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Entanglement spectrum of random-singlet quantum critical points
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The entanglement spectrum (i.e., the full distribution of Schmidt eigenvalues of the reduced density matrix)
contains more information than the conventional entanglement entropy and has been studied recently in several
many-particle systems. We compute the disorder-averaged entanglement spectrum in the form of the disorder-
averaged moments Trρα

A of the reduced density matrix ρA for a contiguous block of many spins at the random-
singlet quantum critical point in one dimension. The result compares well in the scaling limit with numerical
studies on the random XX model and is also expected to describe the (interacting) random Heisenberg model.
Our numerical studies on the XX case reveal that the dependence of the entanglement entropy and spectrum on
the geometry of the Hilbert space partition is quite different than for conformally invariant critical points.
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I. INTRODUCTION

The ground state of a system at a quantum critical point
shows universal behavior in many quantities. Correlation
functions, for example, show universal power-law behavior,
and in some cases these power laws can be obtained exactly
by mapping the quantum critical point to a system in one
more dimension. The most powerful example of this mapping
is for one-dimensional (1D) quantum critical points (QCP’s)
that become two-dimensional (2D) classical critical points
with conformal invariance. In addition to standard correlation
functions, it is now understood that the entanglement entropy,
reviewed in the following (see the comprehensive reviews in
Ref. 1), is universal at such quantum critical points and deter-
mined by the central charge of the associated 2D conformal
field theory.2–5 For a partition of an infinite 1D system into a
finite chain of length � and the remainder, the entanglement
entropy (the von Neumann entropy of the reduced density
matrix ρA) for � much larger than the short-distance cutoff a

is asymptotically

SV N ≡ −Tr[ρA ln ρA] = c

3
ln

�

a
+ c′

1, (1)

where c is the central charge and c′
1 a nonuniversal additive

constant.
Other properties related to entanglement are less well

understood, even at these quantum critical points, such as
the entanglement spectrum (the full set of reduced density
matrix eigenvalues) and the full set of entanglement Renyi
entropies; one exception is free Fermi models, where the
entanglement spectrum is given by the spectrum of an effective
“entanglement Hamiltonian”.6 A form for the spectrum7 at
1D conformal QCP’s that is exact in some cases and a
good approximation in others8,9 can be used to develop
a theory of how finite entanglement perturbs criticality in
numerical studies.10,11 The entanglement spectrum has also
been applied to understanding gapped (noncritical) topological
phases,12–14 where it contains information about the edge
excitation spectrum that goes beyond the universal constant
in the entanglement entropy.15–17 The same is true for quan-
tum 2D models with conformal invariant ground-state wave

functions.18 Also results for a critical nonconformal 1D model
are available.19

This paper studies the entanglement spectrum at “random-
singlet” 1D QCP’s in which quenched disorder leads to a
renormalization group (RG) flow to infinite randomness. We
obtain the disorder-averaged moments of the Schmidt eigen-
value distribution analytically and compare them to numerical
results on a special case with a free-fermion representation,
the random XX model. While these critical points are not
conformally invariant (after mapping to a 2D problem, the
imaginary-time direction has no randomness and is hence
very different from the spatial direction), their disorder-
averaged correlation functions have nevertheless been under-
stood in many cases20–22 by real-space renormalization group
method.23 The entanglement entropy at random-singlet critical
points was already known24–28 to show universal behavior
similar to that at 1D conformal QCP’s [Eq. (1)], with a modified
prefactor of the logarithm (analogous to c) that was initially
viewed as an effective central charge for random systems.

However, the results presented here indicate that this
similarity does not extend to the full entanglement spectra,
which are rather different. We start by considering the disorder-
averaged Renyi entropies

Sα = 1

1 − α
ln Tr[ρα

A], (2)

where the bar denotes the average over quenched disorder.
These Rènyi entropies Sα are quite simple in the random-
singlet phase: They depend only on the mean number of sin-
glets across the partition used to define the entanglement, just
as does the entanglement entropy. The Rènyi entropies already
behave differently than in the conformal case. However, in
disordered systems Sα is not the right quantity that determines
the entanglement spectrum via Laplace transform in α (Ref. 7).
To obtain the averaged moments of the distribution, one should
instead consider the entropies corresponding to averaging the
disorder before taking the logarithm

Ŝα = 1

1 − α
ln Tr[ρα

A]. (3)
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This definition has also the advantage to maintain the rela-
tionship of the pure system between the Tsallis29 entropies
(Tr[ρα

A] − 1)/(1 − α) and the Rènyi entropies. These moments
of the entanglement eigenvalue distribution reveal the full
distribution of the number of singlets crossing a boundary and
require an improved calculation. Both generalized entropies
reduce to the Von Neumann one for α → 1

SV N = lim
α→1

Sα = lim
α→1

Ŝα. (4)

The entropies Sα and Ŝα together with other properties are
then studied for the random XX model and the validity of our
results is discussed for general random-singlet ground states.
The paper is organized as follows. In Sec. II we present the
random-singlet picture and we derive the entropies Sα within
strong disorder renormalization group. In Sec. III we introduce
the probability distribution of singlet formation and use it
to derive the entropies Ŝα . Numerical tests of the predicted
entropies and the discussion of their universality are described
in Sec. IV. Finally, in Sec. V, we report our main conclusions.

