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Transmission and scattering properties of subwavelength slits in metals
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Using an advanced eigenmode-expansion method, we analyze the basic transmission and scattering properties
of subwavelength slits in real metals characterized by the complex optical permittivity εm. This includes the
slit-width, wavelength, and εm dependences of the efficiencies and cross sections of the main transformation
processes: (i) transformation of the incident plane wave into the propagating mode, into the surface plasmons,
and into diffracted waves in air and (ii) internal reflection of the propagating mode and its transformation to
the surface plasmons and diffracted waves. In conjunction with the known perfect-metal-related efficiencies,
the established dependences exhibit a wealth of important subwavelength features, including the nontrivial
transmission peculiarities. Transition from the case of the periodic array of slits to the single-slit case when
increasing the metal-wall width is considered as well. The established characteristics of a single interface between
air and perforated metal are sufficient to describe the extraordinary light transmission through subwavelength
slits in metal films.
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I. INTRODUCTION

Since the experimental discovery in 1998,1 the phenomenon
of the extraordinary light transmission through subwavelength
holes in metals attracts a great research interest.2–9 The subject
is of great fundamental importance because the basic proper-
ties of metal-based light-transmitting nanostructures appeared
to be under-investigated and full of fascinating effects. It is
promising for applications because of the possibility of strong
light confinement as well as in connection with the studies of
metamaterials.

While the above research area is topical, it has deep histor-
ical roots in the works of Rayleigh, Wood, Sommerfeld, and
Bethe.10–15 It is well known that exact solutions of Maxwell’s
equations for metal-based nanostructures are available only
for a few of the simplest cases in the perfect-metal limit.
The direct (finite-difference) numerical methods often suffer
from bad convergence, must deal with the so-called corner
singularities, and can hardly be considered as reliable tools to
achieve physical insights. The most adequate/physical tools of
numerical analysis are based on the eigenmode expansions.

It became clear a few years ago that the basic concept of the
eigenmodes in wave-guiding structures, which qualifies these
modes into propagating and evanescent, is not fully applicable
to metal-based structures.16,17 Importantly, the eigenvalue pro-
blem for metal-based wave-guiding structures (single
holes/slits, arrays of holes/slits, photonic crystals, etc.) is not
Hermitian, even in the absence of light absorption, i.e., for real
negative values of the optical permittivity of the metal εm. In
addition to the propagating and evanescent modes, there is a
sequence of anomalous eigenmodes with essentially complex
eigenvalues, which is crucial for numerical simulations.17,18

These modes can also be traced back to some early theoretical
studies.19

The distinctive feature of the metal-based structures, which
was recognized early, is the excitation of the surface plasmons
(surface-plasmon polaritons) by the incident light.5,20 The
surface plasmon (SP) can propagate over long distances,
coupling neighboring holes/slits and affecting the light-

transmission properties. The presence of holes/slits on a metal
surface modifies the SP properties, making them essentially
different from the properties of flat-surface plasmons.17,21,22

Furthermore, it was found recently23–25 that a weak power-
law decaying asymptotic wave (Norton wave) can become
dominating over the SP for very long propagating distances.

Earlier, we applied the modified eigenmode approach to
investigate the light-transmission and reflection properties of
a periodic array of nanoslits in a metal slab.18 This periodic
structure [see Fig. 1(a)] is characterized by the slit half-width
l, the wall half-width L, the half-period w = l + L, the
slab thickness z0, and the optical permittivity of metal εm =
ε′
m + iε′′

m. The slab transmittance was expressed by the trans-
mittance of a single interface. This fundamental characteristic
possesses highly remarkable dependences on the key input
parameters, the period-to-wavelength ratio 2w/λ, the wall-
to-slit ratio L/l, and |εm|. The sharp spectral features found
have close links with the Rayleigh-Wood anomalies and
surface-plasmon resonance.

Here we attack another fundamental problem of subwave-
length optics of metals: the problem of light transmission,
scattering, and SP excitation for a single slit [see Fig. 1(b)].
This differs substantially from the above periodic problem.
First, we have a continuous angular distribution of scattered
light waves in air. Second, the excited surface plasmons leave
the slit area to decay far from it, causing no interference effects.
Third, a large surface area (larger in size than the plasmon
decay length) must be covered by our considerations.

Complexity of the single-slit problem for real metals is a
serious issue. The spectrum of the eigenvalues includes (in
contrast to the periodic problem) a continuous part, and the
corresponding eigenfunctions do not decay for |x| → ∞, even
in the presence of light absorption.17 This feature ensures the
skin-depth penetration of light into the metal far from the
slit and also the formation of the surface plasmons within
the eigenmode-expansion method. On the other hand, the
piecewise smooth structure of the eigenfunctions inevitably
leads to the singularity of the integral equations for the
eigenmode amplitudes: these equations include the principal
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FIG. 1. (Color online) The periodic (a) and single-slit (b) struc-
tures; l and L are the slit and wall half-width, z0 is the slab thickness,
and εm is the optical permittivity of the metal.

integral value. Being mathematically correct, the singular
integral equations are very difficult for numerical treatments.
Any calculation method must deal, directly or indirectly, with
this issue. In the perfect-metal case, the problem of singular
integral equations is absent.26

Within our eigenmode-expansion method, we resolve the
singularity by analyzing the transition from the periodic to the
single-slit case when increasing the metal-wall width 2L. This
ensures correctness of the calculation procedure and clarifies
the physics of this transition.

Our main findings concern the efficiencies (cross sections)
of the elementary transformation processes (transmission,
reflection, diffraction, and SP excitation) as functions of l/λ

and εm in the subwavelength range. These basic interface
characteristics give a true insight into the physics of metal-
based subwavelength phenomena. The knowledge of these
efficiencies also allows us to calculate easily the transmission
and diffraction properties of a perforated metal slab.3,18 This
reductional approach has certain features in common with the
microscopic theory of subwavelength phenomena.9,27.

Despite a large number of publications on the single-
slit properties,26,28–41 surprisingly little is known about the
elementary transformation processes. Two reasons can be
indicated. First, there is a large variety of subwavelength
phenomena. Second, there is a tendency to unify diverse
physical factors into numerical examples, which typically
cover a small part of the space of variable parameters of the
system. The closest (in the subject matter) theoretical studies
are the investigation of the SP-excitation efficiency in almost
perfect conductors36,37 and the analysis of the transformation
processes in the perfect metal.26

II. BASIC RELATIONS

In accordance with Fig. 1, the normally incident plane wave
is TM polarized, so that the total magnetic field has only the y

component H (x,z) exp(−iωt) + c.c., where ω = 2πc/λ, c is
the speed of light, λ is the wavelength, and c.c. indicates com-
plex conjugation. The light electric field has x and z compo-
nents, which can readily be expressed by the amplitude H

from Maxwell’s equations.

