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Signatures of Wigner localization in epitaxially grown nanowires
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It was predicted by Wigner in 1934 that an electron gas will undergo a transition to a crystallized state when its
density is very low. Whereas significant progress has been made toward the detection of electronic Wigner states,
their clear and direct experimental verification still remains a challenge. Here we address signatures of Wigner
molecule formation in the transport properties of InSb nanowire quantum-dot systems, where a few electrons may
form localized states depending on the size of the dot (i.e., the electron density). Using a configuration interaction
approach combined with an appropriate transport formalism, we are able to predict the transport properties of
these systems, in excellent agreement with experimental data. We identify specific signatures of Wigner state
formation, such as the strong suppression of the antiferromagnetic coupling, and are able to detect the onset of
Wigner localization, both experimentally and theoretically, by studying different dot sizes.
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The transition to a Wigner crystal1 can be viewed as a
contest between the electronic Coulomb repulsion and the
quantum mechanical kinetic energy. If the Coulomb repulsion
dominates, the many-particle ground state and its excitations
resemble a distribution of classical particles located in a lattice
minimizing the Coulomb energy. In the bulk, the transition
to a Wigner crystal is only expected for extremely dilute
systems,2,3 while in lower dimensions, or for broken transla-
tional invariance, it becomes accessible at higher densities.4–6

A lot of work has focused on finite-sized two-dimensional
quantum dots,7–11 where the crossover from liquid to localized
states in the transport properties of the nanostructure has been
addressed.12,13 For one-dimensional systems, localization has
been reported in cleaved-edge overgrowth structures14 and
for holes in carbon nanotubes.15 These highly correlated one-
dimensional systems exhibit a variety of fascinating features,
as reviewed recently.16 Here we introduce a third system,
based on epitaxially grown semiconductor nanowires, which
allows a straightforward application of tunneling spectroscopy
compared to the rather involved cleaved-edge overgrowth
structures and avoids further complications due to the isospin
degree of freedom in carbon nanotubes.

InSb nanowires,17 as used here, allow for the realization
of quantum dots, where the electronic confinement along the
nanowire is established by Schottky barriers to gold contact
stripes [see Fig. 1(a)]. Varying the distance between the stripes
(here, 70 and 160 nm) allows for the systematic realization
of wires with specific length and thereby controlled electron
densities. For our calculations we model the nanowire as a
hard-wall cylinder with the experimental radius of 35 nm. The
Schottky barrier at the semiconductor-metal interface creates
a standard quantum well with a width equal to the contact
spacing. The Coulomb interaction between the electrons is
approximated as that in a cylinder embedded in homogeneous
matter, taking into account the different dielectric constants
of the wire and the surrounding material.18,19 Exact many-
particle states in the wire are evaluated with the configuration
interaction method.

The results can be understood in terms of two limiting cases:
a short wire with no electron localization and a long wire with
Wigner localization.1

The first limiting case, where interaction is dominated by
kinetic energy, can be described by the independent-particle
shell model. There the two-particle ground state is obtained by
populating the lowest single-particle level with a spin-up and a
spin-down electron. Thus, the spatial electron density follows
that of the lowest single-particle level and exhibits a peak in
the center of the quantum dot. The lowest excited two-particle
state is obtained by moving one electron to the first excited
single-particle level at the cost of the level spacing energy �ε.
Thus, one expects the two-particle excitation energy �E2 ≈
�ε. Furthermore, the spin degrees allow for four realizations
of such an excited two-particle state, which are typically split
into a triplet and a singlet due to exchange interaction.

In the second limiting case, Wigner localization, the
electrons are localized at different positions along the wire,
minimizing the Coulomb repulsion. Thus, the two-particle
ground-state density exhibits two peaks and a minimum in
the center of the nanowire segment. As the electrons can have
arbitrary spin on each site, one has four realizations of this
configuration, with a minor energy split between a singlet
and a triplet. Hence, we expect a very small �E2 � �ε,
while further excitations are significantly higher in energy and
exhibit a different spatial distribution of charge.

At the onset of localization, the electron density is expected
to resemble two weakly separated peaks in the two-particle
ground state. The interaction of the electrons is substantial,
without yet dominating the kinetic part. Hence the two-particle
excitation energy is considerably lower than the single-particle
excitation energy, �E2 < �ε. However, as the two electrons
are not yet fully crystallized, �E2 is expected to be well above
zero.

1As we focus on two to three electrons, we cannot speak of a
macroscopic effect such as Wigner crystallization. Hence the term
Wigner localization.
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FIG. 1. (Color online) (a) Scanning electron microscope (SEM)
image of the InSb nanowire on a SiO2-capped Si substrate, where
the quantum dot is defined by Schottky barriers of the gold contacts
(“source” and “drain”). Calculated electron density in nanowires of
lengths 70, 160, and 300 nm is displayed in panels (b), (c), and (d),
respectively, for the lowest two-electron states (excitation energies are
given; “S” stands for singlet and “T” for triplet). For the two-particle
ground state the pair-correlated density is shown with the position of
one electron marked with a black arrow.

