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Orbital-selective Mott transition and heavy-fermion behavior in a bilayer Hubbard model for 3He
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Inspired by recent experiments on 3He films between one and two atoms thick, we consider a bilayer Hubbard
model on a triangular lattice. Our results are obtained in the framework of a cluster dynamical mean-field
calculation with a quantum Monte Carlo impurity solver. For appropriate model parameters, we observe an
enhancement of the effective mass as the first layer approaches integer filling and the second remains only
partially filled. At finite temperatures, this increase of the effective mass—or, equivalently, the decrease of the
coherence temperature—leads to a crossover to a state where the first-layer fermions localize, drop out of the
Luttinger volume, and generate essentially free local moments. This finite temperature behavior is shown to be
robust against the cluster size above some critical temperature. The zero-temperature phase diagram, however,
depends on the cluster topology. In particular, for clusters with an even number of unit cells, the growth of the
effective mass is cut off by a first-order, orbital-selective Mott transition.
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I. INTRODUCTION

The solidification of 3He monolayers1 has been interpreted
as a density-driven Mott transition in which the effective mass
diverges.2,3 Below the critical density, the system is a metallic,
nearly localized Fermi liquid; beyond the critical density, it
is a solid, the magnetic properties of which are dominated by
antiferromagnetic two-body exchange processes.4–6 It is now
possible to realize bilayers of 3He (atop a frozen 4He substrate,
itself adsorbed onto graphite) with the special property that
the second layer begins to form before the first has solidified.7

Since the first layer is close to a Mott transition, the 3He
fermions in this layer are slow (i.e., heavy), whereas those
in the second layer are fast. This combination of fast and
slow dynamics—corresponding to wide and narrow fermion
conduction bands—is completely analogous to the situation
in electronic heavy fermion materials, albeit without the
complication of crystal-field and spin-orbit effects.

According to this picture, one expects, prior to solidification
of the first layer, an enhanced effective mass and a Luttinger
volume that counts both the first- and the second-layer
populations. Moreover, one naively anticipates that further
3He deposition will eventually cause the effective mass to
diverge, in coincidence with the solidification of the first layer.
This solidification of the first layer can be interpreted either
as an orbital-selective Mott transition or, in the terminology
of Kondo physics, as a Kondo breakdown in which the heavy
particles drop out of the Luttinger volume. In experiment,
the effective mass is indeed observed to increase as a
function of the total 3He concentration, but its growth is
interrupted by an intervening phase.7 The fact that this phase
is ferromagnetic indicates that three-body exchange processes
come to dominate in the solid phase of the first layer.4,5

The motivation of this article is to consider a simple lattice
model that goes a good way toward reproducing the essential
features of the preceding experimental situation. As shown
in Figs. 1(a) and 1(b), we adopt a stacking of billiard balls
modeling of bilayer 3He on a triangular lattice defined by
a1 = (1/2,

√
3/2,0) and a2 = (1,0,0). Each unit cell accounts

for two 3He positions, rf = 0 and rc = 2
3 a1 − 1

3 a2 + (0,0,a3),

measured relative to the lattice. This geometry presupposes a
particular stacking arrangement for the second 3He layer.

Our model can be viewed as a honeycomb lattice whose
inequivalent sites (corresponding to 3He positions in the upper
and lower layers) are populated by two species of fermion,
which we label c and f . The tight-binding parameters include
a nearest-neighbor (interlayer) hopping V and next-nearest-
neighbor (intralayer) hoppings tc and tf [see Fig. 1(c)].
With the inclusion of onsite Coulomb repulsion terms, the
Hamiltonian reads

H =
∑
k,σ

( c
†
k,σ f

†
k,σ

)

(
εc(k) − μ V (k)

V (k) εf (k) − μ

)(
ck,σ

fk,σ

)

+Uc

∑
i

(n̂c,i − 1)2 + Uf

∑
i

(n̂f,i − 1)2. (1)

Here the mixing element V (k) = V (3 + 2γk)1/2 and the
dispersion εc(k) = −2tcγk + ε0

c are expressed in terms of
the connection γk = cos(k · a1) + cos(k · a2) + cos[k · (a2 −
a1)] of the underlying Bravais lattice. The operator n̂c,i =∑