A. Eigenmodes

The central point of our theory is an eigenmode expansion
of H (x,z) in the perforated-metal part. To specify a full set of
eigenfunctions {h(x)}, we search for a solution of Maxwell’s
equations in the form H (x,z) = h(x) exp(iβz), where β is the
propagation constant. The function h(x) obeys the differential

equation (
ε

d

dx

1

ε

d

dx
+ εk2

0

)
h = β2 h, (1)

where ε = ε(x) is εd = 1 and εm ≡ ε′
m + iε′′

m in the dielectric
and metal regions, respectively, and k0 = 2π/λ is the vacuum
wave vector. The case εd �= 1 can, if needed, be reduced to the
case εd = 1 via a scaling procedure.17

Using the conventional boundary conditions for h and
dh/dx at the metal walls, the condition of periodicity for
h(x), and the condition of parity h(x) = h(−x) about a slit
center, which is based on the symmetry grounds, we arrive at
the dispersion relation for the eigenvalue β2 (Ref. 17):

pdεm tan(pdl) + p tan(pL) = 0 , (2)

where p =
√

εmk2
0 − β2 and pd =

√
p2 + (1 − εm) k2

0. This
algebraic equation gives a discrete infinite set of solutions for
β2 and, correspondingly, a double set for β = ±

√
β2. The sign

symmetry is due to the presence of two equivalent propagation
directions ±z. The values of β, whose imaginary part β ′′ is
positive/negative, correspond to solutions for H (x,z) decaying
for z → ±∞.

Alternatively, one can use the quantity p as the eigenvalue
and represent the propagating constant as β(p) = (εmk2

0 −
p2)1/2. This choice of the spectral parameter is convenient
for what follows.

Figure 2(a) gives an example of the spectrum of β =
β ′ + iβ ′′ in the region β ′′ > 0 for a periodic nano-structure.
The chosen value of εm is representative for silver at λ ≈
500 nm.42,43

First, we have a single propagating mode with an almost real
β0, a single evanescent mode with an almost imaginary β1, and
a discrete sequence of the anomalous modes with essentially
complex eigenvalues. Additionally, we have a quasicontinuous
spectrum, i.e., an infinite set of closely situated values of β

with β ′ 	 β ′′ in the region β ′′/k0 >
√|εm| (above the cutoff).

Figure 2(b) shows the corresponding spectrum of p. The
propagating and evanescent modes are characterized here by

FIG. 2. (Color online) The eigenvalues for the periodic problem
with εm = −10 + 0.3i, k0l = 1.4, and L/l = 15 in the β represen-
tation (a) and in the p representation (b). The numbers 0 and 1 refer
to the propagating and evanescent modes. Note the breaks on the
horizontal axes and different axes titles in (a) and (b).
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almost imaginary values p0 and p1, while the quasicontinuous
part of the spectrum consists of almost real roots. Three first
pairs of the anomalous modes are clearly seen as well.

The discrete modes (propagating, evanescent, and anoma-
lous) are greatly related to the single slit; the corresponding
values of β (or p) remain practically unchanged by further
increasing the wall half-width L. At the same time, the values
of β (or p) for these modes essentially depend on the slit
half-width l and also on εm. Let the slit width be decreasing.
Then, the propagating root β0 in Fig. 2(a) moves steadily to
the right, while the evanescent root β1 moves up, approaches
the cutoff, and transforms into an anomalous mode. The
anomalous roots in Figs. 2(a) and 2(b) move up and their
vertical separation is increasing. If the slit width is increasing,
we have a motion of the spectral dots in the opposite direction:
the anomalous modes transform into the evanescent modes,
the evanescent modes transform into the propagating modes,
and the total number of the propagating modes increases. The
dependence of the discrete spectrum on ε′

m is fairly weak.
The second propagating mode appears, e.g., at k0l ≈ π/2. For
ε′′
m → 0, the values of β become purely real and imaginary

for the propagating and evanescent modes, respectively. The
anomalous roots remain complex, but they become strictly
symmetric about the vertical axis in Figs. 2(a) and 2(b).

The quasicontinuous part of the spectrum is fairly simple.
Most of the corresponding dots lie practically on the line
β ′β ′′/k2

0 = ε′′
m/2 with β ′′/k0 > |ε′′

m|, which represents the
continuous spectrum of the single slit (L → ∞). This line
becomes strictly vertical for ε′′

m → 0. The vertical separation
between the dots is π/w ≡ π/(l + L) with a high accuracy.
This separation decreases with increasing L, and we have a
transition to the continuous spectrum. Within the p represen-
tation, the quasicontinuous part of the spectrum follows the
line p′′ = 0, p′ > 0 even in the presence of light absorption.

The eigenfunctions can be found explicitly for our periodic
structure.17 Setting x = 0 at the slit center, we represent an
even eigenmode within a half-period w as

hp =
{

cos(pdx) (0 � x � l),

c cos[p(x − w)] (l � x � w),
(3)

where c = cos(pdl)/ cos(pL). Different eigenfunctions corre-
spond to different values of p. According to Eq. (3), hp(0) = 1;
this normalization is chosen for convenience.

Numbering of the eigenmodes must be fixed. The spectral
parameter p takes values pν with ν = 1, 2, . . . . The numera-
tion order corresponds to a decrease of p′′ (for the propagating
modes) and then to an increase of p′ [see Fig. 2(b)]. We set
also hpν

(x) ≡ hν(x) and βpν
≡ βν .

Using Eq. (1) and the boundary conditions at the metal
walls, it is not difficult to find that the following exact
orthogonality relation takes place for p �= p′:∫ w

−w

hp(x) hp′(x) ε−1(x) dx = 0. (4)

It is valid even for ε′′
m �= 0, does not include the sign of

complex conjugation, and differs from the most well-known
orthogonality relations. It can also be verified directly using
Eqs. (2) and (3).

In the limit L → ∞, we have a transition to the single-slit
case. The quasicontinuous part of the spectrum becomes
continuous with the real spectral parameter p ranging from
0 to ∞; the corresponding eigenfunctions are nonvanishing
for |x| → ∞. The discrete spectrum experiences practically
no changes, and the corresponding eigenfunctions become
localized.

