (x = 0)] = 0. For a
general transcendental α, this equality is satisfied only if∑

l n1l =∑l n3l = 0. Thus, we consider contributions in
which the operator U1 = U1F

1†
O F 1

I exp{iα1 + i[φ1
O(x = 0) −

φ1
I (x = 0)]} enters the same number of times as the operator

U
†
1 and the operator U3 = U3F

3†
O F 3

I exp{iα3 + i[φ3
O(x = 0)

− φ3
I (x = 0)]} enters the same number of times as the operator

U
†
3 . Hence, the phases α1,3 drop out from the final answer. Let

us now change the voltage sign, perform the transformation
φk

I/O → −φk
I/O , change the order of the Klein factors in each

term, and redefine Fk
I/O → F

k†
I/O,F

k†
I/O → Fk

I/O . Changing the
order of the Klein factors introduces complex conjugate phase
factors into Uk and U

†
k . Hence, we can ignore both those phase

factors and αk since neither affects the final result. On the
other hand, if we ignore the phase factors, we discover that
the backscattering part of the Hamiltonian does not change
under our transformation, while the current operators Il change
their signs. This means, in turn, that the contribution to the
total current we are calculating changes its sign when the
bias voltage changes its sign. Hence, it does not contribute
to the rectification current. Thus, Eq. (42) describes the main
contribution to the rectification current.

B. Contributions from operators Wl

We now find the leading contribution to the rectification
current that contains operators Wl . First, let us check that renor-
malized operators Wl(V ) ∼ Wl(E ∼ 1/τc)(V τc)zl−1 remain
small at U < (V τc)1−g(1−a)/τc. Indeed, Wl(1/τc) ∼ U 2 and
zl � 0. Hence, Wl(V )τc < (V τc)1−2g(1−a) < (V τc)1−2g/3 <

(V τc)1/3 
 1. Thus, all renormalized operators remain small,
and the maximal U for which the perturbation theory can be
used was found correctly in Sec. IX A. In what follows we
focus on the case with U of the order of its maximal allowed
value. The opposite limit U → 0 is trivial since in that limit
the second-order contribution in U always dominates the
ratchet current.

Next, let us check how the operators Wl affect
second-order contributions to the rectification current.
The corresponding second-order contribution I

(2)
W ∼

[Wl(V )]2V 2/τ 3
c � (Uτc)4/τc ∼ (V τc)4−4g(1−a)/τc. We need

to compare it with the current (42), I (3) ∼ (V τc)1+3g(1−a)/τc.
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We can easily see that 4 − 4g(1 − a) > 1 + 3g(1 − a) since
g(1 − a) < 1/3. Thus, the second-order contribution to
the rectification current can be neglected compared to the
third-order contribution even after Wl are taken into account.

At the same time, in a certain region of parameters the
dominant higher-order contribution to the rectification current
contains an operator Wl . As we will see, such contribution con-
tains exactly one operator Wl . We thus begin our analysis by
excluding contributions that contain three or more Wl . Indeed,
any such contribution I 3W � V (Wl/V )3 ∼ (Uτc)6/(V 2τc) ∼
(V τc)4−6g(1−a)/τc. We need to compare this estimate with
I (3) ∼ (V τc)1+3g(1−a)/τc. We can easily see that [4 − 6g(1 −
a)] > [1 + 3g(1 − a)], and hence, we do not need to take into
account contributions with three or more operators Wl .

Thus, only higher-order contributions with one or two
operators Wl remain to be considered. We first consider
contributions with exactly one operator Ŵl = Wl exp{iαl +∑

k sk[φk
O(x = 0) − φk

I (x = 0)]}, where s2 can be set to zero,
as discussed above in this section. The contribution also
contains at least two operators Ul . It is sufficient to consider
the case with all nk = ±1 in the definition of the operators Ul

(i). Indeed, a contribution with an operator with |nk| = p > 1
can be increased by substituting it with p operators Uk,± =
exp[±i(φk

I − φk
O)]. Moreover, we can assume that for each k,

only operators Uk,+ or only operators Uk,− enter. Let us denote
the number of the operators of the form exp[±i(φk

I − φk
O)]

in the expression for the contribution under consideration as
lk . Then we can estimate the contribution to the rectification
current as

I (3′) ∼ V (U 2V z−1)[UV g(1−a)−1]l3 [UV g(1−b)−1]l1

× [UV g(1−c)−1]l2 , (44)

where z = g(s3α + s1)2/(1 + α + α2). The same argument as
in Sec. IX A shows that the maximal contribution corresponds
to l2 = 0. Then for a general α, the product of the vertex
operators Ul,Wl gives a nonzero result after averaging with
respect to the quadratic part of the action only if l1 = |s1| and
l3 = |s3|. Note that we can assume that both s1 and s3 are
nonzero and s1 �= s3. Otherwise, the operator Wl would have
the same from as one of the operators Ul , and the analysis from
Sec. IX A would apply.

