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Counting statistics in nanoscale junctions
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We present first-principles calculations for moments of the current up to the third order in atomic-scale
junctions. The quantum correlations of the current are calculated using the current operator in terms of the wave
functions obtained self-consistently within the static density-functional theory. We investigate the relationships
of the conductance, the second, and the third moment of the current for carbon atom chains of various lengths
bridging two metal electrodes in the linear and nonlinear regimes. The conductance, the second-, and the
third-order Fano factors exhibit odd-even oscillation with the number of carbon atoms due to the full and half
filled 7r* orbital near the Fermi levels. The third-order Fano factor and the conductance are positively correlated.
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I. INTRODUCTION

The field of nanoscale electronics has generated a tremen-
dous wave of scientific interest in the past decade due to
prospects of device-size reduction offered by atomic-level
control of certain physical properties.! The field has also
spurred great interest in the fundamental understanding of
quantum transport.> One of the fundamental questions in
quantum transport relates to moments of the current. For
instance, the second moment—shot noise—defines the quan-
tum fluctuations of the current at zero temperature due to
the quantization of charge. Shot noise can be expressed as
Sy Zn T, (1 — T,) in terms of the transmission probabilities
of each eigenchannel 7,,.> Shot noise reaches the classical
limit 2el, where e is the electron charge and [ is the average
current, when electrons in a conductor drift in a completely
uncorrelated way, as described by a Poissonian distribution of
current events.*

Studying steady-state current fluctuations can provide
fundamental insight into the nature of electron transport,
including the role of the Pauli exclusion principle and the statis-
tics of quantized charge. Unlike the temperature-dependent
thermal noise (Johnson-Nyquist noise), shot noise depends on
properties of the underlying transport process. In a mesoscopic
system, the size of the junction is larger than the dephasing
length, thus electrons relevant in transport can lose coherence
in phase via multiple scattering. In this case, the current
operator is typically expressed in terms of the scattering
matrix, where the transverse quantum channels are restored via
adiabatic constriction.? Interference effects between channels
are typically small and negligible.> However, the transport
mechanism in atomic-scale junctions is different from that in
amesoscopic system. The atomic junctions are small, such that
electron tunneling in the junction is coherent. Consequently,
the current operator of atomic junctions can be expressed
in terms of wave functions. The wave nature of the current
operator in terms of wave functions may lead to interference in
the quantum correlation of currents. This motivates exploration
of the quantum interference effects on moments of the current
due to the wave nature of the current operator in atomic
junctions. This paper shows that wave functions with different
K channels are correlated with one another in the calculations
of shot noise and the third moment of the current.
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Shot noise in atomic and molecular junctions has been
addressed via experiments,®° model calculations,'®!'? and
first-principles calculations.'>~'® Shot noise depends on de-
tailed electronic distributions, thus it provides a sensitive tool
for probing nanojunctions, where detailed electronic structures
can be affected by the exact arrangement of individual atoms.'*
Shot noise may provide a nondestructive way to explore the
local temperatures of nanostructures caused by the coupling of
propagating electrons and ionic vibrations.'> In fact, it has been
employed in recent experiments to characterize the signature
of molecular or atomic junctions.®7!718

No studies are known to have considered higher moments
of the current in atomic-scale systems while accounting for the
effect of detailed electronic structures from first principles. To
address this issue, we develop a theoretical approach starting
from the current operator in terms of wave functions calculated
self-consistently in the framework of static density-functional
theory (DFT). It allows us to compute quantum correlations
of the steady-state current relevant to the interference of the
current operator in terms of wave functions up to the third
moment. The higher moments of the current, although more
difficult to measure and calculate, provide deeper insight into
the interference effect due to the wave nature of the current
operator in atomic-scale junctions. These are more elaborate
tools for exploring higher-order quantum correlations of
quantized electrons. The third moment of the current describes
the correlation of third-order current fluctuations in the time
domain. Due to the complex mixing of the product of wave
functions with different transverse momenta K channels, the
third moment of the current may render additional information
on the quantum interference effects. Measurement of the third-
order current correlators requires three detectors to distinguish
the signal locally and avoid the back action of nanojunctions.