II. RANDOM-SINGLET PICTURE OF
THE RENYI ENTROPIES

The ground state of a strongly disordered s = 1/2 Heisen-
berg chain or of the disordered XX chain

H = 1

4

L∑
l

Jl

(
σx

l σ x
l+1 + σ

y

l σ
y

l+1

)
, (5)

is described by the random-singlet phase (RSP) for essentially
any probability distribution P (J ) of the coupling. When a
system reaches this phase the ground state becomes almost
factorized in singlets between spins at arbitrary large distances.
The configuration of the singlets depends on the coupling
constants Jl , but several universal properties emerge in the
average over disorder that are independent of the disorder
distribution itself. The physical properties of a system in the
RSP can be attained in an indirect way [i.e., without referring
(manifestly) to the particular Hamiltonian]. The real-space
renormalization group approach (RSRG) is based on the
picture that the strongest bond gives rise to a singlet and the
near-neighborhood spins can be described by means of an
effective interaction from second-order perturbation theory.

Considering the XX Hamiltonian (5), the Ma-Dasgupta
rule20 for the effective coupling constant after a decimation
(i.e., the formation of a singlet) is

(. . . ,Jl,JM,Jr , . . .)L →
(

. . . ,
JlJr

JM

, . . .

)
L−2

, (6)

where JM is the strongest bond of the chain of size L and Jl

(Jr ) is the near-neighborhood left (right) coupling constant.
One of the most important consequences of Eq. (6) is that the
distribution of the couplings after a sufficiently large number
of decimations m with

β
(m)
i = ln

J
(m)
M

J
(m)
i

, (7)

is substantially independent of the initial distribution

P (β) = 1

�(m)
e
− β

�(m) , (8)

where � is the RG flow parameter �(m) = ln J
(0)
M

J
(m)
M

. The

distribution (8) is the key to the physical characteristics of
the random-singlet phase. It is also the main ingredient for
investigating the entanglement of spin blocks. In fact, for a
spin block of length � in a given RSP configuration with n

singlets linking the spins inside the subsystem with the spins
outside (which we call in-out singlets) the reduced density
matrix is

ρRSP
A ∼

n⊗
j=1

(
1
2 0

0 1
2

) �−n
2⊗

j=1

⎛
⎜⎜⎜⎝

0 0 0 0

0 1
2 − 1

2 0

0 − 1
2

1
2 0

0 0 0 0

⎞
⎟⎟⎟⎠ . (9)

Thus, the entanglement of a subsystem of size � depends only
on the mean number n of in-out singlets. In particular, the
entanglement entropy, as well as any Renyi entropy (2), is
proportional to the number of in-out singlets

SRSP
α = n ln 2. (10)

(This result has been also discussed in Refs. 28 and 30.)
Reference 24 shows that the averaged number of in-out
singlets can be deduced directly from the flow equation for
the distribution of couplings βi

dP (β)

d�
= P (0)

∫ ∞

0
dβ1

∫ ∞

0
dβ2δβ−β1−β2

×P (β1)P (β2) + ∂P (β)

∂β
. (11)

After some manipulation, this equation leads to24

n � 1
3 ln �, (12)

and so the entanglement entropy of a block of length � is

SRSP
V N (�) � ln 2

3
ln �, (13)

with a weight-factor ln 2
3 that calls to mind the behavior in the

absence of disorder with an effective central charge ln 2.
Consideration of the Rènyi entropy rather than the standard

entanglement entropy suggests that the similarity between
the entanglement entropy with and without disorder is only
superficial. Indeed in the RSP all Rènyi entropies scale in the
same way (10). If we wish to define an effective central charge,
we could use any conformal Rènyi entropy4

SCFT
α (�) = c

6

(
1 + 1

α

)
ln

�

a
+ c′

α, (14)

as a starting point so that the effective central charge would
have any value in the range [ln 2, ln 4] while α runs from
1 to infinity. Also the central charge of the clean system
c = 1 belongs to this range, making questionable any at-
tempt to generalize the Zamolodchikov “c-theorem”.31 This
picture from Rènyi entropy is consistent with the previous
counterexamples32,33 indicating that there is no version of
the c-theorem for entanglement entropy that would describe
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the flow from clean to random systems32 or within random
systems.33

The disorder-averaged Rènyi entropies at random quantum
critical points are universal and already indicate that the
RSP’s entanglement is quite different from the universal
entanglement at 1D conformal QCP’s. However, since they
depend on the same quantity (mean number n of in-out
singlets) as the entanglement entropy, they do not probe new
features of the random-singlet picture. In the next section we
consider additional quantities that are sensitive to new features
and directly probe a memory effect in the RSRG flow, or
“repulsion between decimations” in RG space, that was a key
step in obtaining the correct value of n. Numerical tests of the
predicted Rènyi entropies are described in Sec. IV.

