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Urbach tails of amorphous silicon
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In earlier work, we showed that exponential (Urbach) band-edge states were localized on connected
subnetworks of short bonds for the valence tail and long bonds for the conduction tail for high-quality continuous
random network models of amorphous silicon. Here, we study size effects by computing the electronic density of
states for a 105-atom model of α-Si proposed by G. T. Barkema and N. Mousseau [Phys Rev. B 62, 4985 (2000)]
and show that the model indeed possesses exponential tails, consistent with earlier calculations on a 4096-atom
system. Next, we study the structure of the network near the shortest bonds. These bonds consistently create
a slightly densified region, and we discuss the strain field associated with these defects. The dynamics of the
short-bond clusters is briefly examined next. We show that there are significant fluctuations in the atoms with
instantaneous short bonds, even at 300 K, and we compare the electronic density of states and valence edges
between models with filaments and without filaments. We close with speculations on how to determine if the
connected subnetwork hypothesis is unique in its ability to produce exponential tails.
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I. INTRODUCTION

One of the long-standing research programs for amorphous
semiconductors is comprehending the linkage of structural
features to electronic or optical characteristics of the material.
The classic example is the structural origin of the midgap state
in α-Si or α-Si : H. As recently as the nineties, there has been
a lively debate between proponents of the view that three-
coordinated sp3 dangling bonds were the structural origin or
the “floating” (fivefold) bonds. The current prevailing view is
that the midgap states are due to dangling bonds.1

A more subtle but equally important problem is the struc-
tural origin of the exponential or Urbach tails in disordered
systems,2 including α-Si. Diverse models yielding exponential
tails have been advanced, as discussed elsewhere.3 Recently,
we have shown that for α-Si, the structural features giving rise
to the tails in the best available models of the material are a
subnetwork of connected short bonds (for the valence tail) and
long bonds (for the conduction tail).4–7 We have shown that
the short and long bonds are spatially self-correlated: thus,
for example, given a short bond in a network, the likelihood
that its neighbors possess a short bond is much higher than
random. Also, there is little if any cross-correlation (long
to short). The clustered short bonds form a characteristic
network—a three-dimensional (3D) structure with short bonds
surrounding a particularly short bond.6 Long bonds form
“wispy” or filamentary 1D structures, again, with a high degree
of connectivity. We have shown that analogous structures
account for the band tails in α-SiO2 and other systems.6 For the
sake of convenience, we generically dub connected networks
of short bonds or long bonds “filaments” in the rest of this
paper.

A feature of all high-quality continuous random network
models of α-Si is that they possess the structural correlations
described above. The best models of α-Si are made with
the Wooten–Winer–Weaire (WWW) method8 and to our
knowledge are not in significant contradiction with any
experiments (structural, vibrational, or optical). To extend our
understanding of these points, we investigate the following
four topics in this paper: (1) the role of finite size effects: to

date models with up to 10 000 atoms have been explored with
tight-binding in 3D, we extend this to 100 000 atom models
in this paper and show that a well-made model of this size
produces highly exponential tails; (2) the character of the
strain field centered on particularly short bonds; (3) the role
of thermal disorder: how thermal fluctuation affects the band
tails and how the filaments are affected by thermal disorder;
(4) we speculate on the question of the necessity vs sufficiency
of the filaments for generating the Urbach tail.

Finally, we observe that the tails are not of mere academic
interest. In particular, the broad valence tail in α-Si : H is
a particular culprit in reducing the efficiency of α-Si : H
photovoltaic devices by virtue of reduced hole mobility.9

II. CALCULATIONS ON A LARGE SYSTEM

By carefully exploiting locality of interactions and imple-
menting various clever computational tricks, Mousseau and
Barkema10 have proposed genuinely enormous, but neverthe-
less high-quality, models of α-Si, the largest to date being
100 000 atoms. These models are cubic and periodic boundary
conditions are applied. To determine whether the Urbach edges
are a property of a large system, we compute the density
of states for this model. We show that both tails are quite
exponential and indeed very close to an earlier calculation11

on a smaller (4096-atom) model proposed by Djordjevic and
coworkers.12

In recent years there have been significant advances in
obtaining the electronic structure of large systems. While the
roots of these approaches extend back at least to Haydock
and Heine’s recursion method,13 conceptual advances in the
nineties showed how to compute total energies and forces in
a fashion that scales linearly with system size—the so-called
order-N methods.14 For the present topic, we are concerned
primarily with the spectral density of states for a single-
particle Hamiltonian in a local basis (orthogonal tight-binding)
representation.