In atomic and molecular junctions, moments of the current
are closely related to the detailed electronic structures. First-
principles calculations provide information regarding the
connection between the detailed electronic structures and
moments of the current with no adjustable parameters that
go beyond what the model calculations can provide. This
point is demonstrated through a prototypical nanojunction
consisting of an atomic chain with different numbers of
carbon atoms connecting two metal electrodes [Fig. 1(a)].
The first (current), the second (shot noise, S,), and the third
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FIG. 1. (Color online) (a) Schematic of the four-carbon atomic
junction. (b) The spacial distribution of partial charge density for
electrons with energies near the Fermi levels shows m*-orbital
characters at Vg = 0.01 V. Vertical black lines correspond to the
edges of the jellium model and circles correspond to atomic position.

moment (S3) of the current are investigated. The carbon
atom chain is not merely an academic example because
carbon is a versatile element capable of forming diverse
structures, including diamond, graphite, fullerenes, nanotubes,
and graphene. Recently, experiments have demonstrated the
possibility of forming carbon atomic chains from graphite
using transmission electron microscopy.'® In this regard, they
are among the few model systems in which theory and
experiments can be reasonably compared. Carbon atom chains
have regularly patterned electronic structures as a function of
the number of carbon atoms.? Patterned electronic structures
serve as ideal test beds for studying relationships among
moments of the current, which are sensitively related to the
detailed electronic structures of nanojunctions.

II. THEORETICAL METHODS

First-principles calculations are performed for the atomic
chains with different numbers of carbon atoms connecting
to two semi-infinite metal electrodes in the framework of
density-functional theory. The full Hamiltonian of the system
is H = Hy+ V, where H, is the Hamiltonian due to the
bare electrodes modeled as electron jellium separated by a
distance and V is the scattering potential of the nanostructured
object bridging the semi-infinite electrodes with a planar
surface.

Wave functions of the unperturbed Hamiltonian due to the
bimetallic junction with an applied bias [Vg = (ug — 111)/e,
where gy is the chemical potential deep in the left (right)
electrode] are computed. The unperturbed wave functions have
the form W ® (1) = 27) 1R . 4 0 (7), where ut'¥(2) is
the wave function of the bare electrodes along the z direction
before inclusion of the nanostructured object. The equation
ué(lg)(z) is calculated by solving the coupled Shrodinger
and Poisson equations iteratively until self-consistency is
reached. Deep inside the electrodes (z — +00), the right-
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and left-moving waves satisfy the scattering boundary
conditions,

, o efLz 4 Rre ki, 7 < —o0
elE) = \/% | 1, >0
and

. — Tpe—ikiz, 7 < —00

where K is the electron momentum in the plane parallel

to the electrode surfaces, and z is the coordinate parallel

to the direction of the current. The condition of energy
w2k

. . n’k% K2
conservation gives — & =F — S~ — Vere(00) and Sk =

E — 7’;122 — Vefr(—00), Where veg(z) is the effective potential
comprising the electrostatic potential and exchange correlation
energy. Note that vg(F00) are the bottom of the conduction
band deep inside the right and left electrodes.

Inclusion of the nanostructured object is considered in the
scattering approach. The wave functions of the total system
(bimetallic junction 4+ atom or molecule) are calculated by
solving the Lippmann-Schwinger equation iteratively until
self-consistency is reached,

i () = Wi o)
+/d31‘1 /d3I‘2G%(I‘,I‘1)V(l‘1,Fz)‘l’é;f)(l"z),

3
L(R)

where W, "(r) stands for the effective single-particle wave
functions of the entire system, corresponding to propagating
electrons incident from the left (right) electrode. The quantity
GY is the Green’s function for the bimetallic junction. The
potential V(ry,r;) that electrons experience when they scatter
through the nanojunction is

V(ry,rp) = Vys(ry,r) + { (Vie [0 (r))] = Vie [0 (rp)])

+ f drzk”)'}sm — ), @)

Iry —r3

where V,,(r;,ry) is the electron-ion interaction potential,zl
no (r) is the electron density for the pair of biased bare
electrodes, n (r) is the electron density for the total system,
and 6n (r) is their difference. The quantity G% is the Green’s
function for the bimetallic junction, V., [ (r)] is the exchange-
correlation potential calculated at the level of local-density
approximation. We note that the external bias [V = (ug —
nr)/e] is considered in the bimetallic junction with different
chemical potential deep in the electrodes. When a molecule
is included in the junction, the Lippmann-Schwinger equation
is applied to calculate wave functions of the entire system
(electrodes + molecule) until self-consistency is achieved.
Thus the high-bias case is considered and calculated on the
same footing as the zero-bias case using the Lippmann-
Schwinger equation.