III. GENERALIZED ENTROPY AND THE PROBABILITY
DISTRIBUTION OF SINGLET FORMATION

The disorder-averaged Renyi entropy in the RSP only
reflects the averaged number of the in-out singlets. Thus it
is not a natural measure of the full in-out singlet distribution
P (n) or the probability distribution of the Renyi entropy. P (n)
can be examined by considering Ŝα in Eq. (3). In fact, denoting
with g(t) the cumulant-generating function of the in-out singlet
distribution P (n)

g(t) = ln
〈
ent

〉 ≡ ln
∞∑

n=0

P (n)ent , (15)

it is straightforward that

ŜRSP
α = g[t(α)]

1 − α
, (16)

where to keep the notation compact we defined

t = t(α) ≡ (1 − α) ln 2. (17)

Throughout the paper t will always denote this quantity, even
when the α dependence is not specified. Ŝα does depend on α

in the RSP, unlike the Rènyi entropy Sα . We require Eq. (15)
to not blow up when n → ∞, and so [assuming a reasonable]
we need t � 0 corresponding to α � 1. We do not discuss
a possible analytic continuation to α < 1 (that also in some
clean systems can be complicated).34

From the RSRG point of view, singlets form at a constant
rate with respect to an “RG time” μ and this rate determines
the logarithmic scaling of entanglement entropy. En route to
calculating this rate, Ref. 24 obtains the expression for the
distribution of waiting times for a decimation across a bond
since the last decimation

f (μ) = 1√
5

(
e− 3−√

5
2 μ − e− 3+√

5
2 μ

)
. (18)

The above distribution has been deduced neglecting nonuni-
versal terms coming from the starting disorder distribution:
Eq. (18) is only asymptotically true. For example, we expect
that the additive constant of the von Neumann entropy SV N

should be disorder dependent.
During the RG time between two decimations several

processes can happen. The most probable one is the formation
of isolated singlets. Considering only this process leads to the

renewal equation

〈ent 〉μ =
∫ ∞

μ

dμ′f (μ′) + et

∫ μ

0
dμ′f (μ′) 〈ent 〉μ−μ′ . (19)

This equation can be solved by the Laplace transformation.
Calling f̂ (s) the Laplace transform of f (μ)

f̂ (s) = 1√
5

(
1

s + 3−√
5

2

− 1

s + 3+√
5

2

)
, (20)

we have

g(μ)(t) = ln

[
L −1

{
1

s

1 − f̂ (s)

1 − et f̂ (s)

}
(μ)

]
, (21)

and in particular n = lim
t→0−

g′(t).

After simple algebra, we obtain

eg(μ)(t) =
(

1

2
+ 3

2
√

5 + 4et

)
e− 3−

√
5+4et

2 μ

+
(

1

2
− 3

2
√

5 + 4et

)
e− 3+

√
5+4et

2 μ, (22)

that via Eq. (16) gives Ŝα in the RSP. This is the main analytic
result of this paper. It is useful to rewrite it in terms of the
mean number of singlets as

g(t) = tAtn + tBt , (23)

where the multiplicative tfactor is introduced to write more
compact formulas for Ŝα via Eq. (16). The two constants At

and Bt are obtained by plugging Eq. (23) into Eq. (22)⎧⎪⎪⎨
⎪⎪⎩

At = 3

√
5 + 4et − 3

2t
,

Bt = 1

t
ln

(
1

2
+ 3

2
√

5 + 4et

)
+

√
5 + 4et − 3

6t
.

(24)

Notice that in Eq. (23) all the dependence of g(μ)(t) on μ is
encoded in n. In this way, we also separated the universal
ln � behavior (we remind that n ∝ ln �) given by At from the
constant one Bt . We will come back to the discussion of the
universal features of Eqs. (23) and (24) in the next section
when comparing with the numerical results.

IV. NUMERICAL RESULTS

In this section we present numerical evidence confirming
the critical scaling of the quantities calculated analytically by
means of RSRG. We also present results for which we do not
have yet any theoretical explanation, like the finite size scaling
in the RSP.