σ c
†
i,σ ci,σ is the local 3He density in the upper layer. Similar

definitions hold for εf (k) and n̂f,i.
Except for the complication of the layer stacking (and

the resulting k-dependent hybridization), this bilayer Hubbard
model reduces to the periodic Anderson model as tf → 0, a
limit in which the bare mass of the f fermions diverges. Similar
models have been considered for the description of bilayer 3He
in Refs. 8 and 9 within a slave boson mean-field calculation.
Here we go a significant step further and perform calculations
within the cellular dynamical mean field theory (CDMFT)10

approximation (Sec. II). Our strategy is to systematically
investigate the model of Eq. (1) as a function of the cluster
size. In Sec. III, we see that clusters with an odd number of unit
cells have a radically different low-energy behavior than those
with an even number. Given this situation, the extrapolation
to the large cluster size limit is delicate and is relegated to the
conclusions in Sec. IV. Part of this work has already appeared
in a preprint.11

045103-11098-0121/2011/83(4)/045103(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.045103


K. S. D. BEACH AND F. F. ASSAAD PHYSICAL REVIEW B 83, 045103 (2011)

tf

tc

a1

a2

b1

b2

)b()a(

(d)

(e)

(c)

Nu = 1 Nu = 2Nu = 3 Nu = 4

V

FIG. 1. (a),(b) Stacking of billiard balls modeling of bilayer 3He,
top and side view, respectively, with the 4He substrate shown in
white. (c) Tight-binding modeling with hoppings tc, tf , and V . (d)
The hexagonal Brillouin zone of the triangular lattice. (e) The set of
supercells, each consisting of Nu unit cells, considered in this work.

II. CELLULAR DYNAMICAL MEAN-FIELD THEORY

By construction, the CDMFT approach exactly accounts
for the temporal fluctuations at each site and thereby captures
the physics of the local moments—both their formation and
their screening via the Kondo effect. However, the spatial
fluctuations extend only over the simulation cluster; insofar
as the true correlation length scale exceeds the linear size of
the cluster, the results will suffer from finite size effects. To
mitigate this, we have considered various cluster topologies
ranging from one unit cell (a single c and f site) to four
unit cells, as defined in Fig. 1(e). For a given supercell,
the resulting single-particle Green function, G(K,iωm), is a
2Nu × 2Nu matrix with crystal momentum K in the Brillouin
zone of the supercell lattice. The CDMFT calculation involves
neglecting momentum conservation and thereby obtaining a
K-independent self-energy �(iωm). This quantity is extracted
from a cluster of Nu unit cells embedded in a dynamical mean
field that is determined self-consistently. We have solved this
cluster problem using a standard Hirsch-Fye approach and
have symmetrized the cluster Green function to obtain the
corresponding quantity on the lattice:

G(k,iωm)μ,ν = 1

Nu

∑
α,β

eik·(xα−xβ )G(K,iωm)(μ,α),(ν,β). (2)

Here xα denotes the unit cell positions within the supercell,
μ and ν run over the c and f orbitals within each unit
cell, and k and K differ by a reciprocal lattice vector of
the supercell Bravais lattice. The rotation to real frequencies
was carried out with a stochastic analytical continuation
technique.12,13

III. RESULTS

We consider the following model parameters: tc = tf = t ,
Uc/t = Uf /t = 12, V/t = 1/2, ε0

c /t = 3, and ε0
f /t = 0. We

have chosen large values of Uc and Uf to reflect the contact
repulsion of the 3He atoms and to guarantee that each single
layer is well within the Mott insulating phase at half-band
filling.14 These values of the Hubbard interaction lead to
low double occupancy, thus generating local moments. The
difference ε0

c − ε0
f > 0 is a crude accounting for the van der

Waals forces (both 4He–3He and 3He–3He) that preferentially
fill the first layer.

A. Layer densities

The generic Mott insulating state is characterized by a
density 〈n̂〉 = 1 and a vanishing charge susceptibility; that is,
χch = ∂〈n̂〉/∂μ = 0, where μ denotes the chemical potential.
Figure 2 plots the layer-resolved densities 〈n̂c〉 and 〈n̂f 〉
as a function of the chemical potential, which controls the
overall 3He concentration. For both the odd and the even
cluster sizes, 〈n̂f 〉 shows a plateau feature centered around
〈n̂f 〉 = 1, whereas 〈n̂c〉 grows smoothly. In contrast to the
Mott insulating state, χf