Within a tight-binding approach, the electronic Hamiltonian
matrix H of a large model of α-Si is readily computed because
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it is extremely sparse (meaning that the overwhelming majority
of the matrix elements vanish). Using the Hamiltonian of
Kwon et al.15 (with four orbitals per site and a cutoff between
the second and third neighbors for Si) we find that about
54 million matrix elements are nonzero, out of 400 0002 matrix
elements in total, so that only about 1 in 2800 entries in
the matrix is nonvanishing. As such, one can take advantage
of sparse matrix methods formulated to carry out all matrix
operations using only the nonzero matrix elements.

The principle of maximum entropy (maxent) provides a
successful recipe for solving missing information problems
associated with spectral densities, such as the electronic (or
vibrational) density of states.16 Let ρ be the maximum entropy
estimate for this density. The maxent framework prescribes
that we maximize the entropy functional:

S[ρ] = −
∫

dερ(ε) log[ρ(ε)], (1)

subject to the condition that ρ(ε) satisfies all known infor-
mation about ρ, and with implied integration limits over the
support of ρ. As discussed elsewhere,17 it is easy to get accurate
estimates of the power moments μi = ∫ b

a
dεεiρ(ε), i = 1,N .

By using simple tricks, one can generate hundreds of power
moments in seconds for systems with 105 or more atoms (this
is because the only operations involving H are of the form
matrix applied to vector). Then maximizing Eq. (1) (solving
the Euler equation) subject to the moment data leads to

ρ(ε) = exp

[
N∑

i=0

�iε
i

]
. (2)

From a computational point of view, the maxent moment
problem is solved by finding the Lagrange multipliers �

that satisfy the moment conditions. This system of equations
presents a dreary nonlinear problem, but by using orthogonal
polynomials rather than raw powers and converting the
calculation into a convex optimization problem, practical
solutions are available for more than 100 moments.17–19

In Fig. 1 we reproduce the electronic density of states for
the 105-atom model. We carry out the maxent reconstruction
for 107 and 150 moments; the results are nearly identical,
implying that the density of states is converged with respect to
moment information for of order 100 moments. We show the
global density of states, including a state-free optical gap. In
Fig. 2, we show a blowup of the gap region. By fitting the tails
to an exponential exp (−|E − Et |/EU ), where Et indicates
the valence or conduction edge, we obtain Urbach energies
of EU = 200 meV for the valence tail and EU = 96 meV for
the conduction edge. Semilog plots of the density of states for
tail energies (not reproduced here) exhibit the expected linear
behavior. These Urbach decay parameters are very close to
earlier calculations on somewhat smaller systems.11,20 The
small spikes near −16.0 eV are “real”: the moment data and
maxent technique produce respectable δ functions for isolated
states with extremal energies.

We have also determined that the exponential edges are not
limited to the valence and conduction tails. The “extremal
tails” (near −15 and +8 eV) are also highly exponen-
tial. The high-energy edge has an Urbach parameter EU =
130 meV. The low-energy tail is much sharper than the other

FIG. 1. (Color online) Electronic density of states for 100 000-
atom α-Si model from maxent reconstruction based on 107 and
150 moments. As the curves are nearly identical, ca. 100 moments
appears to be sufficient to accurately reproduce the state density. The
Fermi level is in the middle of the gap.

three, but still plausibly exponential when plotted on a log
scale. It is not possible to access these extremal tails optically
or electronically, being so far removed from the Fermi level,
yet they do contribute to quantities like the total energy and
forces.

We make two additional points. First, the exponential form
is in no way due to the maxent approach, which is nonbiased.
While the identical calculation has not been published on
diamond Si, there are published calculations on very large
fullerenes (with up to 3840 atoms, asymptotically approaching
graphene) that show a sharp band edge as in crystals, not an
exponential, an edge that is essentially identical to an exact cal-
culation of the graphene electronic density of states obtained
from Brillouin-zone integration.21 From a mathematical point
of view, it is no mean feat for the maxent form [Eq. (2)]
to produce simple exponential tails in the gap. In effect, the

FIG. 2. (Color online) Least-squares fits to exponentials for
valence and conduction tails for maxent reconstruction of the density
of electron states for 100 000-atom model, based on 107 moments.
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network structure of connected filaments (and the consequent
electronic Hamiltonian matrix) causes

∑N
i=0 �iε

i ≈ λε for
ε ∈ E , where E defines a spectral energy range including the
two band tails and λ is characteristic of the decay of the
valence or conduction tail. Other illustrations can be found
in the theory of magnetic resonance.22 Finally, calculations
with more sophisticated (density functional) Hamiltonians
(and necessarily smaller models that require Brillouin zone
integrations) show exponential tails for topologically similar
models.4,5