The entropies Sα and Ŝα can be directly calculated for
the disordered XX chain (5), by generalizing the method of
Laflorencie.25 In fact, for any realization of the disorder (i.e.,
any distribution of the bonds Jl), the XX model can be mapped
into a free-fermionic Hamiltonian by the Jordan-Wigner
transformation c

†
l = ∏

j<l σ
z
j σ+

l that leaves the eigenvalues
of the reduced density matrix of a single block unchanged
because the transformation is local inside the block. Defining
the correlation matrix Cln = 〈c†l cn〉, the reduced density matrix
of a spin block that goes from the site l0 + 1 to l0 + � is the
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exponential of a free-fermion operator6,35 and it is completely
characterized by the � × � correlation matrix C in which
indexes run from l0 + 1 to l0 + �, which we call C

[l0]
� . The

entanglement entropy of the block in this configuration of the
disorder is then given by

S
[l0]
V N ({Jl}) = −Tr

[
C

[l0]
� ln C

[l0]
� + (

1 − C
[l0]
�

)
ln

(
1 − C

[l0]
�

)]
,

(25)

while the Renyi entropy is

S[l0]
α ({Jl}) = 1

1 − α
Tr

[
ln

((
C

[l0]
�

)α + (
1 − C

[l0]
�

)α)]
, (26)

where we stressed the dependence on the disorder con-
figuration ({Jl}) and on the first site of the block l0 + 1.
Indeed, on a single realization of the disorder, translational
invariance is explicitly broken. Only after taking the disorder
average translation can symmetry be restored. Having the
Rènyi entropies for a single realization allows to obtain the
asymptotic results for the disordered model by averaging over
a large enough number of configurations (generated randomly
according to the specific rules for {Jl}). Sα and Ŝα are obtained
by averaging Sα or e(1−α)Sα , respectively.

The method we presented is an ab initio calculation of the
Rènyi entropies for disordered spin chains valid every time
the model has a free-fermionic representation (as in XX or
Ising chains). It is, however, numerically demanding. A more
effective numerical technique exploits the RSP structure of
the ground state. Starting from a given disorder realization,
we construct a singlet where the strong bond lies and we
proceed to decimation according to the rule in Eq. (6). We
repeat this procedure until we span the entire chain. At this
point we are left with a collection of singlets, and then,
counting the number of singlets connecting the inside of the
block with the outside, we have the configurational Rènyi
entropies from the relation S[l0]

α ({Jl}) = n[l0]({Jl}) ln 2. As for
the ab initio calculation, Sα and Ŝα are obtained by averaging
over the disorder. Note that SRSP

α does not depend on α by
definition since for any configuration Sα = n ln 2. Oppositely,
Ŝα depends on α because the average is taken over e(1−α)Sα

and indeed some results for Ŝα have been already reported36

by using this method. For completeness, we give few general
features for an intuitive picture of the entanglement in the
RSP. After a decimation (6), the renormalized bond is strongly
suppressed (i.e., singlets repel). The singlets that stay inside
the block involve always an even number of spins, thus the
parity of the block gives the parity of the number of in-out
singlets. The spins belonging to the longest bonds crossing the
two ends of the chain can be also thought of as boundaries
of two open chains. This suggests that in the RSP (as it is the
case for clean systems4) the entanglement entropy of a block of
� spins in a periodic chain is equivalent to twice the entangle-
ment entropy of �/2 spins in an open chain with the block
starting from the boundary [i.e., S

periodic
α (�) ≈ 2S

open
α (�/2)].

However, this argument does not provide information about
the additive constant (in clean models, the difference of the
two constant terms gives the Affleck and Ludwig boundary
entropy).4,37,38

To avoid confusion between the two determinations of the
entanglement, in the following we will always refer to the first

method as ab initio while to the second as RSP. We stress
that the RSP technique can be applied to any model with an
RSP ground state, as, for example, the disordered Heisenberg
chains or spin-1 chains,27 while the ab initio one only to
models having a free-femionic representation. However, the
ab initio method has the advantage to be exact by definition.
Instead, by counting the number of singlets, we make the
assumption that the ground state has an RSP structure and that
all the universal entanglement physics can be extracted from
this. Although both assumptions sound reasonable, it is always
worthwhile to perform in parallel the two numerical studies. In
fact, the numerical counting of singlets is not the same as the
analytic expressions derived in the previous sections because,
to provide analytic results, few further assumptions have
been made (e.g., considering only the formation of isolated
singlets, etc.). In the case of disagreement between formulas
and numerics, making the two computations in parallel helps
to understand if the error is in the approximations made to
solve the equations or in the RSP assumption itself.

A possible generalization (that is currently under
investigation39) is to understand if the RSP structure catches
the entanglement of two disconnected blocks. This can be
achieved by calculating ab initio Rènyi entropies (indeed there
are not known formulas for the entanglement entropy when
the subsystem consists of more than one spin block, only some
expressions have been recently found for the first integer Rènyi
entropies40) and comparing with the in-out singlets from both
blocks. It has been shown for conformal critical models40,41

that the entanglement of two blocks provides much more
information about the conformal structure than the single block
one, and it is then worth investigating this issue also for the
random case.