Tunneling spectroscopy is a convenient way to study
ground and excited states in quantum-dot systems. Here we
can use the gold contacts [Fig. 1(a)] as source and drain by
applying a bias Vsd between both stripes. The nanowire is
located on a highly doped Si substrate covered by an insulating
SiO2 layer, which allows for application of a backgate voltage
Vbg providing an approximately homogeneous shift in energy
of all levels in the dot. Varying Vsd and Vbg provides the
characteristic charging diagrams (see, e.g., Ref. 11) displayed
in Figs. 2(c) and 3(c) at a temperature of 300 mK. Here high
differential conductance indicates that the electron addition
energy (affinity) coincides with the chemical potential in
either of the gates. The diamonds of vanishing conductance
centered around zero Vsd are the regions of Coulomb blockade,
where the chemical potentials of both reservoirs are above
the energy difference between the (N − 1)- and N -electron
ground state and below the energy difference between the N -
and (N + 1)-electron ground state. As no further lines of high
conductance are found for lower gate bias, we assume that the
lowest diamond corresponds to N = 1. Half the width of this
diamond defines the charging energy U .

Based on the calculated many-particle states, electron
transport is treated within the master equation model20–22

with tunneling matrix elements calculated as in Ref. 12. The
results are displayed in Figs. 2(a) and 3(a) for the respective
experimental samples displayed in panel (c). We find that all
Coulomb diamonds agree rather well, which indicates that
the radial excitations, which are disregarded in our effectively
one-dimensional model, only become of relevance for higher
particle numbers in the dot.

Now we focus on the excited states and show that the
experimental conductance data along with our theoretical

FIG. 2. (Color online) Results for an InSb nanowire of length
L = 70 nm. (a) Simulated differential conductance as a function
of bias (Vsd) and gate energy Eg . The number of particles in the
dot, N , is shown in each diamond. (b) A closer look at the area
marked by a dashed box in panel (a). The conduction lines, where
tunneling into the N = 1 ground state and first excited state sets in,
are marked by the symbols ① and ②, respectively. The corresponding
lines for the entering of the second electron, where the dot reaches
the N = 2 ground state and the N = 2 excited state, are marked by
③ and ④ symbols, respectively. The separation between these lines
provides the excitation energies from the N = 1 and N = 2 ground
states, �ε and �E2, respectively, which are depicted by arrows.
(c) Experimental differential conductance as a function of bias (Vsd)
and gate voltage (Vbg). (d) Experimental differential conductance as
a function of magnetic field (B) and gate voltage (Vbg).

calculations allow for a verification of the Wigner localization
scenario described above.

For a 70-nm wire, the two-electron density along the
wire is a single peak [see Fig. 1(b)]. This corresponds to
the independent-particle shell model as described earlier. In
Fig. 2(b) we have marked the lines where the first electron
enters the one-electron ground state and the one-electron
excited state with the symbols ① and ②, respectively. This
reflects the level spacing �ε = 12 meV, as shown by the
horizontal arrow. Similarly, starting from the one-electron
ground state, the second electron enters the dot reaching the
two-electron ground state and the two-electron excited state
at lines marked by the ③ and ④ symbols. The separation
between these two lines represents the excitation energy
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FIG. 3. (Color online) Results for an InSb nanowire of length
L = 160 nm. Panels as in Fig. 2.

�E2 = 11 meV. The four lines, ①–④, can be observed in
the experimental data in Fig. 2(c) (this is clearer for negative
bias, as the measurement results in the positive bias region
most likely suffer from charging of impurity states). From
this figure, we read �E

exp
2 = 15 meV ≈ �εexp = 16 meV, and

hence for the sample of length 70 nm, the experimental data are
in good agreement with the independent-particle shell model
discussed earlier.

Note that there is some discrepancy between theory and
experiment regarding the value of �ε and �E2. This could
be due to bending of energy levels at the interface of the
wire and the gold contacts (Schottky barriers), which makes
the wire effectively shorter than the spacing of the contacts.
Indeed, simulations of a 60-nm wire give �ε = 16 meV and
�E2 = 15 meV.