ch = ∂〈n̂f 〉/∂μ never vanishes. Hence,
charge fluctuations between the layers are allowed and the
simple picture of a complete decoupling of the layers never
holds. Although the plateau feature is common to all cluster
sizes, the data show distinct odd-even effects. For Nu = 1
and Nu = 3, 〈n̂f 〉 is a continuous function of the chemical
potential for all temperatures considered. In contrast, for the
even clusters, Nu = 2 and Nu = 4, a discontinuity in 〈n̂f 〉
emerges below a critical temperature Tc and at a critical
chemical potential. For Nu = 4, a robust discontinuity is
present at Tc � t/20, whereas for Nu = 2 this feature already
appears at Tc � t/15. Since 〈n̂c + n̂f 〉 = ∂F/∂μ, where F

is the free energy, the jump in the total fermionic density
signals a density-driven first-order transition. In a canonical
ensemble, states with total density lying within the jump are
phase separated.

B. First-layer effective mass and low-temperature
spectral functions

We can estimate the f fermion’s effective mass as a
function of the chemical potential by considering its cluster-
averaged self-energy, �f (iωm) = 1

Nu

∑Nu
α=1 �(f,α),(f,α)(iωm),

and extracting the quantity

t

T0
= m�

m
∝ Z−1 = 1 − Im�f (iωm = iπT )

πT
. (3)

This estimate of the effective mass (or, equally, of the inverse
of the coherence temperature T0) is valid provided that the
real space dependence of the self-energy is small and that the
temperature T is extrapolated to zero. Data on the Nu = 4
cluster presented in Ref. 11 shows that for μ < μc the
assumption of a local self-energy is valid.

At Nu = 1 (see Fig. 3), the effective mass increases as a
function of chemical potential. This effect is also evident in
the evolution of single-particle spectral functions,

A(k,ω) = −Im Tr G(k,ω + i0+), (4)
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FIG. 2. (Color online) The average occupation number is plotted for the upper-layer (top row) and lower-layer (bottom row) fermions as a
function of chemical potential. Results are reported for both odd-numbered (leftmost two columns) and even-numbered (rightmost two columns)
clusters. Solid lines connect data sets with a common temperature. Vertical dashed lines mark the location of the emerging low-temperature
discontinuity in 〈n̂f 〉.

plotted in Fig. 4. As exemplified by the data set at μ/t = −2.5
[Fig. 4(a)], the low-energy coherent features of the spectral
function compare favorably with a slave boson approximation
leading to mass-renormalized hybridized bands. This state has
a Luttinger volume that includes both f and c fermions, and the
band with the largest Fermi volume has dominant f character.
As a function of the chemical potential, the effective mass of
the f band grows, and spectral weight is shifted to the upper
Hubbard band. At μ = 0 and βt = 30, the data of Fig. 4(b)
exhibit typical heavy fermion character: a lower Hubbard band

Νu  =  1, βt  =  20
Νu  =  1, βt  =  30
Νu  =  2, βt  =  30
Νu  =  3, βt  =  15
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μ/t

T
0/
t

FIG. 3. (Color online) The inverse of quantity defined in
Eq. (3), which is proportional to the coherence temperature T0, inverse
effective mass, and quasiparticle residue, is plotted as a function of
chemical potential.

located at ωL/t � −6, an upper Hubbard band at ωU/t � 6 =
ωL/t + Uf /t , and a heavy band with dominant f character
in close vicinity of the Fermi energy that hybridizes with a
light conduction band. At Nu = 3, the coherence temperature
(see Fig. 3) is reduced with respect to the Nu = 1 case but
nevertheless shows a similar overall behavior: a rapid decrease
as a function of chemical potential followed by saturation at
a lower value than for the Nu = 1 case. Within the accessible
temperature range of the Nu = 3 cluster, the single-particle
spectral function shows the same features as for the Nu = 1
case.

For the even-site clusters, the initial decrease of the coher-
ence temperature is cut off by the first-order transition. Far
below μc, as exemplified by μ/t = −2.5, the single-particle
spectral function is very similar to that observed on the Nu = 1
cluster [cf. Figs. 4(a) and 5(a)]. With increasing chemical
potential, the effective mass of the f band grows, and beyond
μc the f band drops out of the low-energy physics altogether.
This can be understood at the static mean-field level by a con-
ventional slave boson theory in competition with local singlet
formation in the first layer. The transition is signaled by the
appearance of an anomalous expectation value �ij ∼ (t2

f /Uf )∑
σ 〈f †

i,σ fj,σ 〉. The inset of Fig. 5(c) shows the band structure
that results when this singlet order parameter breaks down the
original lattice symmetry to that of the Nu = 2 supercell.