III. STRAIN RECOVERY FOR SHORT BONDS

We have shown in earlier work that if a particularly short
bond appears in the network, it will tend to be connected to
other short bonds, which tend to be connected to additional
short bonds, etc. Let us name the central short bond a “defect
nucleus.” As one progresses away from the nucleus, the bond
lengths must asymptotically return to the mean bond length
of the network. In effect, there is a strain field induced by the
anomalous short bond. In Fig. 3, we illustrate this strain field.
There is a reasonably consistent form to the curves, which
are plotted for the shortest few bonds in the 512-atom model.
By fitting a power law δr = Arγ (or alternatively, examining
a log-log plot), we find that γ = −1.86 ± 0.52. For several
reasons (poor statistics, only a small range of r contributing
meaningful information, etc.) this number is not to be taken
too seriously. In fact, we are inclined to wonder if a more
refined attempt will not yield a 1/r law, as predicted for a
point deformation for a continuum model by Lord Kelvin.23

Despite these uncertainties, the consistency of this decay
between the different short bond centers is interesting. It
seems that to a significant degree, anomalous bonds determine
their local topology. Bond length defects have a characteristic
spatial range associated with them, and the range is quite
predictable for short bond defects, at least. The main point
is that one must be careful about thinking in overly local
terms—one anomaly affects many atoms. For the case of
short bonds, this discussion is salient to the valence tail.
In α-Si, the valence tail is known to be broad and mainly

FIG. 3. (Color online) Strain recovery in a 512-atom model of
α-Si: shortest few bonds. 	r is the difference in bond length from
the mean; r is the distance from the short bond defect nucleus.

due to static (not thermal) disorder.24 In other terms, an
individual point defect can introduce density fluctuations on
a scale of order 5–7Å.3 Since short bonds beget short bonds
(always with electronic signature at the valence edge), there
is a cumulative electronic consequence at the valence edge.
Presumably it is this nonlocality and the tendency of the
network to local density that makes the valence tail broad (as
in an experiment in α-Si : H in Ref. 9). As we pointed out in
the Introduction, for hydrogenated material, the broad valence
tail impedes hole mobility. Thus, our calculations suggest that
a maximally homogeneous material is ideal for applications.
How homogeneous this can be, either in the experimental
material or in models is not clear, though we know that the
WWW class models are exceptionally uniform compared to
models made in other ways.25

Where long bonds are concerned, the pattern is less clear
because there is a basic asymmetry—sufficiently long bonds
are not bonds! Clearly there is no pattern so clear as Fig. 3
for long bonds (since it is silly to imagine that very long,
e.g., nonexistent, bonds could induce slightly shorter long
bonds, etc.) The experimental observation that the valence
tail is much broader than the conduction tail is presumably
connected to this basic asymmetry. Bond length distribution
is almost symmetric about long and short in a good model.
Because the wave functions of the conduction states are mainly
distributed in the dilute regions, the disorder potential they feel
is weak; thus the conduction tail is less broadened.

IV. SIZE EFFECTS AND HAMILTONIANS

Because we cannot perform molecular dynamics (MD)
simulations on the 100 000-atom model or even the 4096-atom
model, we are led to investigate the effects of thermal motion
on the filaments and associated electronic structures at the tails.
First, we consider the possible importance of size artifacts on
the energy spectrum by comparing the 100 000-atom model
with a 512-atom model made in a similar way,12 and we
show the result around the gap in Fig. 4. Both plots have
similar general features, though the electronic density of states
(EDOS) of the 100 000-atom model is of course smoother than

FIG. 4. (Color online) Comparison of electronic density of states
between the 512-atom model and the 100 000-atom model.
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FIG. 5. (Color online) Electronic density of states of 512-atom
models obtained by SIESTA self-consistent calculation with single-ζ
and single-ζ -polarized basis sets, by the tight-binding method, and
by a Harris functional calculation with a single-ζ basis.

that of the 512-atom model. Within finite size artifacts, the
512-atom model is producing a fairly exponential tail which
indicates that the 512-atom model is an appropriate basis to
study some aspects of the tails in α-Si.

Next, we compare the EDOS of an α-Si 512-atom model
obtained via different Hamiltonians and plot the results in
Fig. 5. The EDOS of a 512-atom model are computed by
SIESTA self-consistent calculation with single-ζ and single-
ζ -polarized basis sets, by the tight-binding method, and by
SIESTA using a Harris functional calculation with a single-
ζ basis. We point out that the Harris functional calculation
gives a significantly bigger highest occupied molecular orbital
(HOMO)-lowest unoccupied molecular orbital (LUMO) gap
and, as expected, the more complete the basis the smaller the
gap. Though the shapes of EDOS are different for different
basis sets, we observe that different basis sets all produce
qualitatively exponential tails at least within the finite size
effects for the small 512-atom model.