Chemical potentials deep in the electrodes are maintained
by the external bias. The electrode-molecule-electrode system
is considered as a unified coherent quantum system. The group
of atoms introduced between the electrodes are enclosed in
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a box that includes part of the electrodes. The simulation
box is sufficiently large that the charge density outside the
box is unperturbed by the introduction of a group of atoms.
Bases of 2300-3500 plane waves have been chosen for
different lengths of carbon atom chains in this study. Localized
states are solved by directly diagonalizing the Hamiltonian.
More detailed descriptions of the theory can be found
in Refs. 22 and 23.

The quantum transport theory based on the combination of
DFT and the Lippmann-Schwinger equation in the scattering
approach is equivalent to the theory based on a combination of
DFT and the nonequilibrium Green’s function.?* For weakly
coupled systems such as a molecule weakly adsorbed to
electrodes, self-interaction errors may be significant. More
elaborate consideration of exchange-correlation energy is an
important ingredient in providing accurate quantitative de-
scriptions in molecular transport calculations.? The correction
to the exchange-correlation kernel due to the Vignale-Kohn
approximation in time-dependent current-density-functional
theory (TDCDET) is also important in the weakly adsorbed
case.”® The viscous nature of the electron liquid is more
important for the molecular junction than for the quantum
point contacts.?” The reason for this is that the correction due to
the dynamical corrections depends nonlinearly on the gradient
of the electron density. For strongly coupled systems, such
as monatomic chains described in this study, the exchange
correlation in local-density approximation, which neglects
the dynamical corrections, is remarkably successful when
compared to the experiments.

A. Second moment of the current shot noise

We define a field operator describing propagating electrons
incident from the left and right electrodes in terms of lI/L(R) (r)
with energy E and K as the eigenstate. The component of
momenta K parallel to the electrode surface serves as the
quantum channels. The field operator is

b= )" af () Wik (), (5)
o, E.K
R) L(R)
where o = L or R, aEK (1) = exp(—lwt)aE ,and agg’ is

the annihilation operators of electrons incident from the left
(right) reservoir, satisfying the anticommutation relations,

{08k, aih ) = Supd (E1 — E2) 5K, —K2),  (6)

where B = L or R.
The expectation value of the product of electron creation
and annihilation operator at thermal equilibrium is given by

—E)K - Ky fg, (D

where the statistics of electrons coming from the left (right)
electrodes are determined by the equilibrium Fermi-Dirac dis-
tribution function £ = 1/{1 + expl(E — jurr)/(ksT)1}
in the left (right) reservoir.

We introduce the current operator with the field operator in
terms of wave functions,

(Cl%TK]aEz[Q)'B = 50[,33 (El

I(z,t) = %/drj_/dKI/dKz[\IﬁV\IJ —vihg], (8)
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where W is the field operator described in Eq. (5).
Equation (8) can be expressed alternatively as

fen=2" ZZ/er_/dKI/dKZ

ElEz Olﬂ

i(E\—E))t/h ot B
x e ap ¢ ag g, 1 E1K1 @, )

where IE]K] 5k, O=YE g )*V‘l’gsz V(Vg g )"V E2K2
The average of the current at zero temperature is given by

Err
() = / dE / dr, f dKIFE (0),  (10)
Err

where Eq. (7) is applied to calculate the expectation of Eq. (9).
Equation (10) is exactly the same as the current described
by the first quantization. Note that ({(z)) is independent of z
for a steady-state current. The averaged current also lacks the
overlap integral of wave functions with different transverse
momenta K.

The shot-noise spectral function is defined as

So(w, T 21,22)

= 2nh/d(t1 — 1) e T (Af(z1,0) Al (z2,12)), (11)

where AL(t) = [(r) — (). Carrying out the average of au-
tocorrelation of the current operators requires the quantum

statistical expectation value of the products of a, E ap.a Eta§34
For a Fermi electron gas at equilibrium, the quantum statistical

expectation values of products of four operators are given by

it J kt 1
(aEl K, aEszaE3K3QE4K4>

= <ag] K aEsz) <a]gr3K3 alE4K4> <all‘;r1 K, 61241(4) (a]EvK7a?:Kz>

12)

Applying Eq. (12) to Eq. (11), the shot-noise spectral function
is given by

S(@,T;21,22)
eh 2 B
= 27th <—) > / dEfg (1= 1)
ML) o B=L.R
X /dl’]J_/dl‘gJ_/dKl[dKzigithl’EKz(rl)
X ig;,E-mwKz(rZ)» (13)
where iZf—thI,EKz(r) [Ig; E+nok, I