A. Analysis of Sα

We computed ab initio the averaged Rènyi entropies Sα for
many different system sizes. In Fig. 1, we report the result for a
chain of L = 1024 spins for the disorder average over a sample
of 73 000 realizations. For 1 
 � 
 L, the various curves

FIG. 1. (Color online) Ab initio Renyi entropies for a disordered
XX chain of 1024 spins. The average is over 73 000 realizations. The
variation of the color shows results from α = 1 (upper line) to α = 2.9
(bottom line). The yellow line is the asymptotic von Neumann entropy
(α = 1) obtained by Laflorencie.25

045110-4



ENTANGLEMENT SPECTRUM OF RANDOM-SINGLET . . . PHYSICAL REVIEW B 83, 045110 (2011)

FIG. 2. (Color online) Ab initio Rènyi entropies for a disordered
XX chain of 1024 spins minus the RSP value. The averages are over
the same sample of 73 000 realizations.

are parallel, with the slope predicted by Eq. (13) (i.e., the
leading term of Sα is α independent). The nonuniversal additive
O(1) term clearly depends on α, as in the clean case. On top
of a smooth behavior, we can see oscillating contributions,
evident for small � and large α. Their presence does not come
as unexpected: Also in clean chains42–44 there are oscillating
terms that (in zero magnetic field) are parity dependent [i.e.,
they are of the form (−1)�]. However, for random systems
the oscillations have a different form and they decay rather
quickly with � (as opposite to Ŝα as we shall see). We do not
have a proper theory for their origin, nor a phenomenological
description, but their understanding is beyond the goals of
this paper since they do not influence the determination of the
asymptotic behavior. When � approaches the chain length L,
sizable finite-size corrections are visible. The next section will
be devoted to their accurate study, while here we continue with
the asymptotic analysis of Sα .

We compare the data in Fig. 1 from the ab initio calculation
with the numerical results obtained using the RSP approach
on the same random sample of 73 000 realizations of Jl .
According to Eq. (10), the RSP Rènyi entropies do not depend
on α by definition. For this reason, in Fig. 2 we report the
difference between the RSP Rènyi entropies and the ab initio
ones presented in Fig. 1. After a transient behavior for small �,
all the curves with varying α approach a constant, indicating
not only that the universal leading logarithmic term in Sα is
correctly described by RSP, but the finite-size corrections are
also. In the range of α considered in the figure, we find that
the additive constant is well described by

Sα ≈ SRSP
α + a

α
+ b + o(1), (27)

where the disorder-dependent constants a and b in the case of
random disorder take the values a ≈ 0.61 and b ≈ −0.47.

B. Finite-size effects

Having established the correctness of the asymptotic RSRG
results for Sα in the region 1 
 � 
 L, we can consider
the finite-size effects. One of the most remarkable result of

conformal invariance is that the finite-size scaling is obtained
with the replacement

� → L

π
sin

(
π�

L

)
, (28)

in the thermodynamic limit result. The right-hand side (rhs)
of the above equation is known as a chord length. However,
when conformal invariance is broken, the chord length does not
give the finite-size scaling. In fact, using the results reported
previously it is easy to show that this is the case, as it was
already shown for some random Ising systems.45

Even if conformal invariance is broken, scale invariance
still holds. Thus the finite-size scaling can always be taken
into account by the substitution

� → L

π
Y

(
π�

L

)
. (29)

The great predictive power of conformal symmetry is that
independently of the observable (but built with primary
operators) the scaling function is always Y (x) = sin(x), while
in general scale-invariant theories the function Y (x) does
depend on the observable. Some results on the finite-size
scaling of entanglement in 1D critical nonconformal systems
have been already reported.45–48 The function Y (x) for Sα

must, however, satisfy simple symmetry constraints. First, Sα

is symmetric for � → L − �, thus Y (x) = Y (π − x). Second,
periodic boundary conditions require Sα to be a periodic
function of � of period L, and so Y (x) = Y (π + x). Thus
we can expand Y (x) in Fourier modes as

Y (x) =
[

1 +
∞∑

j=1

kj

]
sin x −

∞∑
k=1

kj

2j + 1
sin((2j + 1)x),

(30)
where we also imposed Y (x 
 1) ∼ x to reproduce the correct
thermodynamic limit. The chord length has only the first mode
and so corresponds to kj = 0 for any j . This expansion in terms
of Fourier modes is particularly useful because we expect that
the contribution of the first few modes will be enough to have a
reasonable approximation of the scaling function Y (x). Indeed,
Fig. 3 shows that only the first term k1 is enough to describe
accurately the observed behavior for the RSP entanglement
entropy

Y (x) � (1 + k1) sin x − k1

3
sin 3x

= sin x

[
1 + 4

3
k1 sin2 x

]
, (31)

with k1 ≈ 0.115. The obtained scaling function in the presence
of disorder is greater than the chord length.