III. TWO BASIC INTERFACE PROBLEMS

The following processes accompany the incidence of the
light wave onto the periodic structure of Fig. 1(a): (i) reflection,
i.e., the formation of a wave with the wave vector −k0; (ii)
transmittance, i.e., the formation of a wave with the wave
vector k0 at the output; (iii) diffraction, i.e., the generation of
waves with the transversal components of the wave vectors
±π/w, ±2π/w, . . . before and after the slab (the number of
these diffraction orders grows with increasing L; for L → ∞,
the angular spectrum is continuous); (iv) SP excitation on the
input and output faces (in the single-slit limit, the plasmons
go the way of the slit to the right and left and decay); and
(v) excitation of the propagating modes in the metal part (for
subwavelength slits, we have only the modes with β = ±β0

propagating in the ±z directions).
Generally, these processes are mutually coupled. However,

in the case of slabs, the thickness of which considerably
exceeds the skin depth k0z0

√|εm| 
 1, the input and output
interfaces are coupled only via a single propagating mode,
and the general slab problem is reduced to the two basic
interface problems depicted in Fig. 3. The first problem (out)
deals with the incidence of a light wave from outside onto the
semi-infinite structure [see Fig. 3(a)]. We are interested here
in characterization of the reflectance, scattering, transmittance,
and SP-excitation properties. The second problem (in) is about
the processes that occur when the propagating mode reaches
the interface from inside [see Fig. 3(b)]. These processes
include the reflection back, the SP excitation, and the excitation
of light waves at the output.

IV. COUPLED-MODE EQUATIONS

In the air region, where z < 0, we use the following exact
Rayleigh expansion for H (x,z):

H< = a+
0 eik0z +

∑
k

a−
k e−iκkz cos(kx), (5)

m m m m

(a) (b)

m m m m

(a) (b)

FIG. 3. (Color online) Two basic interface problems, (a) out and
(b) in. (a) A plane wave, incident normally from outside onto the
periodic structure (a small fragment is shown), reflects back, diffracts,
and transforms into the propagation mode and SPs. (b) A propagating
mode travels to the interface from inside, reflects back, and transforms
into light waves in air and SPs.
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where a+
0 is the amplitude of the incident wave, κk =√

k2
0 − k2, and the transverse wave vector k takes the discrete

values 0, π/w, 2π/w, . . . . The coefficients κk are real for
k � k0 = 2π/λ and imaginary for k > k0. The corresponding
regions of k refer to the propagating and evanescent waves
in air. The amplitude a−

0 characterizes the reflected wave [see
Fig. 3(a)].

In the perforated-metal region, z > 0, and we employ the
eigenmode expansion

H> = b−
0 h0(x) e−iβ0z +

∑
p

b+
p hp(x) eiβpz, (6)

where b−
0 ≡ b−

p0
is the amplitude of the propagating mode

incident onto the interface z = 0 from inside [see Fig. 3(b)],
βp = (εmk2

0 − p2)1/2, and p takes the values pν , with ν =
0,1, . . . in accordance with Eq. (2). All terms under the sum
sign tend to zero for z → ∞.

To consider the basic interface problems, out and in, it
is sufficient to set b−

0 = 0, a+
0 = 1 and a+

0 = 0, b−
0 = 1,

respectively, in the above relations (5) and (6).
Our nearest objective is to obtain closed equations for

the amplitudes a−
k . This can be achieved by a sequence

of simple steps: First, we rewrite the boundary conditions
H1(x,0) = H2(x,0) and H1,z(x,0) = H2,z(x,0)/ε(x) (the sub-
script z indicates the differentiation) in the terms of ak and bp

using Eqs. (5) and (6). Second, we multiply the corresponding
equalities by hp(x)/ε(x) and hp(x), respectively, integrate
them over the half-period w, and obtain, using Eq. (4), two
relations expressing the amplitude b+

p through the set {a−
k }.

Combining these relations, we arrive at the matrix equation∑
k

Tpk a−
k = Ap. (7)

The interaction matrix Tpk and the effective driving force Ap

are given generally by the relations

Tpk = κk hpk + βp (h/ε)pk (8)

and

Ap = 2βp δpp0 (h2/ε)p0 b−
0 + [k0 hp0 − βp (h/ε)p0] a+

0 , (9)

where hpk =〈hpcos(kx)〉, (h/ε)pk =〈hp cos(kx)/ε(x)〉, and
(h2/ε)pk = 〈h2

p cos(kx)/ε(x)〉 are the kth Fourier component
of the periodic functions hp(x), hp(x)/ε(x), and h2

p(x)/ε(x);
the brackets indicate averaging over the period. With the
amplitudes a−

k found, the amplitudes b+
p can be calculated

from

b+
p =−b−

0 δpp0 +
(

a+
0 (h/ε)p0 +

∑
k

a−
k (h/ε)pk

)/
(h2/ε)p0.

(10)

An equivalent way to find the amplitudes ak and bp is to deal
with a matrix equation for bp. This can be done in a similar
manner. The only difference is multiplication of the initial
equations (obtained from the boundary conditions) by cos(kx)
instead of hp(x)/ε(x), and the use of the orthogonality relation
for the cosine functions. The corresponding matrix equation

for b+
p reads as ∑

p

Tpk b+
p = Bk, (11)

where the interaction matrix Tpk is given again by Eq. (8) and
the effective driving force is

Bk = 2k0 a+
0 δk0 + b−

0 [β0 (h/ε)0k − κk h0k]. (12)

With the amplitudes b+
p found, the amplitudes a−

k can be
calculated from

a−
k = −a+

0 δk0 + qk

(
b−

0 h0k +
∑

p

b+
p hpk

)
, (13)

where qk = 1 for k = 0 and 2 for k �= 0.
In what follows, we refer to the above two calculation

schemes, based on Eqs. (7) and (11), as to the a and b

representations. In certain respects, the a representation is
more physical: In the range k < k0 and for k 
 k′

sp > k0, the
amplitudes ak describe the diffraction orders in air and the
surface plasmon, respectively. Within the b representation,
only the amplitude of the propagating mode b+

0 ≡ b+
p0

is
directly linked to the observable characteristics. Getting the
same final results with the a and b representations gives
a strong evidence of correctness of the whole calculation
procedure.

The Fourier components entering the expressions for Tpk ,
Ap, and Bk can be calculated exactly using Eq. (3). The
corresponding expressions include trigonometric functions
that become quickly oscillating with increasing L. This
circumstance seriously complicates numerical calculations.
However, the oscillating dependences on L can be completely
excluded using Eq. (2). The final relation for hpk is

hpk = k cos(pdl) sin(kl) − pd sin(pdl) cos(kl)

w
(
k2 − p2

d

)
+ εmpd sin(pdl) cos(kl) − k cos(pdl) sin(kl)

w (k2 − p2)
. (14)

The first and second terms originate from the integration over
the half-slit and half-wall, respectively. To find the Fourier
component (hp/ε)k , it is sufficient to divide the second term
by εm.