Shot noise is the quantum fluctuation of current autocorre-
lation at zero temperature due to the charge quantization. For a
dc steady current, the shot noise is given by the noise spectral
functionatw =0and T = 0K [i.e., S5 = S2(w = 0,T = 0)],
which gives

EFg
Sz(Z],Zz) —27171( ) / dE/dl’u_/dl‘gJ_/dKl
ErL

x /dKzfgéhEKZ(rl)féﬁ%EKl (r2). (14)
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Equation (14) leads to the relationship SXF = Sif =
—SiR = —SRL where SRR = S,(z1 — 00,20 > 00), S5t =
S2(z1 &> —00,20 &> —00), SZLR = S(z1 &> —00,20 > ),
and SRL = $5(z; — 00,22 — —00), all of which are conse-
quences of current conservation.

B. Third moment of the current

Unlike the formalism developed in Ref. 3, which has in-out
ordering, the current operator defined in Eq. (5) describes a
steady-state current in which time ordering is not involved.

3 pErg
S3(w,0';21,22,22) = (2h)? (
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Therefore the third moment of the current is defined in the
time-unordered way (this does not affect the second moment,
however, it is important for the third and higher moments),

S3(w,0';21,22,23)
= / d(t; — 13) / d(ty — ty)e' 1=l (1)

x (A T(z1,0) Al (22,0) Al (23,13)), (15)

where AL (1) = I(t) — (I).
The spectral function of the third moment is given by

dE dl‘u_/dl’zlfdl'u_/dl(l/dKz/dK3
ErL

X Z [f (1 fE-H‘w)(l fE+hw+ha;) ]EKI(E+hw)K2(rl)I(E+hw)K2(E+ha)+hw)K3(r2) (E+hw+hw/)K3EK1(r3)

«p.y=L.R

_fgfg—hw(l

ay 7Ba FvB
- fE+hw) TeR Bk, OBk, EK T2 L (E 4 o)k (E—narK, (r3)]v (16)

where the quantum statistic expectation value of (Al(z1,t1) AL (z2,1) A (z3,13)) is evaluated using the Wick—Bloch—De Dominicis
theorem,?®

N a R 0, for n = odd,
<AnAn—l A)l = n—1 —m—1, 2 & ~ N a N (17)
Zn’[:l 77" " <AnA>m(An71 o Am+1Am—1 e A>1» for n = even,
where A; denotes either creation or annihilation operators and n = —1(1) for fermions (bosons). Similarly, the third

moment of the steady-state current at zero temperature and zero frequency [defined as S3 = S3(w = 0,0’ = 0,T = 0)] is

given by

h Err
Sy(z1,72.22) = (22 (,%) / dE f dris / drs. / drs. f dK, / dK, / dK,
Erp

[IEK EKz(rl)IEKzEKg (I'Z)IEK3EK (r3) —

We note that alternative definitions of the Fourier transform,
e.g., the integrals with respect to (t; — ;) and (, — #3) in
Eq. (15), will lead to different parametrizations of frequencies
w and @' in the spectral function [Eq. (16)]. However, for
the steady-state current where w = o’ = 0, the third moment
at zero temperature and zero frequency is independent of the
choices of the Fourier transform. Similar to the relationship
SRR = SEL = IR — _SRL for shot noise, the third mo-
ment of the current [Eq. (18)] leads to

S3R(R,L)R _ S3L(R,L)L _ _S3L(R,L)R _

—SRRDE T (19)

all of which are consequences of current conservation.

III. RESULTS AND DISCUSSION

Finding moments of the current requires the quantum
statistical expectation values of the products of operators
that create and annihilate electrons related to the statistics
of quantized charge, as described in Egs. (12) and (17). The
spectral functions of moments of the current [Eqgs. (13) and
(16)] are simplified to Eqgs. (14) and (18) in the limit of zero
frequency and zero temperature due to the Pauli-exclusion
principle, which is related to the factor f5 (1 — f, 5 ).

EKIEKg(rl)IEKzEKI(r2)IEKwEK2(r3)] (18)

As shown in Eq. (10), the expectation value of the current
does not involve the spatial integral of the product of wave
functions labeled with different transverse momenta K. This is
in contrast to shot noise [Eq. (14)] and the third moment of the
current [Eq. (18)], in which the integrals over space mix up the
products of wave functions labeled with different transverse
momenta K. Thus interference between wave functions with
different momenta K is relevant in the second and third
moments of the current.