Figure 2 shows that the finite-size scaling in the ab initio
calculations is equivalent to the RSP ones (or else for � ∼ L

the various curves should bend). This means that the finite-size
scaling of all Sα in the spin chain is described by Eq. (31), as
we also checked directly.

C. Probability distribution of the Rènyi entropy

The disorder-averaged Rènyi entropy Sα gives only access
to the averaged number of the in-out singlets while Ŝα

gives access to the full in-out singlets distribution P (n)
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FIG. 3. (Color online) The finite-size scaling function for the
entanglement entropy Y (x) in Eq. (29). Main: RSP data averaged
over 1 440 000 disorder realizations for L = 1024. The continuous
(red) curve is the proposed phenomenological formula (31) describing
perfectly the data points. Inset: The same plot for different values of
L showing the collapse on a single scaling function.

(i.e., the probability distribution of the Rènyi entropy and
so to the full entanglement spectrum). Indeed Ŝα is related
to the cumulant-generating function g(t) of the in-out singlets
distribution by Eq. (16).

We first consider the RSP data because they allow to
explore larger system sizes. Only after having established the
asymptotic behavior will we consider ab initio data and show
consistency with the proposed scaling.

We observed that the Rènyi entropies SRSP
α do not have

subleading corrections depending on the parity of the block,
making the asymptotic analysis quite straightforward. Oppo-
sitely, the data for ŜRSP

α (see Fig. 4) show that they depend on
the block parity in a way similar to clean systems.42 To analyze
the numerical data we conjecture the following asymptotic
behavior

ŜRSP
α (�) ≈ AtS

RSP
α (�) + Bt ln 2 − (−1)�ft [S

RSP
α (�)] ln 2, (32)

where t is defined in Eq. (17). At and Bt are the two
functions introduced in Eq. (23), while ft takes into account the
corrections to the scaling and goes to 0 for � → ∞. The form of
the corrections is inspired by the results in clean systems, while
the leading term is the solution asymptotic g(t) in Eqs. (23)
and (24). In the top of Fig. 4 we also report the RSRG value for
At that seems to be in qualitative agreement with the numerical
data. A full quantitative description requires the elimination of
the corrections to the scaling.

To provide an unbiased description of the asymptotic
behavior of Ŝα , we define the functions seven

α (�) and sodd
α (�)

from the interpolation relative to even and odd blocks,
respectively. We can isolate the leading behavior of ŜRSP

α by
considering the average over the two interpolating functions,
that is,

Ŝeo
α (�) ≡ seven

α (�) + sodd
α (�)

2
. (33)

This definition eliminates the leading corrections to the
scaling. In fact, in the lower panel of Fig. 4 we have a linear
relation between Ŝeo

α and SRSP
α for all reported values of α

FIG. 4. (Color online) Top: RSP results for Ŝα as a function of Sα

for a chain of 1024 spins and 1 440 000 disorder realizations. Bottom:
Even-odd average of Ŝα eliminating leading corrections to the scaling.
In both panels the continuous lines are the analytic RSRG result for
At .

(while the nonaveraged data in the top panel are linear only
for α close to 1).

From this linear dependence we can extract the functions
At and Bt using the RSRG relation

Ŝeo
α � AtS

RSP
α (�) + ln 2Bt . (34)

The resulting values for the universal coefficient At(α) for
α � 10 and for L = 1024 and L = 10 000 are reported in
Fig. 5. For small α (�3.5) there are negligible fiinite-size
corrections and the data perfectly agree with the RSRG result
in Eq. (24), showing the predictive power of the RSRG to
determine At . For larger α, finite-size corrections are important
and indeed the data differ from the analytical prediction,
but the larger system sizes are closer. We believe that in
the thermodynamic limit the RSRG At describes the correct
behavior for any α. The reason for these finite-size effects is
also easily understood: The asymptotic formula is valid for Ŝα

large, while in this region of α we have Ŝα ∼ 1. Even if not
asymptotic, the large α results show an interesting behavior:
Independently of L, they follow a −1/t behavior (see inset
in Fig. 5), typical of a Poissonian distribution of singlets.
The reason for this Poissonian behavior can be traced back
to the fact that for t → −∞ we are giving a large weight to
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FIG. 5. (Color online) The universal constant At obtained from
RSP data for L = 1024 (1,440,000 disorder realizations) and L =
10 000 (320 000 realizations). Main plot: For α � 3.5 finite-size
effects are negligible and the RSRG prediction (continuous line)
describes the data. Inset: Crossover to the nonuniversal Poissonian
behavior (green continuous line) for larger α.

short-range singlets that are produced almost independently.
Little weight is instead given to long-range singlets responsible
for the universal physics and so for these values of α and L we
are probing the uv physics. According to this interpretation,
a crossover from the universal behavior of Eq. (24) to a
uv Poissonian behavior always takes place for α ∼ ln L, in
agreement with Fig. 5.