C. Spin susceptibilities and correlations

We can extract from the cluster the local spin susceptibility
as defined by

χf (i�m) = 1

Nu

∑
i

∫ β

0
dτ ei�mτ

〈
Sf

i (τ ) · Sf
i (0)

〉
. (5)
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FIG. 4. (Color online) The amplitude of the single-particle
spectral function, as defined by Eq. (4), is plotted for the Nu = 1
cluster at various values of the chemical potential and temperature.
The insets show the corresponding to slave-boson calculation. The
inset to panel (a) shows the mean-field band structure consisting
of two strongly hybridized quasiparticle bands of mixed c and f

character. In panel (b), the hybdridization is considerably weakened.
In panel (c), the f fermions have dropped out of the Luttinger volume.

A Fermi liquid below its Fermi temperature is Pauli para-
magnetic, and hence χf (i�m = 0) is constant. On the other
hand, a local moment is characterized by a Curie-Weiss law,
χf (i�m = 0) ∝ 1/(T + �) at temperatures T 	 �. As is
apparent in Fig. 6, χf (i�m = 0) always exhibits a smooth
crossover from the high-temperature Curie-Weiss to the low-
temperature Pauli behavior, irrespective of the lattice topology.
For the odd lattice sizes, the crossover point tracks the
coherence temperature. The same holds for the even lattice at
μ < μc. It is worth emphasizing that this qualitative change in
magnetic response pinned to the coherence temperature (also
denoted by T0 in Ref. 7) has been observed in the 3He bilayer
experiment.7 Hence, at high temperatures, a local moment
generated by the Hubbard interaction is present. The screening
of this local moment, or in other words the quenching of its
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FIG. 5. (Color online) The amplitude of the single-particle
spectral function for the Nu = 4 cluster. The inset in panel (c) shows
the single c-only band completely decoupled from the gapped, nearly
flat band of the singlet-bound f fermions. The mean-field calculations
were carried out on the Nu = 2 cluster and the quantum Monte Carlo
(QMC) on the Nu = 4 systems.

entropy, is at the origin of the different behavior between the
odd- and even-numbered lattices.

Nu = 1. For this smallest cluster size, only the delocalized
c fermions are available to screen the local moment. This is
precisely the Kondo effect, and one can view the heavy fermion
paramagnetic state as originating from the coherent, Bloch-like
superposition of individual Kondo screening clouds. Within a
periodic Anderson model, this screening of the local moment
is linked to a delocalization of the f fermion. Hence, above
T0, when screening is absent, we expect the f -quasiparticle
band to drop out of the low-energy physics. This is evident
from Figs. 4(b) and 4(c) upon comparison of the high- and
low-temperature spectral functions at μ = 0.

Nu = 3. This cluster size shows behavior very similar to
that of the Nu = 1 system, albeit with a lower coherence
temperature. At values of the chemical potential where the f

layer is approximately half filled, a magnetic superexchange
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FIG. 6. (Color online) Temperature dependence of the inverse
local spin susceptibility for the (a) Nu = 3 and (b) Nu = 4 clusters.

interaction J = 4t2/Uf is dynamically generated and the
spin degrees of freedom on the first layer are described by
a Heisenberg model on a three-site lattice. The ground state
is fourfold degenerate, corresponding to a spin-1/2 degree
of freedom with either positive or negative chirality. As
in the Nu = 1 case, the only way to quench this residual
entropy is via Kondo screening by the c fermions. To confirm
this interpretation, we have computed the nearest-neighbor
spin-spin correlations on the first layer, Sf (r) = 〈Sf

i · Sf
i+r〉.

Comparison with the Heisenberg result is best achieved by
normalizing the QMC data by the magnitude of the local mo-
ment, Sf (r = 0). As shown in Fig. 7(a), the nearest-neighbor
antiferromagnetic spin-spin correlations are considerable. At
high temperatures the energy scale at which they decay is
set by the superexchange coupling J/t = 1/3; and at μ/t =
−0.75, where we observe a Curie-Weiss law down to our
lowest temperature, they compare favorably to the Heisenberg
ground-state result: Sf (a1)/Sf (0) = −1/3. Figure 7(b) plots
the dynamical local spin structure factor,

Sf (ω) = Im
χf (ω)