We want to compare contributions (42) and (44). At U ∼
(V τc)1−g(1−a)/τc we find

ln[I (3′)/I (3)] = γ (s1,s3) ln(V τc),

γ = 1 + g

1 + α + α2
[−5α2 + |s1|(1 − α2) + (s1 + s3α)2].

(45)

If γ is positive for every choice of s1,s3,s1 − s3 �= 0, then I (3)

is the main contribution to the rectification current. If γ < 0 for
a certain choice of s1,s3, then the leading contribution comes
from I (3′). We thus want to investigate at what conditions γ < 0
and find what choice of s1 and s2 minimizes γ . That choice
determines the power dependence of the rectification current
(44) on the voltage.

First, let us prove that γ is minimal if |s1| = 1. Indeed, let
us compare γ (s1 = 1,s3 = −1) with γ (p1,p2), where |p1| > 1
and p2 is arbitrary. We find

γ (p1,p2) − γ (1,−1)

= g

1 + α + α2
[(|p1| − 1)(1 − α2) + (p1 + αp3)2 − (1 − α)2]

� g

1 + α + α2
(1 − α)[(|p1| − 1)(1 + α) − (1 − α)] > 0.

(46)

Thus, we can focus on s1 = 1 (the case of s1 = −1 is
completely analogous).

Next, we prove that a negative γ (1,s3) is minimal
at s3 = −1. Indeed, a negative γ (1,s3) implies that 1 +
g(1 − 6α2)/(1 + α + α2) < 0. Hence, α > (1 + √

41)/10 >

0.7. Taking into account that α < 1, we find that (s1 + s3α)2 =
(1 + s3α)2 is minimal at s3 = −1. This allows us to establish
that γ is minimal at s3 = −1.

The remaining task is simple. We just determine at what
conditions γ (1,−1) is negative; that is, we need to investigate
the inequality

γ (1,−1) = 1 + g(2 − 2α − 5α2)

1 + α + α2
< 0. (47)

We can easily see that γ can only be negative if g > 3/5,
i.e., for relatively weak repulsive electron interaction. γ is
negative in the largest interval of α at g → 1. In that case,
γ < 0 for α > 3/4. The contributions with Wl matter only if
γ (1,−1) < 0. They give rise to the rectification current of the
form (52) at negative γ .

The last question we must address in this subsection
concerns the role of the contributions to the rectification
current with two operators of the form (ii). An estimation
of such contributions is similar to (44):

I (3′′) ∼ V (U 2/V )2V zx+zy [UV g(1−a)−1]l3 [UV g(1−b)−1]l1 , (48)

where zx,y = g(sx,y

3 α + s
x,y

1 )2/(1 + α + α2) are the scaling
dimensions of the operators Wx,y ∼ U 2 exp{isx,y

1 [φ1
O(x =

0) − φ1
I (x = 0)] + is

x,y

3 [φ3
O(x = 0) − φ3

I (x = 0)]}.
As above, we first divide I (3′′) by I (3) and determine when

the ratio is greater than 1:

ln[I (3′′)/I (3)] = μ
(
sx

1 ,sx
3 ,s

y

1 ,s
y

3

)
ln(V τc),

μ = 2 + g

1 + α + α2

(
− 7α2 + l1(1 − α2)

+
∑

r=x,y

(
sr

1 + sr
3α
)2)

. (49)

If μ < 0, then I (3′′) > I (3). Obviously, a negative μ implies that
0 > 2 − 7gα2/(1 + α + α2) and hence α > (1 + √

11)/5 >

0.8. Let us now compare μ and γ (1,−1) at α > 0.8. We find

μ − γ (1,−1) � 1 + 2g

1 + α + α2
(α − α2 − 1). (50)

We can easily check that this difference is positive at α > 0.8.
Hence, contributions with one or no operators Wl are always
more important than contributions with two such operators.
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C. Summary for systems with time-reversal symmetry

We found that the leading contribution to the rectification
current depends on the sign of γ (1,−1) [Eq. (47)]. For
strong repulsive interaction (g < 3/5), γ (1,−1) is always
positive. If γ > 0, at sufficiently low voltages V ∼ V ∗ =
(τcU )1/[1−g(1−a)]/τc the current scales as