We can now move to the ab initio calculation to check
the validity of the RSP scenario for Ŝα . As before, we focus
on the relation between Ŝα and Sα and, in particular, on the
universal slope of the linear relation between them. The results
are reported in Fig. 6. Asymptotically, the slopes of these
curves tend to the RSRG prediction for At shown as continuous
lines in the figure. Also the finite-size scaling scaling is well
described by Eq. (31), as evident from the fact that the linear
relation between Ŝα and Sα is correct even for large values
of � (i.e., of Sα) in the various plots. However, as clear by a
visual comparison between Figs. 6 and 4 (top), the constant
term in this relation is different [and both different from the
analytic Bt in Eq. (24)]. The degree of universality of this term
is discussed in the next section.

Having established the correct asymptotic behavior we can
consider the oscillating corrections to the scaling defined in
Eq. (32). The numerical estimate of ft (S) can be obtained as

ft (S) � sodd
α (�) − seven

α (�)

2
+ · · · , (35)

where the dots denote subsubleading terms (we recall that
sodd/even
α are interpolations and so defined for any �). The

data obtained in this way are reported in Fig. 7. The linear
behavior in log-scale shows that for α � 5 (for larger α further
subleading corrections must be considered)42 ft (Sα) decays
exponentially

ft (x) = Fte
−νt x, (36)

(i.e., a power-law correction in �). νt(α) is a new universal
critical exponent governing the corrections to the scaling of
Ŝα , analogous to the one introduced in clean systems.42,43

We can see that νt(α) decreases with increasing α, but a

FIG. 6. (Color online) Ab initio Ŝα as a function of Sα for a spin-
chain of 1024 spins and 73 000 disorder realizations. The continuous
lines represent the RSRG prediction for the slope. The additive terms
are different from those in Fig. 4.

precise numerical estimate is difficult. For clean systems it has
been shown42,43 that νt(α) = 2K/α with K an α-independent
exponent equal to the scaling dimension of a relevant operator.
We can rule out this form for the random spin chain, but the
accuracy of our results does not allow to establish numerically
an exact formula for the α dependence of the exponent. We
also mention that the corrections to the scaling are of the same
form also in ab initio calculations, as is qualitatively clear from
Fig. 6 and quantitatively checked but not reported here. This
shows the correctness of the RSP description and also that the
real spin chain does not introduce new leading corrections to
the scaling in addition to the RSP ones.

D. Universality

All the results presented until now, both ab initio and RSP,
have been obtained for random distributions of the coupling
constant J in the interval [0,1]. However, the universal
prediction of RSRG must be independent of the distributions

FIG. 7. (Color online) Scaling functions for the correction to the
scaling ft (S) in Eq. (32) obtained as the difference of sodd

α (�) and
seven
α (�). Full and dashed lines correspond to uniform and exponential

distributions of disorder, respectively.
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FIG. 8. (Color online) Ŝα for two disorder distributions. The RSP
data are for chains of 10 000 spins and averaged over 320 000
configurations.

of J (as long as new symmetries are not introduced). We check
this universality by studying the RSP chain with L = 10 000
spins with coupling distributed both uniformly J ∈ [0,1] and
exponentially P (J ) ∼ e−J . In Fig. 8 we report the numerical
RSP results of Ŝα for α = 1,2 for the two distributions of the
disorder. As expected, the two distributions lead to slightly
different results: Only the leading logarithmic term in � is
universal while the additive constant term is not.

To check the universality of the leading term, Fig. 9 reports
Ŝα as a function Sα for α = 2.9 (other values of α lead to
equivalent plots) for the two distributions. The two curves
perfectly coincide, despite the fact that when they are plotted
as a function of � they are different. This means that all the
nonuniversal behavior of the additive constants is washed out
and we are left with a universal function. At first this result
can seem surprising, but it is easy to realize that, in this kind
of plot, the dependence on the nonuniversal cutoff or lattice
scale a disappears and the leftover difference of nonuniversal
additive constants is universal. For example, for the conformal

FIG. 9. (Color online) Ŝα as function of Sα for α = 2.9 and for
two disorder distributions (RSP data with L = 10 000 and 320 000
configurations). The scaling function is disorder independent.

FIG. 10. (Color online) The quantity � defined in Eq. (38) vs Sα

for uniform and exponential distributions of disorder. With varying
α the two differences are the same, showing the universality of the
coefficient Bt(α).

entropies (14) we have the universal relation

SCFT
α = SCFT

V N

2

(
1 + 1

α

)
+ c′

α − c′
1

2

(
1 + 1

α

)
, (37)

where evidently all the a dependence disappeared. To our
knowledge, this property has not been explored at all in clean
systems, but one can easily check that in the exact results
for the critical XY model49 the dependence on the irrelevant
parameter γ disappears in Eq. (37).

