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Seebeck coefficients in nanoscale junctions: Effects of electron-vibration scattering and local heating
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We report first-principles calculations of inelastic Seebeck coefficients in an aluminum monatomic junction.
We compare the elastic and inelastic Seebeck coefficients with and without local heating. In the low-temperature
regime, the signature of normal modes in the profiles of the inelastic Seebeck effects is salient. The inelastic
Seebeck effects are enhanced by the normal modes and further magnified by local heating. In the high-temperature
regime, the inelastic Seebeck effects are weakly suppressed due to the quasiballistic transport.
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The electron-vibration interaction plays an important role
in molecular electronics. Electrons flowing in nanojunctions
are characterized by quasiballistic electron transport.1 Only a
small fraction of electrons experience the inelastic scattering.
Electron-vibration interactions cause discontinuities in the
current-voltage (I-V) characteristics known as inelastic current
tunneling spectroscopy (IETS).2 IETS can provide information
on the underlying atomic structures of junctions.3 It also gives
important signals to the molecular junction characterization.4

Electrons that travel with energies larger than the energy
of normal modes can excite corresponding vibrations in the
nanostructure anchoring the electrodes. This effect causes
local heating in the nanostructure.5–7 Heating occurs when
electrons exchange energy with the excitation and relaxation of
the energy levels of the vibration of the nanostructured object
that anchors the electrodes. The heating power is typically
within 10% of the electric power (IVB) supplied by a battery
even at ambient temperatures because of quasiballistic trans-
port. The heat generated in the central wire region is dissipated
to the bulk electrodes via phonon-phonon interactions. The
heat generation eventually equilibrates the heat dissipation,
where the wire region reaches an effective local temperature
Tw higher than the electrode temperature Te. Local temperature
depends on several factors: the strength of coupling between
electrons and the vibrations, the background temperature, and
the thermal current which dissipates heat.

In the past decade, remarkable progress has been achieved
in measuring the Seebeck coefficients in nanojunctions.8,9

These experiments have shed light on the design of possible
energy-conversion nanodevices, such as nanoscale refriger-
ators and power generators.10 These experiments have also
inspired rapid development in the theory of thermoelec-
tric nanojunctions.11–20 In bulk systems, diffused electrons
scattered by phonons can significantly affect the Seebeck
coefficient. However, the effects of the quasiballistic electrons
scattered by vibrations of the nanostructure on the Seebeck
coefficient are relatively unexplored in nanojunctions.21,22 The
Seebeck coefficient is usually defined under no current in the
literature. In this paper, we investigate inelastic Seebeck coef-
ficients under external biases from first-principles approaches.
This may offer new possibilities of engineering systems where

nonequilibrium current and inelastic effects would enhance the
thermopower.23

The many-body Hamiltonian of the system under consider-
ation is H = Hel + Hvib + Hel-vib,5 where Hel is the electronic
part of the Hamiltonian under adiabatic approximations and
Hvib is the ionic part of the Hamiltonian, which can be cast into
a set of independent simple harmonic oscillators via normal
coordinates. The normal-mode frequencies are ωj , and Hel-vib

is a part of the Hamiltonian for electron-vibration interactions
which has the form of

Hel-vib =
∑

α,β,E1,E2,j

( ∑
i,μ

√
h̄

2Miωj

Aiμ,j J
iμ,αβ

E1,E2

)

× a
α†
E1

a
β

E2
(bj + b

†
j ), (1)

where α,β = {L,R}; Mi is the mass of the ith atom; Aiμ,j

is a canonical transformation between normal and Cartesian
coordinates satisfying

∑
i,μ

Aiμ,jAiμ,j ′ = δj,j ′ ; bj is the an-

nihilation operator corresponding to the j th normal mode, and
aL(R) is the annihilation operator for electrons; the coupling
constant J

iμ,αβ

E1,E2
between electrons and the vibration of the ith

atom in μ (= x, y, z) component can be calculated as

J
iμ,αβ

E1,E2
=

∫
dr

∫
dK‖[�α

E1K‖(r)]∗[∂μV ps(r,Ri)�
β

E2K‖(r)],

(2)

where V ps(r,Ri) is the pseudopotential representing the
interaction between electrons and the ith ion; �

α(=L,R)
EK‖ (r)

stands for the effective single-particle wave function of the
entire system corresponding to incident electrons propagated
from the left (right) electrode. These wave functions are
calculated iteratively until convergence and self-consistency
are achieved in the framework of DFT combined with the
Lippmann-Schwinger equation,24

�α
EK‖(r) = �α

0,EK‖ (r) +
∫

dr1

∫
dr2G(r,r1)V (r1,r2)�α

EK‖(r),

where G is the Green’s function of the biased bimetallic
electrodes with VB = (μR − μL)/e, where μR(L) is the chem-
ical potentials deep in the right (left) electrode, respectively;
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the wave function of the bimetallic junction, �α
0,EK‖ (r), is

calculated by solving a combination of the Poisson and
Schrödinger equations until self-consistency is achieved,
where the boundary conditions are given by the electrons
deep inside the biased electrodes. The inclusion of a single
molecule bridging the bimetallic electrodes is considered as
the scattering center, described by the potential V .

Our starting point is the inelastic current when considering
electron-vibration interactions,

I (μL,TL; μR,TR; Tw) = 2e

h

∫
dE

[(
f R

E − f L
E

)
− (B̃R − B̃L)

]
τ (E), (3)

where f
L(R)
E = 1/{exp[(E − μL(R))/(kBTL(R))] + 1} is the

Fermi-Dirac distribution function describing the statistic of
electrons deep in the left (right) electrode with temperature
TL(R) and chemical potential μL(R); the transmission function
τ (E) = πh̄2

mi

∫
dR

∫
dK||(�R∗

EK‖∇�R
EK‖ − ∇�R∗

EK‖�
R
EK‖) is cal-

culated from the electronic part of the wave functions �R
EK‖ .

The terms B̃L(R) represent the corrections to the elastic current
considering the eight first-order scattering processes depicted
in Fig. 1,

B̃α =
∑

j

[〈∣∣Bβ,α

j,k

∣∣2〉
f α

E

(
1 − f

β

E±h̄ωj

)
− 〈∣∣Bαα

j,k

∣∣2〉
f α

E

(
1 − f α

E±h̄ωj

)]
, (4)

where α,β = {L,R} and α �= β. The parameters BRR
j,1(2) and

BLR
j,1(2) denoted in Eq. (4) are

BαR
j,1(2) = iπ

∑
iμ

√
h̄

2ωj

Aiμ,j J
iμ,αR

E±h̄ωj ,E
Dα

E±h̄ωj

√
δ + 〈nj 〉, (5)

where α = {L,R}; δ = 0(1) represents the process of phonon
emission (absorption). The other two parameters in Eq. (4) can
be obtained by the relations BLL

j,1(2) = −BRR
j,1(2) and BRL

j,1(2) =
−BLR

j,1(2); the average number of local phonons is 〈nj 〉 =
1/{exp[h̄ωj/(kBTw)] − 1}, where Tw is the effective wire
temperature.

The rate of energy absorbed (emitted) by the anchored
nanostructures due to incident electrons from the β = {L,R}
electrode and scattered to the α = {L,R} electrode via a
vibrational mode j is denoted by W

αβ,2(1)
j . The total thermal

power generated in the junction P can be written as the sum of
all the vibrational modes of eight scattering processes shown
in Fig. 1,

P =
∑
j∈vib

∑
α={L,R}

∑
β={L,R}

(
W

αβ,2
j − W

αβ,1
j

)
, (6)

where W
αβ,k

j are calculated from the Fermi golden rule,

W
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j = 2πh̄(δk,2 + 〈nj 〉)
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FIG. 1. Feynman diagrams of the first-order electron-vibration
scattering processes considered in this study.

where α,β = {L,R} and δk,2 is the Kronecker δ and k = 1
(2) corresponding to relaxation (excitation) of the vibrational
modes; Dα is partial density of states.