1 − e−βω
, (6)

at βt = 25 and as a function of the chemical potential. As
mentioned earlier, at μ/t = −0.75 the residual entropy is
not quenched. Consequently, a low-frequency sharp feature in
Sf (ω) marks the spin degenerate ground state of the three-site,
half-filled Hubbard model. A feature at ω/t � 0.5 corresponds
to the first spin excitation, which for the three-site Hubbard
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FIG. 7. (Color online) (a) Normalized nearest-neighbor f -
fermion spin-spin correlations for on the Nu = 3 cluster. On a
three-site ring, the value of this quantity for the Heisenberg model is
given by −1/3. (b) Local dynamical spin structure factor.

model at Uf /t = 12 takes the value �sp/t = 0.49. As we
decrease the chemical potential from μ/t = −0.75 to μ/t =
−1.5, the weight in the high-energy feature remains approx-
imately constant, but the sharp low-energy feature decreases
in intensity and is shifted to slightly higher energies. This
screening of the residual entropy by the c fermions competes
with the nearest-neighbor antiferromagnetic fluctuations in the
first layer and is at the origin of the upturn in Sf (a1)/Sf (0)
(see Fig. 7) at low temperatures.

Hence, at Nu = 3 spin correlations between the f fermions
quench part of the entropy associated with the formation of
the local moments. The residual entropy is Kondo screened by
the c fermions and in comparison to the Nu = 1 case leads to
a suppressed coherence temperature.

Nu = 2,Nu = 4. The even-site clusters show a band-
selective Mott transition and a low-energy decoupling of
the first and second layers. As in the Nu = 3 case, we can
consider the effective Heisenberg model on the first layer.
For even cluster sizes the ground state is unique and is spin
singlet. The first-order transition we observed in Fig. 2 arises
from competing screening mechanisms of the local moments
generated by the nearly localized f fermions. On the one
hand, the local moments can be Kondo screened by the light
c fermions, thereby generating heavy fermion behavior. On
the other hand, they can form (among themselves) a spin
singlet state entirely in the first layer. The gapping of the
spin and charge degrees of freedom of the f quasiparticles at
μ > μc allows for the decoupling of f and c quasiparticles:
A c quasiparticle at the Fermi level cannot scatter off an f

quasiparticle due to the absence of phase space. To support
the picture of a sudden change in the screening mechanism,
we plot in Fig. 8 intra- and interlayer equal-time spin-spin
correlations for the Nu = 4 cluster size. At the critical chemical
potential, we observe a sudden growth of the antiferromagnetic
correlations between nearest-neighbor f fermions and a de-
crease in the intracell c-f spin-spin correlations. Figure 8 also
shows the local dynamical spin structure factor. One observes
a depletion of spectral weight at low energies on both sides of
the transition and a considerable sharpening of the line shape
in the band-selective Mott insulating state. At μ < μc, we can
interpret the data within an itinerant fermion picture where the
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FIG. 8. (Color online) Static and dynamical spin correlations on
the Nu = 4 cluster at βt = 20. (a) Intracell spin-spin correlations be-
tween c and f fermions. (b) Nearest-neighbor spin-spin correlations
between f fermions. (c) Local dynamical spin structure factor.

mass enhancement prior to the band-selective Mott transition
is taken into account by a renormalization of the hybridization
V and hopping t as in a slave boson approach.8 Following this
modeling, the peak position in Sf (ω) is expected to track the
coherence temperature or, equivalently, the inverse effective
mass. An explicit comparison of those quantities is provided
in Ref. 11. At μ > μc, Sf (ω) should be interpreted within a
localized f fermion picture, in which case the peak position
is a measure of the excitation energy required to break the
singlet state of the f fermions. On a four-site Hubbard cluster,
corresponding to the f layer in the Nu = 4 case, this quantity
is given by 0.214t and compares favorably to the data in
Fig. 8.

IV. CONCLUSIONS

Our calculations are best summarized by the phase dia-
grams plotted in Fig. 9. At high temperatures (T > Tc) the
results are independent of the cluster size and topology. As
the first layer approaches half band filling the Hubbard U

generates a large effective mass, as well as local moments.
The local moment is the key feature of the high-temperature
phase and results in a Curie-Weiss spin susceptibility. In the
bilayer 3He experiment this is indeed observed at temperatures
above T0 prior to the solidification of the first layer. This
high-temperature local moment phase is characterized by a
Luttinger volume that counts only the c fermions. As the
temperature drops, the entropy associated with the local
moment has to be quenched, and competing quenching
mechanisms are at the origin of the different phase diagrams.
Heavy fermion character15 is associated with the screening
of the local moments by the conduction electrons. In the
framework of the periodic Anderson model, the f fermions
delocalize so as to a generate the superexchange scale and
reappear in the Luttinger sum rule. For our odd-sized cluster
topologies only this scenario can occur. It is important to note,
however, that the step from Nu = 1 to Nu = 3 is linked to a
substantial decrease of the coherence temperature since for the
Nu = 3 cluster the entropy is partially lifted due to intralayer
spin correlations.