To illustrate the role of interference effects among the
transverse channels K, we tentatively assume that the
wave functions could be decomposed into the product
of the transverse and longitudinal components, W% ¢ (r) =
Xk (r1) u%g(z), where xx (r ) is the transverse wave function
satisfying the following orthonormal conditions:

/erXIZ (ry) xx, (ry) =5 (K; — Ky), (20)

and u%(z) presents the wave function along the z direction
satisfying the boundary conditions given by Egs. (1) and (2).
If the wave functions are plugged into Egs. (10) and (14), the
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FIG. 2. (Color online) The density of states in the continuum
region for N-atom carbon chains sandwiched between two metal
electrodes at Vg = 0.01 V. Zero energy corresponds to the left Fermi
level.

Fano factor [defined as >, = S>/(2el)] is given by
_ Jet dE [ dKITKRRK)P

LT E R [dK|TR(K))?

ErL

21

where the transmission (reflection) probability (denoted as Tk
and Ryg) is related to the transmission (reflection) coefficient
[denoted as T (xy(K) and Ry (z)(K)] by Tx = |T.(K)|* , R =
IRRK)? =1 — Tk. Consequently, the shot noise essentially
restores the Biittiker-type formula,

Fy =) Tk(l—Tx) / > Tk (22)
K K

In a single-channel tunnel junction with transmission prob-
ability T (where the transverse momentum K is vanishing),
moments of the current can be computed by plugging Eqgs. (1)
and (2) into Egs. (10), (14), and (18), respectively. It follows
that the first, second, and third moment of current are given by
I xT,S «T(1—T), and S3 o« —2T%(1 — T), respectively.
The result of the time-unordered third moment is consistent
with the results of time-unordered three-current correlations
derived by other groups.?®3° We further define the second-
and third-order Fano factors (which are dimensionless) in the
small bias regime for steady-state currents as F, = S,/(2el)
and F3 = S3/[(2e)*1], respectively. For the single-channel
junction, G xT, F,x(1—-T), and F;3 x —2T(1 —T),
respectively.

These discussions assume that wave functions are variables
separable into the product of components with longitudinal
and transverse degrees of freedom. However, the validity of
this assumption may be questioned in atomic- or molecular-
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FIG. 3. (Color online) Conductance [(black) square, top panel],
the second-order Fano factor [(red) circle, middle panel], and the
third-order Fano factor [(green) triangle, bottom panel] of the atomic
wires as functions of the number of carbon atoms in the wire at
Ve =0.01 V.

scale junctions where an abrupt constriction is formed in
a nanostructure immediately adjacent to two semi-infinite
electrodes with a planar surface. Due to the lack of proper
waveguides, the quantization of transverse channels may not be
restored in the lead. Consequently, decomposition of the wave
function into the product of components with longitudinal
and transverse degrees of freedom may not be possible.
Moreover, moments of the current are sensitive to the detailed
electronic structures in atomic or molecular junctions, making
it important to develop formalisms for moments of the current
based on the current operator in terms of wave functions.
First-principles calculations are therefore performed in the
framework of DFT to calculate the current, shot noise, and
third moment of the current using Egs. (10), (14), and (18),
respectively. This allows us to investigate the correlation of
moments of the current up to the third order at the atomic level
using first-principles approaches.
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FIG. 4. (Color online) (a) For four-carbon atom wire and (b) for
five-carbon atom wire: the differential conductance [(black) square,
top panel], the second-order differential Fano factor [(red) circle,
bottom panel], and the three-order differential Fano factor [(blue)
triangle, bottom panel] vs bias.
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FIG. 5. (Color online) The density of states for various source-
drain biases for the (a) C4 atom chain and (b) C5 atom chain for
Vg =0.1,0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 V. The left Fermi
level Er; (red-dashed lines) is set to be the zero of energy. The right
Fermi level E g (blue-dotted line) defines Vg = (Erg — Err)/e.