The rate of heat dissipated to electrodes via phonon-phonon
interactions is calculated using the weak link model,25

Jph = 2πK2

h̄

∫ ∞

0
dEENL(E)NR(E)[nL(E) − nR(E)], (8)

where K = 1.59 eV/a2
0 is the stiffness of the 4-Al atom chain

connected to the electrodes obtained from the total energy
calculation,26 NL(R)(E) is the spectral density of local phonon
DOS at the left (right) electrode surface from first-principles
calculations,27 and nL(R) ≡ 1/(eE/KBTL(R) − 1) is the Bose-
Einstein distribution function. The effective local temperature
Tw is obtained when heat generation in the nanostructure and
heat dissipation into the bulk electrodes reach balance.

We calculate the inelastic Seebeck coefficient based on the
inelastic current described in Eq. (3) which is a function of
TL, TR , Tw, and VB = (μR − μL)/e. We consider an extra
current induced by an infinitesimal temperature difference
(
T ) across the junction. This current is counterbalanced by
an extra current driven by a voltage (
V ), which is induced
by 
T via the Seebeck effect; that is,

I (μL,TL; μR,TR)

=
[
I

(
μL,TL − 
T

2
; μR,TR + 
T

2

)

+ I

(
μL − e
V

2
,TL; μR + e
V

2
,TR

)] /
2. (9)

After expanding the above equation to the first order in 
T

and 
V , we obtain the inelastic Seebeck coefficient (defined
as Sel+vib = 
V/
T ),

Sel+vib = −1

e

∫
dE

( ˜∂f R
E

∂TR
+ ˜∂f L

E

∂TL

)
τ (E)∫

dE
( ˜∂f R

E

∂E
+ ˜∂f L

E

∂E

)
τ (E)

, (10)
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where
˜∂f α
E

∂E
= ∂f α

E

∂E
−
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where α = {L,R} and the parameters CαR
μ,j,1(2) and CαR

T,j,1(2) are

CαR
μ,j,1(2) =

[
f R

E
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TR

f R
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where α = {L,R} and B
αβ

j,1(2) are given by. Eq. (5). The other
two terms in Eq. (10) can be calculated with the following

relations ∂f̃ L
E

∂T
= ∂f̃ R

E

∂T
(L ⇀↽ R) and ∂f̃ L

E

∂E
= ∂f̃ R

E

∂E
(L ⇀↽ R), where

L ⇀↽ R represents the interchange between R and L. We see
that, in the absence of electron-phonon scattering, Eq. (10)
recovers the elastic Seebeck coefficient described in Ref. 28.

We now apply our theory to investigating the inelastic
Seebeck effects of four Al atoms bridging the bimetallic Al
electrodes modeled as electron jellium with rs ≈ 2. The 4-Al
junction is structurally and electronically simple such that the
first-principle calculations reported here can be performed with
a high level of accuracy. It therefore serves as an ideal test bed
for comparing the predictions of theory and measurements in

FIG. 2. (Color online) (a) Local temperature Tw as a function of
VB for Te = 0, 4, 10, 50 K. (b) The differential conductance and
the absolute value of dG/dV due the electron-vibration interaction
without [solid (black) line] and with [dashed (red) line] local heating
as a function of bias for Te = 12 K. The schematic shows the normal
modes that contribute to the jumps in the local temperature and
inelastic current profiles.

experiments. We compare the elastic and inelastic Seebeck
coefficients assuming that the left and right electrodes share
the same temperature Te. In order to qualitatively show to what
extent local heating affects the inelastic Seebeck coefficient,
we choose to display inelastic Seebeck coefficients with and
without local heating.