After all, we obtain from Eqs. (8) and (14) the following
explicit expression for the interaction matrix:

Tpk = iQ′
pk

k cos(pdl) sin(kl) − pd sin(pdl) cos(kl)

w
(
k2 − p2

d

)
+ iQpk

εmpd sin(pdl) cos(kl) − k cos(pdl) sin(kl)

w (k2 − p2)
,

(15)

where

Q′
pk = (

k2 − k2
0

)1/2 + (
p2 − εmk2

0

)1/2
,

(16)
Qpk = (

k2 − k2
0

)1/2 + ε−1
m

(
p2 − εmk2

0

)1/2
.

These relations possess important and general features: (a) The
interaction matrix Tpk shows formally a singular behavior for
p → k. This limit is relevant to the single-slit case L = ∞,
where k and p take independently continuous positive values.
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Thus, Eqs. (7) and (11) transform into singular integral
equations (including the principal-value integral) in this case.
Consideration of the periodic case with a large value of
L provides a true regularization of this singularity, and the
denominator w(k2 − p2) does not turn to zero for L → ∞.

(b) The factor Qpk accounts for the resonant SP prop-
erties. Solution of the equation Qkk = 0 gives the SP wave
vector kSP = k′

SP + ik′′
SP = k0

√
εm/(1 + εm). The value 1/k′′

SP
is the SP decay length. For ε′′

m 	 |ε′
m| and |ε′

m| 
 1, we
have k′′

SP 
 k0ε
′′
m/2|ε′

m|2 	 k0. For real values of k, the
function Q−1

kk shows a sharp plasmonic peak at k = k′
SP 


k0
√|ε′

m|/(|ε′
m| − 1). This k peak is also inherent in Q−1

pk for
p ≈ k′

SP. The factor Q′
pk , originating from the slit region,

shows no sharp features.
Note finally two expected features of the transition from

the periodic to the single-slit case: (i) One can expect that the
wall width has to be considerably larger than the SP decay
length in order to proceed to the single-slit case. This gives
the requirement L/λ � |ε′

m|2/ε′′
m, which is fulfilled only for

pretty large values of L. (ii) There is a big difference between
a−

0 and the amplitudes a−
k with k �= 0. For l/L → 0, we have

a−
0 /a+

0 → (
√

εm − 1)/(
√

εm + 1), which corresponds to the
Fresnel reflection from the nonperforated metal. At the same
time, we have a−

k /a+
0 → 0 in this limit. This is why separation

of the large contribution to a−
0 is useful for calculation purposes

within the a representation.
The infinite linear sets of algebraic equations (7) and (11)

have been solved numerically for the basic interface problems
out and in, depicted in Fig. 3, to calculate the observable char-
acteristics, such as the efficiency of transmission, diffraction,
and SP excitation (see Sec. VI). A numerical routine with the
truncation of the sets at nmax = νmax = N has been used. The
truncation number N was chosen big enough to achieve the true
(i.e., saturated in N ) values of the observable characteristics.
We have also made sure that the a and b representations give
the same results. Inclusion of the anomalous modes in the
calculation scheme is, as earlier,18 crucial for the convergence
of the calculation procedure.

Importantly, the achievement of the single-slit limit by
increasing L imposes a harsh restriction on N , especially
for subwavelength slits. If the half-widths of the slit and
wall, l and L, are restricted by the inequalities l � λ/2
and L � |ε′

m|2λ/πε′′
m, then the physical condition kmaxl ≡

πNl/(l + L) 
 π/2 leads us to the inequality

N 
 1

2π

|ε′
m|2
ε′′
m

λ

l
. (17)

This restriction is in agreement with our numerical data.
The maximum truncation number is Nmax = 104 in our
calculations. Correspondingly, we are restricted to not very
small values of l/λ and ε′′

m/|ε′
m|2 (see the following).

V. GENERAL PROPERTIES OF NUMERICAL SOLUTIONS

While the alternative sets of basic equations (7) and (11)
can not be solved analytically, our numerical procedure reveals
simple and general features of the solutions for ak and bp.

For k ≈ k′
SP, i.e., nearby the SP resonance, we have with a

good accuracy a−
k = ck0/Qkk , where c is a complex constant.

FIG. 4. (Color online) The case out: The functions |a−
k | (dots)

and 0.00915 k0/|Qkk| (solid line) for εm = −9.6 + 0.5i, k0l = 0.5,
and L/l = 1700. The arrows indicate the critical value k = k0 and
the SP peak at k = k′

SP. Outside the peak region, the dots are thinned
out.

This fit describes the SP excitation. Moreover, for not too wide
slits k0l � 0.5, the SP fit is valid within a much wider range of
wave vectors k � k′

sp. Variation of the input parameters results
in changing c.

The mentioned features are illustrated by Fig. 4. The dots
show |a−

k | versus k/k0 on a semilogarithmic scale in a range
of small and intermediate arguments, calculated numerically
for the problem out, εm = −9.6 + 0.5i, l = λ/4π , and r =
L/l = 1700 (L/λ 
 135). The chosen parameters correspond
to silver at λ ≈ 500 nm, fairly narrow slits, and very thick
metal walls. The narrow plasmonic peak at k = k′

SP is surely
the dominating feature here. The solid line is the function
|c|k0/|Qkk| with |c| = 0.00915, calculated with the same εm

using Eq. (16). For k < 1.6k0, this line describes perfectly well
the numerical results.

Importantly, the constant c is directly linked to the SP
amplitude ap. Using Eqs. (5) and (16), and the residue theorem,
one can find the following for x > l and ε′′

m/2ε′ 2
m 	 1:

∑
k

k0c

Qkk

cos(kx) 
 wk0c

π

∫ ∞

−∞
Q−1

kk eikx dk = apeikspx (18)

with ap = ik0wc/
√|ε′

m| (1 − |ε′
m|−2).

As soon as the SP fit a−
k = ck0/Qkk is applicable to

the range k < k0, which corresponds to the propagating
waves in air, the diffractive properties are linked to the SP
characteristics. This takes place for k0l � 0.5. For k0l � 1,
when this fit is restricted to k ≈ k′

SP, the link between the
diffraction and SP properties is relaxed.

In any case, the function a−
k Qkk deviates strongly from a

constant for k 
 k0. In particular, the functions |a−
k ||Qkk| and

|a−
k | possess deep minima at the points of minimum of the

driving force Ak ∝ sin(pdl), which corresponds to the in-slit
resonances. The behavior of a−

k in this range is important for
calculation of b+

p0
and for analysis of the light transmittance.

Consider now the x dependence of the magnetic field at
the interface z = 0 using the numerical values of a−

k and
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FIG. 5. (Color online) Calculated dependence |δH (x,0)| (solid
line) and the SP fit |ap| exp(−k′′

SPx) (dashed line) for the SP amplitude
|ap| = 0.4. The inset shows the numerical results (dots) for Im(δH )
and the fit Im[ap exp(ikSPx)] for ap = 0.4 (solid line).