V. FILAMENT DYNAMICS

Total yield photoelectron spectroscopy measurements have
shown interesting behavior in the band tails of α-Si : H and
related materials.1,24 In the experiments of Aljishi et al.24

it was found that the valence tail was due primarily to
structural disorder and that the conduction tail was much
more temperature dependent, and thus linked to thermal
disorder. MD simulations have been applied to model these
effects.26

As another step toward understanding the effect of a
dynamic lattice on the band tails, we have created animations
of the dynamics of the short bonds in the 512-atom cell12

using the local orbital ab initio code SIESTA27 for temperatures
from 20 to 700 K (in each case using constant temperature
dynamics). In Figs. 6 and 7 we show instantaneous snapshots
of the shortest bonds at two different times at 300 K. As
inspection of the animation suggests, there is considerable

FIG. 6. (Color online) Instantaneous snapshot of short bonds in
the 512-atom model at 300 K. Only bonds less than 2.3 Å are shown.
A bar connecting the spheres indicates a chemical bond.

fluctuation in the identity of the shortest bonds. While it is not
easy to infer from our figures, there is a clear (and expected)
tendency for short bonds to occur in the denser volumes near
a defect nucleus rather than in other parts of the network.
Moreover, we computed the EDOS for a “nonfilament” model
and tried to relate it with the Urbach tail. We have also made
similar animations for long bonds, and we see extended, highly
connected filaments fluctuate into and out of existence. We
illustrate the case of short bonds here, as there is less ambiguity
in definition. Thus, we note that the filaments persist at room
temperature at least,4 though not by retaining a static form,
but with considerable temporal fluctuation. We illustrate these
points with animations elsewhere.28

We end this section by comparing the EDOS of models
with and without filaments. Two 512-atom α-Si models are
presented: one with short and long filaments and the other with-
out filaments.29 We used the tight-binding method to compute
the electronic density of states, and the results are plotted in
Fig. 8. A clear band gap exists for the configuration with
filaments but a smaller gap is revealed for the model without fil-
aments. Furthermore, we sought to understand the differences

FIG. 7. (Color online) Another instantaneous snapshot of short
bonds in a 512-atom model at 300 K. Bonds less than 2.3 Å are
shown.
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FIG. 8. (Color online) Electronic density of states for 512-atom
models with and without filaments.

by performing exponential fits to tails in both models. Because
of the incompleteness of the basis set for states above the Fermi
level, we only fit the valence tail and we report the outcome in
Fig. 9. We found that exponential fits for the structural models
with filaments are better than those without filaments. The
Urbach energy, EU ≈ 193 meV, is essentially the same as that
for the 100 000-atom model for the model including filaments
and is ≈99 meV for the model without filaments. Modification
of the filaments leads to significant changes in the Urbach
tail.

FIG. 9. (Color online) Exponential fitting for valence edges of
512-atom models with and without filaments.

VI. NECESSITY AND SUFFICIENCY: FILAMENT LOGIC

In this paper and elsewhere,5 we have shown that
filaments ⇒ Urbach edges. But what of necessity: that is, do
we know whether Urbach edges ⇒ filaments? The difficulty
is that we have to consider how an asymptotically exponential
tail constrains the Hamiltonian matrix elements and ultimately
what such correlations imply about the topology/connectivity
of the α-Si network in space. We think that it may be
useful to approach this with a centrosymmetric single-orbital
Hamiltonian. With such a simple beginning, the asymptotic
form of the moments is easily computed for exponential tails,
and one could then begin to infer the necessary nonrandomness
in the Hamiltonian matrix and continue to work backward to
models. It is altogether likely that this will not result in a unique
structural solution; rather various kinds of configurations
probably can lead to exponential tails. A serious constraint
must be applied at the end (namely, that the structure must
agree with experiments and must be near a local energy
minimum for an acceptable interatomic potential, empirical
or ab initio). Perhaps one concludes with filaments alone at
the end of this analysis, but this is uncertain at this point.

An alternative that is perhaps more practical would be to
undertake a Monte Carlo simulation with an objective function
(or penalty function) which is optimized when a structural
model possesses exponential band edges. Atoms might be
moved at random to optimize this function according to the
conventional Metropolis recipe. If such a stochastic calculation
revealed a proclivity for making filaments, necessity might be
a reasonable inference.

VII. CONCLUSION

We have explored some relevant points on the origin of
the Urbach tails in α-Si. The key results are that (1) all of
the band tails, not just those associated with the optical gap
are exponential; (2) very large systems (a 105-atom model)
possess clearly exponential tails that are highly consistent with
smaller models made in a similar way; (3) we find that a power
law provides a reasonable fit to the decay of the strain field
associated with a short bond defect; and (4) we observe that
the filaments persist at finite temperatures, but that they are
highly dynamic, even at room temperature.
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