(a) Nu odd

large FS

small FS

small FS

large FS

(b) Nu even

μ/t

μ/t
T

0
T

0

Tc

FIG. 9. (Color online) Schematic phase diagrams for clusters that
are (a) odd and (b) even in number. The solid line corresponds to the
coherence temperature T0, which sets the crossover scale between
states with large and small Fermi surfaces. The dashed line is a true
phase boundary and corresponds to a line of first-order transitions
terminating at a critical end point Tc.

On clusters of even size, the f fermions can form an
insulating spin-singlet state and hence quench the entropy
without involving the first-layer fermions. This allows for
a band-selective Mott transition—or Kondo breakdown—in
which the f fermions drop out of the Luttinger volume down
to the lowest temperature. Despite the breaking of translation
invariance inherent to the CDMFT, the Luttinger sum rule still
holds when formulated in the Brillouin zone of the supercell
Bravais lattice.

Given this odd-even effect, the extrapolation to large
cluster sizes is difficult and bound to be speculative. One can
conjecture that for even-site lattices, Tc is set by the spin gap
�sp of the corresponding half-filled Hubbard model of the
first layer. At Uf /t = 12, �sp/t = 0.325 for Nu = 2, whereas
�sp/t = 0.214 for Nu = 4. The decrease in Tc between the
Nu = 2 and Nu = 4 clusters is consistent with the decrease
in the spin gap. For odd lattices, one can follow the idea that
the coherence temperature tracks the residual entropy per site
of the half-filled Hubbard model on the first layer. Given the
preceding conjecture and the fact that the Hubbard model on
a triangular lattice has a unique ground state, we arrive at
the conclusion that the coherence temperature indeed vanishes
beyond a critical chemical potential. This stands in agreement
with the slave boson calculations of Ref. 8. If the magnetic
system on the first layer orders and breaks a lattice symmetry,
then the f fermions can drop out of the Luttinger volume
without violating the Luttinger theorem. The stability of such
a phase with respect to a finite hybridization matrix element
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generating a Kondo coupling between the layers has been
discussed in Ref. 16. On the other hand, if no symmetries
are broken such that a spin liquid state is realized on the first
layer,17 fractionalized Fermi liquids as proposed in Refs. 18
and 19 could be realized.

It is interesting to recast our results in terms of the Q-K
phase diagram for heavy fermions proposed by Coleman and
Nevidomskyy.20 Here, K corresponds to the magnitude of the
Kondo screening and Q is a measure of frustration between
the f fermions. For our model in the local moment regime,
the Kondo coupling between the two layers is dynamically
generated starting from second-order perturbation theory in
the hybridization. The frustration between the f fermions is
generated by the hopping matrix element tf , which again in
the local moment regime leads to a superexchange interaction
between the f fermions. In the framework of Ref. 20 and in
agreement with our numerical simulations, it is the frustration
between the f fermions that drives the Kondo breakdown
or band-selective Mott transition. For a recent review in this
domain, we refer the reader to Ref. 21. This is in contrast to
the Kondo lattice model, where the f fermions interact solely
through the RKKY interaction, and no Kondo breakdown is
observed in cluster simulations.22,23

Let us finally return to the bilayer 3He experiment. Heavy
fermion character is clearly seen by the increase of the

effective mass (or decrease of the coherence temperature).
Furthermore, and as seen in our calculations, T0 marks the
crossover between a Curie-Weiss and Pauli behavior of the
spin susceptibility. The Q or competing interaction which
localizes the f fermions to the first layer are the three-body
exchange processes. These processes, which in solid 3He can
dominate the two-body antiferromagnetic exchange, lead to
the observed ferromagnetic behavior. Given this interpretation
of the experiment, an extremely important issue would be to pin
down the experimental value of the Weiss constant. Above T0 it
should be positive and essentially track the Kondo scale. The
transition to the ferromagnetic state should be accompanied
by a vanishing and subsequently negative value of the Weiss
constant.
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