Ir ∼ U 3V
6gα2

1+α+α2 −2
. (51)

At a negative γ and low voltages V ∼ V ∗,

Ir ∼ U 4V
2g(α2−α+1)

1+α+α2 −2
. (52)

The exponents in both voltage dependences are negative.
This is related to the fact that our calculations are only
valid in an interval of low voltages, 1/τc � V > V ∗ =
(τcU )1/[1−g(1−a)]/τc. Similar to Sec. VIII the I -V curve for the
rectification current exhibits a bump at V ∼ V ∗. The maximal
rectification current at γ > 0

Imax ∼ e2V

h
(V τc)

3gα2

1+α+α2 . (53)

At γ < 0,

Imax ∼ e2V

h
(V τc)1−2g α2+α−1

1+α+α2 . (54)

One can easily verify that the maximal current (53) and (54)
exceeds the maximal possible rectification current at the same
voltage V in a linear wire18 ∼ e2V

h
max[(V τc)3g,(V τc)].

X. CONCLUSIONS

We have found the rectification current in the absence
[Eq. (39)] and in the presence [Eqs. (51) and (52)] of the time-
reversal symmetry in Y-junctions. In all cases the maximal
rectification current is greater than in a linear wire with the
same interaction strength and bias voltage. In the absence of
the time-reversal symmetry the rectification current can be
comparable to the total ac current ∼e2V/h for sufficiently
strong interaction strength; that is, it achieves its maximal
possible order of magnitude. This reflects the fact that both
electron interaction and time-reversal symmetry breaking
facilitate rectification. For most values of the parameters the
rectification current is a nonmonotonous function of the bias
voltage.

Our calculations are valid in the vicinity of various fixed
points in the low-voltage regime. In a general case, a junction
is controlled by a stable fixed point at low voltages. For
repulsive interaction of spin-polarized particles there is only
one stable fixed point: three disconnected wires.29 We found
a stronger rectification effect near that fixed point than for
two weakly connected wires. However, the current is low for

weakly connected wires. The diode effect is much stronger in
the vicinity of unstable fixed points. Thus, it is important to
understand how to tune the system close to those fixed points.
Some of them may be tricky to realize experimentally. Indeed,
as discussed in Sec. III, negative elements in the matching
matrix M imply Andreev reflection and could be obtained
in a hybrid normal-superconductor structure or in cold atom
systems.44 At the same time, it is straightforward to make
an “island junction”34 (Fig. 1) with positive matching matrix
elements:

M =

⎛
⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎠ . (55)

For example, we can use three line junctions between three
quantum Hall systems. The role of impurities is played by
three constrictions in the junctions. Alternatively, we can use
a single quantum Hall island confined between edges AB, CD,
and EF (Fig. 1). The rectification current scales as

Ir ∼ U 3V
12g

g2+3
−2

(56)

at V ∼ V ∗ = (Uτc)
g2+3

(3−g)(1−g) /τc. Time-reversal symmetry is
broken in such a setup. Thus, the rectification current can be
made comparable to the total ac current even in the low-voltage
regime. This is the main result of this paper.

Most of the time, we ignored phase factors exp(iαl) in
tunneling operators. As the example of three weakly connected
wires shows, for special values of the phases the rectification
effect is suppressed. It has the same order of magnitude for
other values of the phases.

We considered the simplest example of a junction: three
spin-polarized wires. It would be interesting to generalize
our results to a system with spin. This may result in more-
complicated behavior as the minimal model with spin includes
six channels: two for each wire. Still, we expect a similar
physics. In particular, a time-reversal-invariant system with
spin can be obtained from two copies of the “island junctions”
with opposite spins and chiralities. In the absence of the
interaction between the copies, the problem reduces to a spin-
polarized island junction. An actual realization based, e.g.,
on a topological insulator must involve interaction between
opposite spins. We expect that such interaction does not change
the qualitative picture.

ACKNOWLEDGMENTS

We acknowledge funding for this project from NSF Grant
Nos. DMR-0544116 and PHY05-51164 and U.S. Department
of Energy Grant No. DE-SCOOO1556. D.E.F. thanks K.I.T.P.
for hospitality.

1A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
2N. J. Geddes, J. R. Sambles, D. J. Jarvis, W. G. Parker, and D. J.
Sandman, Appl. Phys. Lett. 56, 1916 (1990).

3A. S. Martin, J. R. Sambles, and G. J. Ashwell, Phys. Rev. Lett. 70,
218 (1993).
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