Having established that both At and Bt are universal,
we reconsider our results for the disordered systems. We
already discussed for the uniform distribution (see Fig. 5) how
the numerical value of At agrees with the analytical RSRG
prediction. The independence of At on the disorder distribution
confirms its universality. In Fig. 10, we plot the quantity

� = Ŝeo
α − gμ[t(α)]

1 − α
, (38)

where g(μ)(t) is the function in Eq. (22) and μ is fixed by Sα via
μ = 3

ln 2Sα + 1
3 . This quantity has been built in such a way as

to cancel the leading behavior At thus leaving only Bt . Albeit
a little noisy, Fig. 10 shows clearly the disorder independence
of Bt .

Disappointingly, as shown for uniform disorder, we found
that the RSP and ab initio calculation for Ŝα provide different
values for the constant Bt(α) that are both different from
the RSRG expression in Eq. (24). On one hand, this is
showing that the RSP description is unable to catch this
feature of the spin chain because numerical RSP and ab initio
data disagree. On the other hand, this is also showing that
while carrying out the analytic results for g(t), some of the
assumptions made influence significantly this quantity. There
are two possible explanations to motivate the last discrepancy.
One is that the distribution f (μ) in Eq. (18) contains some
additional (subleading) terms not considered here. In fact, as
already discussed, Eq. (18) has been deduced neglecting terms
coming from the starting disorder distribution and it is only
asymptotically true. The other possibility is, instead, that the
discarded terms in the renewal equation (19) contribute to
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Bt . Several pieces of information have been indeed ignored
there: memory beyond first order, multiple decimations, the
flow of the distribution to the critical point, and so on. We
found it rather improbable that f (μ) should be modified. It
is difficult to imagine how to modify it keeping all the other
correct results (i.e., the entanglement entropy, At , etc.). On the
other hand, solving the renewal equation in the presence of
the discarded effects is very hard (maybe impossible). Thus,
to convince ourself that these processes can be responsible
for a changing in Bt , we tried to add some oversimplified
processes (but physically motivated) to the renewal equation:
We found that all these processes change Bt , but leave At

unchanged, showing that this is the most probable explanation
of the discrepancy. However, from the ab initio results, we
know that the real spin chain introduces further corrections
to this term and so we do not find it reasonable to embark in
a difficult calculation that, in any case, will not provide the
correct answer for the spin chain.

To conclude the universality section, it is worth mentioning
that the oscillating corrections to the scaling [the function ft

in Eq. (32)] also does not depend on the disorder distribution
as shown in Fig. 7, confirming their universality.

V. CONCLUSION

We provided an analytical and numerical description of
the Rényi entropies Sα and Ŝα in an RSP. For Sα the leading
logarithmic behavior is α independent and only the subleading
constant term depends on α

Sα = 1

1 − α
ln Tr[ρα] � ln 2

3
ln � + d ′

α. (39)

The leading universal term has been determined analytically
while the nonuniversal correction d ′

α only numerically. Op-
positely, the leading universal term of Ŝα has a nontrivial α

dependence. Its scaling behavior can be written in a completely
universal form as

Ŝα = 1

1 − α
ln Tr[ρα] � A(1−α) ln 2Sα + B(1−α) ln 2. (40)

Indeed, we pointed out that the functions At and bt connecting
linearly Ŝα and Sα are both independent of the cutoff length
introduced by the chain and so are universal. The analytic result
based on the solution of RSRG equations agrees perfectly
with the numerical data as shown in Fig. 5, giving a full
characterization of the asymptotic behavior. Instead a first-
order RG prediction for the subleading term Bt disagrees with
the numerical data. We showed evidence that this disagreement
should be related to the approximations done in the RG equa-
tions. Only an improved, but much more difficult (and maybe
impossible) calculation can provide the exact result for Bt .

We showed [Eq. (21)] that the Rényi entropies Ŝα are simply
related to the Laplace transform of the singlet distribution
function. Thus the measure of Ŝα can be used to directly
calculate the singlet distribution function, from which any
universal quantity in the RSP can be deduced. We then
conclude that the knowledge of only the leading order of Ŝα is
enough to full characterize this kind of disorder system while
in the conformal invariant critical point the leading piece of the
entanglement spectrum only gives the central charge and no
information about the operator content (that can be accessed,
in part, by looking at subleading corrections42,43 and fully by
looking at the entanglement of disjoints intervals).41

We also studied the finite-size scaling: For finite chains
the previous relations still hold if the subsystem length � is
replaced by a modified chord length that is phenomenologically
well approximated by Eq. (31). We do not have a theoretical
explanation for this finite-size scaling form.

Assuming that the random-singlet description is equally
valid for the random Heisenberg model, as is plausible
and often assumed but not yet proved or firmly confirmed
numerically, then we are in the surprising situation of knowing
the entanglement spectrum exactly for the random Heisenberg
model, but only approximately for the corresponding pure
model (apart from some exact results for small �).50
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