Eq. (5). Specifically, we analyze δH (x) = H (x,0) −
〈H (x,0)〉w by dropping the constant part. The solid line in
Fig. 5 shows the corresponding numerical results for |δH |
within a half-period 0 < x < w, and the dashed is the SP
fit |ap| exp(−k′′

spx) with |ap| = 0.4. The solid line exhibits
very fast oscillations; their amplitude is very small near the
slit and increasing slowly when approaching the wall center.
For x/λ � 8, the dashed line precisely follows the solid line
averaged over the fast oscillations. For x/λ � 0.4, the field
|H | is rapidly increasing when approaching the slit and the SP
fit fails.

This behavior becomes clear when taking into account the
actual characteristic lengths. For the chosen input parameters,
we have k′′

SP 
 2.3/w 	 k0; this means that two plasmons
irradiated in the vicinity of a slit propagate freely and
symmetrically for long distances toward the neighboring slits
and decay strongly, but not completely, after the half-way. This
causes the plasmon interference (a standing wave), which is
the strongest at x 
 w.

The SP fit becomes even more impressive when we consider
separately the real and imaginary parts of δH . This is
exemplified by the inset of Fig. 5, which shows a fragment
of the calculated dependence Im(δH ) together with a fit for
ap = 0.4 exp(iϕ) with the SP phase ϕ = −2.44 rad. The fit
accurately reproduces the fine quasiperiodic structure. The x

dependence of Re(δH ) is fitted simultaneously equally well.
It is worth mentioning that the dependence a−

k ∝ Q−1
kk

includes a square-root-type inflection point at k = k0. This
means that the field H (x,0) possesses a weak power-law
decaying asymptotic wave (Norton wave), which should
become dominating for very large |x|.23–25 We have easily seen
this asymptotic wave, especially for relatively large ε′′

m/|ε′
m|

ratios. However, the powerlike tail and its influence on the
observable characteristics, as seen in the following, were
negligible in our calculations.

The last issue to consider for the periodic case is the
L- dependence of the transmittance T0, defined as the relative
part of the energy transmitted into the propagating mode. This
characteristic has been investigated earlier for subwavelength

FIG. 6. (Color online) The transmittancy T0 versus the wall-to-
slit ratio r = L/l for k0l = 1/2 and εm = −10 + i (gray line). The
dashed line is the dependence 1/r .

gratings 2w < λ.18 For sub-wavelength slits, we have T0 ∝
|b+

0 |2. The amplitude of the propagating mode b+
0 ≡ b+

p0
,

calculated indirectly from Eq. (10), coincides with a high
accuracy with that found directly from Eq. (11); the a and
b representations thus give the same result.

The solid line in Fig. 6 shows T0 versus the ratio r = L/l

for εm = −10 + i and l = λ/4π . Initially we have very strong
oscillations that are accompanied by an average decrease of
T0 approximately as 1/r (see the dashed line). These oscil-
lations are caused by coupling with the SPs and the effects
of SP interference caused by reflections from the corners. For
2k′′

SPL � 1, which corresponds to r � 200, the interference
is substantially suppressed by absorption and the oscillations
become weak. For r � 400, they become very small. At the
same time, the decrease of T0 as 1/r persists. It has a pure
geometrical reason: Only a small fraction of the incident light
(∼ l/w) interacts with the slits, while most of the light is
reflected back. To characterize the light-slit interactions, we
proceed to single-slit characteristics.

VI. SINGLE-SLIT CHARACTERISTICS

Our purpose here is to introduce single-slit characteristics
by transition to large L and to analyze them on the basis
of numerical data. The cases out and in (see Fig. 3) will be
considered separately.

A. Incidence from the outside

In this case, we set b−
0 = 0 and a+

0 = 1, which corresponds
to a unit-amplitude wave incident from the outside. The set (7),
(10) or (11), (13) then allows us to compute the amplitudes
a−

k and b+
p . With these amplitudes known, we calculate

the efficiencies of the actual transformation processes. An
efficiency is defined here as the ratio of the energy coming
to a certain channel to the incident energy for the slit.

Transmission efficiency. As we have seen, the transmittance
T0 for the periodic case tends to zero for L → ∞. To
characterize the slit transmittance, we multiply T0 by the
geometric factor w/l arriving at the efficiency

ηout
t = (r + 1) T0 (19)
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with r = L/l. The saturated value of ηout
t (l,r) with increasing

r then characterizes the single slit. It is expected that the
saturation occurs for k′′

SPL � 1. The product 2l ηout
t gives the

transmission cross section.
Diffraction efficiency. Consider the diffracted (scattered)

wave of the order n propagating at an angle θn =
arcsin(nλ/2w) [see also Fig. 3(a)]. According to Eq. (5),
this wave is characterized by the amplitude a−

n /2 ≡ a−
k /2

with k = πn/w. To introduce the corresponding single-slit
diffraction efficiency, we multiply |a−

k |2/4 by the geometric
factor w/l and by the angular factor cos θn (to pick out the
energy flux coming from a period) and obtain

ηout
d,n = (r + 1) |a−

n |2 cos θn/4. (20)

The total diffraction efficiency ηout
d is given by the sum of ηout

d,n

over all diffraction orders n = ±1,±2, . . . .
For L/λ 
 1, when nmax 
 1, it is useful to employ

the continuous scattering angle θ instead of θn. The total
diffraction efficiency can then be represented as

ηout
d 


∫ π/2

−π/2
ηout

d (θ ) dθ, (21)

where

ηout
d (θ ) = l (r + 1)2 |a−

θ |2 cos2 θ/2λ (22)

is the differential diffraction efficiency. It is even in θ for the
case of normal incidence.

SP-excitation efficiency. Irradiation of surface plasmons
propagating to the left and right occurs in a close vicinity of
the slit. This feature is intuitively clear, and it is consistent with
the results of Sec. V. Therefore, two SPs propagate over long
distances and decay strongly before reaching two neighboring
slits for k′′

SPL � 1. The corresponding contribution to H (x,0)
is ap exp(ikSPx) for l � x � L. Furthermore, the SP magnetic
field HSP(x,z) decays exponentially with increasing |z|. In the
air and metal regions, the rates of decay are k0/

√|ε′
m| − 1

and k0|ε′
m|/√|ε′

m| − 1 for ε′′
m 	 2|ε′

m|2. This allows one to
calculate the dominating x component of the pointing vector
and to integrate it over z resulting in the total SP energy flux
near the slit. Multiplying the flux by a factor of 2 to take into
account two excited plasmons and dividing by the energy flux
incident onto the slit, we obtain

ηout
SP 


√|ε′
m| |ap|2
2k0l

(
1 − 1

|ε′
m|2

)
. (23)

The second contribution in the bracket, originating from the
metal part of the plasmonic energy flux, is typically very
small. Multiplying ηout

SP by 2l, we obtain the SP-excitation
cross section.