In the case of “without local heating,” we mean that the
heat generated in the wire region is perfectly dissipated to
electrodes such that Tw = Te. When including “local heating,”
the effective local wire temperature Tw is higher than the
electrode temperature Te. Figure 2(a) shows Tw as a function
of the applied bias VB for various Te. We note that three
jumps occur at VB = 2.5, 20, and 40 mV, corresponding to
the energies of the normal modes. The sharp increase in Tw at
VB = 20 mV corresponds to the first longitudinal vibrational
mode. Two degenerate transverse modes are present in the
x and y directions at VB = 2.5 mV, and we show the
representative one in Fig. 2. Due to the selection rule,
the contributions to local heating from modes with vibrational
components perpendicular to the direction of electron transport
(z direction) are unimportant. For Te = 0, 4, and 10 K, Tw

displays larger jumps at VB = 20 mV, where eVB is the energy
of the first longitudinal vibrational mode. For Te = 50 K,
the signatures of normal modes in Tw are wiped out by
high temperatures. The increase in local temperature is less
significant at higher Te. This is due to increasingly efficient
heat dissipation caused by the increase of phonon population
in the electrodes, as shown in Eq. (8). Figure 2(b) shows
the inelastic profile of the conductance (G = dI/dV ) and
derivative of conductance (d2I/dV 2) as a function of bias with
and without local heating. Local heating enhances the effects
of the electron-vibration interactions on the inelastic current
because of increased average number of local phonons.

Figure 3(a) shows Seebeck coefficients as a function of
the applied bias VB for various Te. For each temperature, we
calculate Seebeck coefficients in three cases: elastic Seebeck
coefficients S0, inelastic Seebeck coefficients without local

FIG. 3. (Color online) Elastic Seebeck coefficient [solid (black)
line], inelastic Seebeck coefficient without local heating [dashed (red)
line], and that with local heating [triangle (blue) line] (a) as a function
of bias VB for Te = 4, 8, 12 K (top panel) and Te = 50 K (bottom
panel); and (b) as a function of Te for VB = 0 K (top panel) and and
VB = 30 K (bottom panel.)
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heating S1, and inelastic Seebeck coefficients with local
heating S2. The difference between the elastic and inelastic
Seebeck effects is more salient in the low-temperature regime
around VB = 20 mV [see the cases of 4, 8, and 12 K in
the top panel of Fig. 3(a)]. The profile of inelastic Seebeck
coefficients vs VB displays a strong signature corresponding
to the longitudinal vibrational mode at VB = 20 mV, where
the magnitude of the Seebeck coefficients are increased. This
feature is related to the suppression of the inelastic current
around VB = 20 mV, [Fig. 2(b)] where the transmission
function effectively decreases. This leads to larger magnitudes
of Seebeck coefficients because S ∝ −τ ′(μ)/τ (μ).28

The inclusion of local heating enhances the effect of
electron-vibration on Seebeck coefficients further. In the
low-temperature regime, the top panel of Fig. 3(a) shows
that S1 (without local heating) significantly differs from S2

(with local heating). This is because of the large difference
between Tw and Te, as shown in Fig. 2(a). For VB < 30 mV,
Tw and Te become almost identical when the Te is large.
Consequently, the difference between S1 and S2 becomes small
[see cases of Te = 50 K in the lower panel of Fig. 3(a)]. In
all cases, the transverse modes are negligible to the inelastic
Seebeck coefficients. Figure 3(b) shows Seebeck coefficients
as a function of Te for VB = 0 and 30 mV in three cases:
S0, S1, and S2. In the high-temperature regime (Te > 50 K),
the magnitudes of inelastic Seebeck coefficients (S1 and S2)

are slightly decreased compared with the elastic Seebeck
coefficients (S0) due to small probability of electron-vibration
scattering.

In summary, we investigated the elastic and inelastic
Seebeck coefficients with and without local heating in
the 4-Al atomic junction using first-principles calculations.
In the low-temperature regime, the signature of normal
modes in the profiles of inelastic Seebeck effects is salient. The
inelastic Seebeck effects are enhanced by electron-vibration
interactions due to the drastic suppression of the inelastic
current at the bias corresponding to the normal mode with
longitudinal vibrational character. Local heating enhances the
inelastic Seebeck effects further due to increased average
number of local phonons. In the high-temperature regime, the
inelastic Seebeck effects are slightly suppressed by electron-
vibration interactions due to quasiballistic electron transport
in nanojunctions. The signature of normal modes in inelastic
Seebeck coefficients and local temperatures is wiped out by
the tail of the Fermi-Dirac distribution.
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