As an example, the counting statistics is investigated in
linear atomic chains formed by four to ten carbon atoms
(denoted as C4 to C10) bridging two metal electrodes mod-
eled as electron jellium (r; = 2). The distance between two
neighboring carbon atoms is 2.5 a.u., and the end atoms of the
chain are fixed at 1.4 a.u. inside the positive background edge
of the electron jellium, as shown in Fig. 1(a). The continuum
states near the chemical potential show 7 *-orbital characters
that are twofold degenerate such that each can hold four
electrons, as shown in Fig. 1(b). As found in Ref. 20, when the
number of carbon atoms is increased by one, the additional
carbon atom provides two valence electrons in the con-
tinuum states and two valence electrons localized at the atom,
as shown in Fig. 2. Consequently, the odd-numbered chains
have higher conductance due to the half filled 7 * orbital while
even-numbered chains have lower conductance due to a full
* orbital at the Fermi levels, as shown in the upper panel
of Fig. 3. The middle and lower panels of Fig. 3 show the
influence of the number of carbon atoms on the second-order
F, and the third-order Fano factor Fj3, respectively, in the
linear-response regime (Vg = 0.01 V). Both F, and | F3| have
smaller values for odd-numbered carbon atom chains and
larger values for even-numbered atom chains. The 7* orbital
causes the oscillation of moments of the current as a function
of the number of carbon atoms.

To better understand the relationship among moments of
counting statistics in the carbon atom chains, we investi-
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gated the differential conductance (defined as G = d1/9V),
the differential second-order Fano factor [defined as F, =
(1/2€)3S,/01], and the differential third-order Fano fac-
tor [defined as F3 = (1/2¢)*3S3/31] for the C4 and CS
wires (the representative even- and odd-numbered chains) in
the nonlinear-response regime. The differential conductance
of the C4 chain increases as the applied bias increases, while
the differential conductance of the C5 chain decreases as
the applied bias increases, as shown in the top panels of
Figs. 4(a) and 4(b), respectively. The increase (decrease)
of differential conductance with the biases for the C4 (C5)
chain is due to the half filled (full) 7* orbital at the Fermi
level, where more (less) states are included in the current-
carrying energy window created by increasing biases, as
shown in Figs. 5(a) and 5(b). The bottom panels of Figs. 4(a)
and 4(b) show that conductance and F; are strongly
positively correlated, inferring that the dominant eigenchan-
nels for counting statistics have transmission probabilities
T >0.5.

IV. CONCLUSIONS

Higher moments of the current provide deeper insight
into the quantum statistics of charge dynamics, making them
more refined tools to characterize the signature of molecules
in junctions. Moments of the current in the atomic system
are characterized by the wave nature of the current operator
in terms of wave functions. The size of nanojunctions are
typically smaller than the dephasing length, thus the current
operator in this study is expressed in terms of the wave func-
tions. This could lead to interference due to the wave nature
of the current operator, which is different from mesoscopic
junctions, in which the scattering electrons are incoherent and
where the current operator is typically expressed in terms of
the scattering matrix.

To illustrate the role of interference effect among wave
functions labeled with different transverse momenta K, a
theory is developed to calculate the moments of the current
until the third order, based on the current operator in terms
of wave functions, which are calculated self-consistently in
the framework of DFT. We observe that the first moment
(current) does not involve the spatial integral of the product of
wave functions labeled with different transverse momenta K.
This is in sharp contrast to the second and third moments
of the current, where the integrals over space mix up the
product of wave functions labeled with different transverse
momenta K.

The relationships of the conductance, the second, and the
third moment of the current are investigated for carbon atom
chains of various lengths bridging two metal electrodes in
the linear and nonlinear regimes. Moments of the current
are shown to be sensitively related to the detailed electronic
structures in the atomic and molecular junctions. The carbon
atom chains have regularly patterned electronic structures as a
function of the number of carbon atoms. Patterned electronic
structures serve as ideal test beds in studying the relationship
among moments of the current. The carbon monatomic junc-
tions serve as well-defined systems suitable for studying how
moments of the current are related to the detailed electronic
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structures of nanojunctions. In the linear-response regime,
conductance, second, and third moments show odd-even
oscillations with the number of carbon atoms, mainly due to the
orderly patterned electronic structures of carbon atom chains.
In the nonlinear regime, conductance increases (decreases)
as bias increases in even- (odd-) numbered carbon atom
chains. The F3 and differential conductances are significantly
positively correlated.

Electron-vibration interactions are known to create small
structures on the shot-noise profile when the bias is large,
giving rise to electrons that have sufficient energy to
excite molecular vibration. Similar effects on the third

PHYSICAL REVIEW B 83, 035401 (2011)

moment of the current are to be investigated in the
future.
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