Furthermore, we find for k0l � 0.5, using Eqs. (22), (23),
and the equality a−

k = ck0/Qkk , that ηout
d /ηout

SP 
 (
√|ε′

m| −
1)/2; this ratio does not depend on l.

Reflectance change. One more important characteristic is
the reflectance Rout = |a−

0 |2 [see also Fig. 3(a)]. In the limit
l → 0, we have a−

0 = (
√

εm − 1)/(
√

εm + 1) according to the
Fresnel relations. The corresponding reflectance R0 differs
from 1 only because of the dissipative losses (ε′′

m �= 0). For

l/L 	 1, the reflectance Rout must be close to R0 so that the
efficiency

ηout
R = (r + 1) (R0 − Rout) (24)

can be taken as a characteristic of the impact of the slit on the
reflection properties.

Dissipative losses and energy balance. With the above
efficiencies calculated, one can determine how much energy
of the incident wave is transforming into the reflection,
diffraction, transmission, and SPs. Correspondingly, one can
evaluate the impact of the slit on the dissipative losses. The
difference ηout

R − ηout
t − ηout

d − ηout
sp is nothing more than the

energy ratio of the dissipation change for a period to the influx
into the slit. If this difference is relatively small, the decrease
of the reflectance R can be regarded as the consequence of
the nondissipative losses as a result of the excitation of the
propagating mode, diffraction orders, and SPs. The difference
must be zero for ε′′

m → 0, and it is expected to be small for
ε′′
m 	 |ε′

m|.

B. Numerical results

Figure 7 shows the transition to the single-slit case by
increasing the wall half-width L for l = λ/4π and ε′

m = 7.5.
At ε′′

m = 1, it is practically completed for r > 300, i.e., for
k0L > 300 or k′′

spL � 1. At ε′′
m = 0.3, which corresponds to a

SP decay length that is three times longer, this transition takes
much longer (compare the solid and dotted lines for ηout

t ).
At the same time, the single-slit values of ηout

t for ε′′
m = 1

and 0.3 are almost the same. This is the general situation:
for ε′′

m 	 |ε′
m|, the effect of absorption on the single-slit

characteristics is small.
In the single-slit limit, we have roughly ηout

t,d,sp ∼ 1 for
the chosen k0l and ε′

m. The corresponding cross sections are
therefore of the order of the geometrical size 2l. Furthermore,
one can deduce from Fig. 7 that ηout

r 
 ηout
t + ηout

d + ηout
SP in the

single-slit case, i.e., the dissipation rate is not much changed
as a result of these transformation processes.

The solid lines in Fig. 8 show the single-slit efficiencies
versus k0l in the subwavelength range (with a single propa-
gating mode) for different values of ε′

m. Three dotted lines,

FIG. 7. (Color online) Dependence ηout
i (L) with i = t , d , SP, and

R for k0l = 0.5 and ε′
m = −7.5. The solid lines correspond to ε′′

m = 1,
while the dotted line for ηout

t is plotted for ε′′
m = 0.3.
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FIG. 8. (Color online) Efficiencies of the main processes (trans-
mission, diffraction, SP excitation, and reflection) vs k0l for ε′′

m = 1
and different values of ε′

m. Curves 1, 2, 3, and 4 correspond to
ε′

m = −5, −10, −15, and −20, respectively.

given for comparison, show the functions ηout
t,d,R(k0l) in the

perfect-conductor limit.26

Discussion of the presented dependences is given in
Sec. VII. Here we indicate some general features: The
efficiencies ηout

t , ηout
d , and ηout

sp behave substantially differently.
The effect of ε′′

m is noticeable only for ε′
m = −5. There are

similarities and also strong differences between the cases
of real and perfect metals. For real metals, the efficiencies
ηout

t,d,sp tend to zero for k0l → 0, while ηout
R tends to a small

ε′′
m-dependent constant. The presence of peaks of ηout

t,R(k0l) for
very small arguments is highly remarkable. Furthermore, we
have with a good accuracy for |εm| > 4:

ηout
t,max 
 0.28(|εm| − 3), (k0l)

−1
max 
 1.8(|εm| − 3). (25)

Further increase of k0l results in bifurcation changes to
the described behavior. These changes correlate with the
birth of the next propagation modes. Consideration of the
corresponding features is beyond the scope of this paper, which
is restricted to subwavelength slits.

We consider last the angular dependence ηout
d (θ ). The solid

lines in Fig. 9 show this function for |ε′
m| = 10 and for different

values of k0l. The corresponding dotted lines are plotted for
the perfect-metal case. For sufficiently narrow slits k0l � 0.5,
the solid lines are close to those given by cos2(θ )/|Qkk| with
k = k0 cos θ (see Sec. V). Further increase of k0l results in
narrowing of the cental maximum. The value of ηout

d (θ = 0)
grows monotonically with increasing k0l in agreement with
Fig. 8. For any k0l and εm, we have ηout

d (θ ) → 0 for |θ | → π/2,
i.e., the grazing diffraction is absent. This contrasts to the
perfect-metal case.

C. Incidence from the inside

In this case, we set a+
0 = 0 and b−

0 = 1, which correspond
to a unit-amplitude propagating mode traveling to the interface
from the inside [see Fig. 3(b)], and compute again the
amplitudes a−

k and b+
p . The simplest characteristic here is

FIG. 9. (Color online) Differential diffraction efficiency ηout
d (θ )

for εm = −10 + i and for four values of k0l. The dotted lines
correspond to the perfect-metal case.

the internal reflection coefficient Rin = |b+
0 |2. The diffraction

efficiency of the order n is given by

ηin
d,0 = k0|a−

0 |2
β ′

0〈|h0|2/ε′〉 (n = 0),

(26)

ηin
d,n = k0|a−

kn
|2 cos θn

4β ′
0〈|h0|2/ε′〉 (n = ±1,±2, . . .).

This definition accounts for the ratio of the corresponding
energy fluxes and the geometric factor cos θn [compare to
Eq. (20)]. In contrast to the case out, the zero diffraction order
is not dominating here, and there is no need to introduce the
factor r + 1 = w/l.

The sum of ηin
d,n over n gives the total diffraction efficiency

ηin
d . For L/λ 
 1, we employ again the continuous scattering

angle θ and represent it as

ηin
d 


∫ π/2

−π/2
ηin

d (θ ) dθ , (27)

where

ηin
d (θ ) = πw |a−

θ |2 cos2 θ

β ′
0λ

2 〈|h0|2/ε′〉 (28)

is the differential diffraction efficiency.
For the SP-excitation efficiency, we have

ηin
sp =

√|ε′
m| |ap|2

2wβ ′
0 〈|h0|2/ε′〉

(
1 − 1

|ε′
m|2

)
. (29)

As in earlier discussion, the quantities introduced are
generally functions of l and L. Their saturated values with
increasing L give the corresponding single-slit characteristics.