We can quantify the electron-electron interaction strength
by the energy difference between the two-particle ground state
and twice the energy of the lowest single-particle level (half-
width of the N = 1 Coulomb diamond). This provides the
charging energy U exp = 6.5 meV for the 70-nm sample, as
read from Fig. 2(c). That is, U < �ε, in accordance with the

FIG. 4. (Color online) Simulation of a 300-nm-long wire. (a)
Charge stability diagram. (b) A closer look at the area in the dashed
box in panel (a). Symbols ①–④ as in Fig. 2. The two lowest N = 2
states have approximately the same energy, and hence the double
conduction line of the 160-nm wire [③ and ④ in Fig. 3(b)] has
merged into a single line leading to the N = 2 Coulomb diamond.
The broad conduction line consisting of three lines for the three lowest
N = 3 states is marked by the symbol ⑤. (c) Electron density of the
four lowest N = 3 states.

independent-particle shell model being valid when the kinetic
energy dominates the interaction.

For the 160-nm wire, the two-electron density in Fig. 1(c)
resembles two semiseparated peaks, indicating the onset
of Wigner localization (as also seen in the pair-correlated
density). In Fig. 3, the lines ①–④ can be identified in both
the simulation and the experiment. The theoretical results give
�E2 = 1.0 meV and �ε = 2.8 meV, as in the experiments we
observe �E

exp
2 = 1.0meV < �εexp = 3.2 meV. Again, this is

in agreement with the scenario of onset of Wigner localization
discussed earlier.

Note that if we would neglect the different dielectric
constant outside the wire, the onset of Wigner localization
would first appear at double the actual wire length. Hence the
screening due to the different dielectric constants of the wire
and the surrounding material is an important effect and must
be included in the modeling.

The energy separation between the singlet and the triplet
two-electron state, the antiferromagnetic coupling, can also be
manifested by the magnetic field dependence of the differential
conductance. The Sz = 1 part of the triplet is lowered in
energy by a magnetic field with respect to the singlet state
by gμBB, where μB is the Bohr magneton. Figure 3(d) shows
that there is a level crossing at Bcross ≈ 0.4 T (marked by
an arrow). According to Ref. 17, the electronic g factors
are around 40 for two electrons in the dot. This provides
an energy splitting �E

mag
2 = gμBBcross ≈ 1 meV in full
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agreement with the calculated value for the 160-nm wire.
Note that for the 70-nm wire, the level splitting is no longer
linear in the high magnetic field, Bcross ≈ 4 T, at which the
crossing appears [marked by an arrow in Fig. 2(d)]. Hence,
we cannot apply the same method to find �E

mag
2 for the

70-nm wire, although its result �E
mag
2 ≈ 10 meV is of the

correct order of magnitude. The strong suppression of this
antiferromagnetic coupling between the two electrons (by an
order of magnitude, while changing the length by about a
factor of two) is one of the hallmarks of the Wigner crystal
state.16

Finally, our theoretical results indicate complete Wigner
localization for a 300-nm-long wire. Figure 1(d) shows that
in the two-particle ground state, the electrons are strongly
localized; that is, they form a Wigner molecule. From
Fig. 4(b) we observe that the conductance line of the N = 2
triplet first excited state (③) has merged into the line of the
singlet ground state (④), as expected: There is no difference
in the energy of these two states, as there should be no
difference between the singlet and triplet states of two strongly
localized particles. More precisely, we find �E2 = 9.3 μ eV
and �ε = 0.84 meV; that is, �E2 � �ε. Furthermore, we
find U = 5.7 meV; that is, �ε � U . This conforms to Wigner
localization being present when kinetic energy is strongly
dominated by interaction.

Even for the N = 3 ground state the theoretical calculations
suggest the onset of Wigner localization in a 300-nm wire,
as seen in Fig. 4(c). The small energy difference between
the three lowest N = 3 states results in a broad conduction
line, marked by the symbol ⑤ in Fig. 4(b). Unfortunately,

we could not obtain experimental data for this length, since
for such a long sample and low charge densities the effect of
disorder is too strong, creating an effective double quantum
dot. This can be identified in a charge stability diagram as
additional kinks in the conductance lines that comprise the
N = 1 Coulomb diamond.23 Such kinks are not present in
the stability diagram for the 160-nm wire shown in Fig. 3(c),
implying that disorder has no significant effect in that case.
Also, Coulomb interaction has been shown to decrease the
effect of Anderson localization.24 However, the theoretical
results demonstrate the prospects of our approach if more
efficient gating schemes are developed.

We have demonstrated the transition from the independent-
particle shell model to Wigner localization with increasing
length of a semiconductor nanowire sample. While the
excitation spectrum follows the independent-particle shell
model for the 70-nm wire (�E2 ≈ �ε), the onset of Wigner
localization is observed for the 160-nm wire (�E2 < �ε) and
finally our simulations show complete Wigner localization
in a wire of length 300 nm. There the excitation energy
of the two-particle state is almost negligible and much
lower than the level spacing, �E2 � �ε, and the calculated
electron density exhibits two peaks. This shows that InSb
nanowires form a convenient system for investigating strongly
correlated systems by well-established transport measurement
techniques.
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