According to our definitions, Rin + ηin
d + ηin

sp = 1 in the
absence of dissipation ε′′

m = 0. For a weak dissipation, ε′′
m 	

|ε′
m|, this sum is expected to be approximately 1.
Figure 10 shows representative dependences of the intro-

duced characteristics on k0l for εm = −10 + i. The sum of
these functions is close to 1. The most important feature here
is the monotonic increase of Rin with decreasing slit width.
Variation of εm does not result in strong changes of Rin(k0l).
The impact of εm on ηin

d,sp(k0l) is similar to that on ηout
d,sp(k0l).
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FIG. 10. (Color online) The efficiencies ηin
d,SP and the reflection

coefficient Rin versus k0l for εm = −10 + i; the dotted line corre-
sponds to the perfect-metal case.

VII. DISCUSSION

A. Methodical advances

Our eigenmode-expansion method reduces (without sim-
plifying assumptions) the initial 2D problem of light transmis-
sion, diffraction, and SP excitation to a 1D interface problem;
the latter is equivalent to the solution of linear algebraic
equations. This reduction relies on the knowledge of the full set
of eigenvalues and eigenfunctions: propagating, evanescent,
and anomalous. Completeness of this set is verified within the
method.

An essential feature of our approach is the consideration
of the single-slit case as the limiting case of a periodic metal-
dielectric structure when increasing the wall width 2L. This
allows one (i) to get a physically correct discrete regularization
of the primary singular integral equations and (ii) to monitor
the transition to the single-slit case. The latter occurs when the
width 2L considerably exceeds the SP decay length LSP.

Explicit dependences on the wall half-width L are excluded
from the initial equations using the exact dispersion relation
for the eigenvalues. Periodicity of the structure manifests itself
only in the positions of the eigenvalues on the complex plane.
This eliminates any sharp dependences when increasing L.
This feature allows us to treat numerically the single-slit case.

A disadvantage of the method is the necessity to deal
with very large values of the wall-to-slit ratio L/l and,
correspondingly, with inversion of high-rank matrices. For
realistic values of εm, the rank of the matrix is ∼104, which
brings us to the limit of the conventional computational
resources.

B. Physical insights

Very little is known about the efficiencies and cross sections
of the elementary single-slit transformation processes in the
subwavelength range for real metals. Only recently, these
efficiencies were systematically investigated for the perfect-
metal case.26 The SP excitation is absent in this case. Earlier,
the SP excitation was analyzed for almost perfect metals.36,37

We consider in the following the status of our findings versus
the known results.

The most striking new result is perhaps the changing
behavior of the transmission efficiency deeply inside the
subwavelength range k0l � |εm|−1: ηout

t possesses here a peak,
the height ηout

t,max of which grows linearly with increasing
|εm| [see Fig. 8(a)]. For |εm| � 16, the peak value ηout

t,max
exceeds 4, i.e., the perfect-metal maximum. Furthermore, the
efficiency ηout

t tends to zero for l → 0 and remains noticeably
smaller than its perfect value for k0l ∼ 1. Transition to the
perfect-metal case with increasing |εm| takes place only for√|εm|k0l 
 1.

The k0l dependence of the total diffraction efficiency is
similar to that in the perfect-metal case in the sense that
ηd (k0l) is a monotonically increasing function [see Fig. 8(b)].
However, there are real-metal specific features: Compared to
the perfect case, the diffraction losses are essentially increased
for k0l � |εm|−1 and decreased for k0l 
 |εm|−1. Within the
whole subwavelength range, these losses significantly grow
with increasing |εm|. It is remarkable that the differential
diffraction efficiency ηout

d (θ ) tends to zero for θ → ±π/2 (see
Fig. 9). This feature, which is absent in the perfect-metal
case,26 can be naturally viewed as capture of the grazing
diffracted waves into the SP mode.

Let us turn to the SP-excitation efficiency ηSP relevant to
real metals. As shown, this characteristic is coupled to the
diffraction efficiency for k0l � 0.5: ηSP 
 2ηd/(

√|εm| − 1).
This feature is in line with Figs. 8(b) and 8(c). For k0l � 1,
the functions ηd (k0l) and ηSP(k0l) are different, i.e, increasing
and decreasing. While ηSP decreases with increasing |εm|, it
remains comparable with ηd within a wide range of parameters.
The maximum value ηmax

SP ≈ 0.62 occurs in the middle of the
subwavelength range 2l/λ ≈ 0.4. The presence of a broad
maximum of ηSP(k0l) in the middle of the range can be linked
to the behavior of ηout

d (θ ) for the perfect metal: The amount
of grazing diffracted waves, to be captured to SPs, is also
maximal here (see the dotted lines at θ 
 ±π/2 in Fig. 9)
because of redistribution of the diffracted energy from large
angles to the central peak with further increasing k0l.

Earlier, the SP-excitation efficiency was analyzed for
almost perfect metals using an approximate model and direct
numerical methods.36,37 This model works well for |εm| 
 10
and k0l � |εm|−1, when ηSP 	 1. Comparison with numerical
data of Ref. 37 is possible for |εm| ≈ 12, and it shows a good
agreement.

The last efficiency to be considered for the case out is ηout
R .

On one hand, it characterizes the decrease of the reflectivity
caused by the slit structure. However, on the other hand, it gives
the total losses by transmission, diffraction, and SP excitation.
The approximate equality ηR 
 ηt + ηd + ηSP would be exact
and represent the energy conservation law for ε′′

m = 0. For
ε′′
m 	 |εm|, it is fulfilled with good accuracy.

One sees from Fig. 8(d) that the total losses in real metals
are noticeably, but not much, smaller compared to those in
the perfect-metal case for k0l � |εm|−1; with increasing |εm|,
they are approaching from below the perfect-metal losses. It is
evident that the SP excitation takes away some of the energy
from the transmission and diffraction channels. In particular,
the shallow minimum of ηt (k0l) in the middle of the interval
is caused by this effect. No SP-assisted funneling of light into
the slit takes place. For k0l � |εm|−1 and sufficiently large
|εm|, the total losses become larger compared to those in
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the perfect-metal case, primarily because of the transmission
enhancement. The peak of ηout

R is thus linked to the peak
of ηout

t .
The case in is similar to the case out in the sense that

ηin
d,SP(k0l,|εm|) ≈ ηout

d,SP(k0l,|εm|) (see also Figs. 8 and 10).
The equality ηin

d (θ ) = ηout
d (θ ), valid for the perfect metal, also

becomes approximate for real metals. The efficiency ηin
SP is

slightly larger than ηout
SP ; this feature can also be extracted from

the numerical data of Ref. 37. The energy conservation law
for the case in, Rin 
 1 − ηin

d − ηin
SP, is also approximate for

ε′′
m �= 0. In accordance with this relation, Rin tends to 1 for

k0l → 0, which is not different from the perfect-metal case.
This feature is important for the Fabry-Perot enhancement of
the light transmission (see also below).

The oscillatory-type transition from the periodic to the
single-slit case, considered in Sec. VI B, possesses an impor-
tant general feature: It is caused by the SP-assisted influence
of neighboring slits. This transition is completed when the
wall half-width L exceeds the decay length LSP 
 |ε′

m|2/k0ε
′′
m;

for real metals, it typically corresponds to very large values
of L/λ. In the perfect-metal case, where the interaction
between neighboring slits is caused by scattering of the grazing
waves, the transition to the single-slit case is essentially
different.

C. Interpretation of the transmission-efficiency peak

Let us set ε′′
m = 0 and represent the transmission efficiency

as ηout
t = (β0w〈h2

0/ε〉/2k0l)|b+
0 |2, where the product w〈h2

0/ε〉
does not depend on w for w 
 |εm|l. The first factor merely
expresses the properties of the propagating mode for the
single slit. It tends to infinity as 1/l for l → 0 (because
β0 ∝ 1/l) and affects the right wing of the peak of ηout

t (k0l)
[see Fig. 8(a)]. The abrupt left wing is determined by the
l dependence of the amplitude b+

0 ≡ 〈Hh0/ε〉/〈h2
0/ε〉. The

magnetic-field distribution H (x,0) is thus the main issue.
The function H (x,0) must be continuous at x = ±l and

tending to H0 = 2
√|εm|/(

√|εm| − i) 
 2 far from the slit,
as prescribed by Fresnel’s relations. The difference δH (x) =
H (x,0) − H0 must therefore tend to 0 for l → 0. This is valid
for both perfect and real metals.

By setting H (x,0) = H0, one can make sure that b+
0 ∝ l2

and ηout
t ∝ l3 for l → 0. This result comes from the property of

the eigenfunction h0: 〈h0/ε〉 ∝ l3 for l → 0, i.e., from a strong
cancellation of the contributions to 〈h0/ε〉 from the metal and
air parts of the slit. Qualitatively, it gives the necessary peak
dependence of ηout

t (k0l) for |εm|k0l � 1.
Unfortunately, neglect of the small correction δH can

not be justified. Moreover, taking δH into account, one is
able to modify the law of vanishing of ηout

t for k0l → 0.
The point is that the well-known corner singularities of the
electric field15,44,45 strongly affect the behavior of δH (x):
this function possesses inflection points ±l with infinite
derivatives. Cancellation of the contributions to 〈δHh0/ε〉
from the metal and air parts cannot be strong.

We suppose a strong involvement of the corner singularities
in the behavior of ηout

t for k0l � |εm|−1. Apart from these
general arguments, proportionality of ηout

t,max and 1/(k0l)max

to |ε′
m| − 3 points to this origin; the 90◦ corner singular-

ities become increasingly pronounced (nonintegrable) for

εm → − 3.45–47 The exact law of vanishing of ηout
t for k0l → 0

remains unknown.

D. Impact on slab-transmission

A thorough analysis of the transmission-scattering prop-
erties of a single subwavelength slit in a metallic film and a
comparison with a few relevant experiments go beyond the
scope of this paper. We are confident, however, that our results
provide a firm basis for such an analysis. Furthermore, they
already allow us to understand the many expected observable
properties.

If the film thickness z0 considerably exceeds the decay
length of the propagating mode β ′′

0 z0 � 1, the multiple
reflections for the propagating mode are negligible, and the
observable properties can be easily described in terms of
the calculated efficiencies. In particular, the reflected and
diffracted signals are described by the cross sections 2lηout

r and
2lηout

d (θ ), while the transmitted signal is given approximately
by the product 2lηout

t (1 − Rin) exp(−2β ′′
0 z0).

If the propagating losses are weak, β ′′
0 z0 	 1, and the film

thickness is much larger than the skin depth k0z0 |εm|1/2 
 1,
the multiple reflections and the Fabry-Perot resonances
strongly affect the observable properties. Expressions for the
slab transmittance in this case are known.3,18,28 The resonant
transmittance is expressed by the above interface characteris-
tics, while the positions of the Fabry-Perot resonances depend
additionally on the phase change during an internal reflection.
Large values of ηout

t and Rin (see Figs. 8 and 10) facilitate the
the slab transmittance for sufficiently narrow slits.

VIII. CONCLUSIONS

For single subwavelength slits 2l � λ, efficiencies of
the main interface transformation processes (transmission,
diffraction, SP excitation, and reflection) are calculated for
real metals as functions of k0l and |εm| and compared with the
relevant single-slit characteristics of the perfect metal.

For very narrow slits k0l � 1/|εm|, these fundamental
characteristics show a special behavior, which is absent in the
perfect-metal case. In particular, the transmission efficiency ηt

shows here a pronounced peak with an amplitude that grows
with increasing |εm| and exceeds the maximum perfect-metal
value of 4. This peculiarity is interpreted in terms of the funda-
mental eigenmode characteristics. For modest subwavelength
slits π � k0l 
 1/

√|εm|, the transformation efficiencies show
strong |εm| dependences with a slow transition to the perfect-
metal case.

For k0l � 0.5, the total diffraction efficiency ηd and
SP-excitation efficiency ηSP are linked with each other;
opening of the SP-excitation channel in real metals results in a
redistribution of the scattering losses between diffraction and
SP excitation. This feature correlates with the intrinsic property
of the differential diffraction efficiency ηd (θ ) in real metals: it
vanishes for |θ | → π/2, which corresponds to capture of the
grazing diffracted waves into the localized SP mode.

In real and perfect metals, the internal-reflection coefficient
Rin for the fundamental mode approaches 1 for k0l → 0.
This feature strongly facilitates the slab transmittance via the
familiar Fabry-Perot resonances.
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Methodically, an advanced version of the eigenmode
method of Ref. 18 has been used. It allows us to treat
the single-slit case as the limit of the periodic-array case
with increasing wall width. Correspondingly, we avoid any
mathematical assumptions on the regularization of the primary
singular single-slit integral equation; at every instant, we are
dealing with a genuine physical problem. Furthermore, this
scheme allows us to determine the separation between the

neighboring slits, which is necessary to realize the single-slit
limit.
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