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Spectroscopy of electron flows with single- and two-particle emitters
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To analyze the state of injected carrier streams of different electron sources, we propose to use correlation
measurements at a quantum point contact with the different sources connected via chiral edge states to the
two inputs. In particular, we consider the case of an on-demand single-electron emitter correlated with the
carriers incident from a biased normal reservoir, a contact subject to an alternating voltage, and a stochastic
single-electron emitter. The correlation can be viewed as a spectroscopic tool to compare the states of injected
particles of different sources. If at the quantum point contact the amplitude profiles of electrons overlap, the noise
correlation is suppressed. In the absence of an overlap, the noise is roughly the sum of the noise powers generated
by the electron streams in each input. We show that the electron state emitted from a (dc- or ac-) biased metallic
contact is different from a Lorentzian amplitude electron state emitted by the single-electron emitter (a quantum
capacitor driven with slow harmonic potential), because with these inputs the noise correlation is not suppressed.
In contrast, if quantized voltage pulses are applied to a metallic contact instead of a dc (ac) bias, then the noise
can be suppressed. We find a noise suppression for multielectron pulses and for the case of stochastic electron
emitters for which the appearance of an electron at the quantum point contact is probabilistic.
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I. INTRODUCTION

The experimental realization1 of an on-demand, high-
frequency, single-electron source (SES) makes it possible
to inject single particles, electrons, and holes into a solid-
state circuit, in a controllable way. By using several un-
correlated SESs, mesoscopic circuits were proposed that
permit variations in the amount of fermionic correlations2

and production of controllable orbitally entangled pairs of
particles.3 Similar high-frequency sources of single electrons
were realized by using dynamical quantum dots without4 or
with a perpendicular magnetic field.5 The principal advantage
of on-demand SESs over the usually used metallic contacts
(MCs) as electron sources is the possibility, in the former
case, to switch on and off the quantum correlations between
particles initially emitted from uncorrelated sources. An
example of correlations generated by normal metallic contacts
is the two-particle Aharonov-Bohm effect in the solid-state
Hanbury-Brown–Twiss interferometer, which has been dis-
cussed theoretically6–8 and found experimentally.9 In contrast,
with SESs, the two-particle interferometer, as it is discussed in
Ref. 3, can show or not show the Aharonov-Bohm effect de-
pending on whether or not sources are driven in synchronism.

The appearance of quantum correlations (fermionic in the
case of electrons) between initially uncorrelated particles
results from the overlap of wave packets on the wave splitter.
For electrons in solid-state circuits the splitter is a quantum
point contact (QPC) (see Fig. 1, the QPC labeled C). Such
correlations are well known in optics (see, e.g., Ref. 10). The
overlap of fermions was discussed in Refs. 11 and 12. The
overlap depends on the spatial extent of wave packets and also
on the times when they arrive at the wave splitter. Thus the
resulting correlations can be used to access information about
the space-time extension of quantum states. For MCs working
as electron sources, such information is rather hidden because
the mentioned correlations are always present. In contrast with
on-demand SESs, control of the emission time can be achieved,

i.e., the appearance or disappearance of correlations can be
controlled. Thus with such sources the space-time extension
of quantum states becomes accessible.

In mesoscopics physics shot noise12 is the natural
quantity that can be used to find information on two-particle
correlations.13–15 The shot noise of carriers emitted by two
SESs is suppressed if the wave packets overlap at the QPC
connecting edge states in which emitted particles propagate.2

If two sources are identical and they emit particles at the same
time, the emitted particles are in identical quantum states
and the shot noise is suppressed down to zero. This effect
is similar to the Hong-Ou-Mandel effect in optics,16 with
the evident difference that electrons are rather forced into
different output channels while photons are bunched into the
same output channel.

The aim of this paper is to use the shot-noise suppression
(ShNS) as a spectroscopic tool, allowing for a comparison of
the quantum states emitted by the different electron sources.
As the test state we will use the one emitted by the SES. The
SES is composed of a quantum capacitor1 in the quantum
Hall-effect regime. The SES is connected to one of the arms of
the mesoscopic electron collider (Fig. 1). Under the action of
a potential U (t) = U cos(�t) periodic in time, the SES emits
a sequence of alternating electrons and holes.17 In a certain
range of amplitudes, in the quantized emission regime, the
SES emits one electron and one hole. At low driving frequency,
in the adiabatic regime, the emitted state by the SES is close
to the state generated by voltage pulses of Lorentzian form
with a time integral equal to a flux quantum: Such a quantized
voltage pulse produces a single-particle state on top of the
Fermi sea.18–20 In the second arm we apply the source of
interest and investigate the resulting shot noise.

The paper is organized as follows: In Sec. II we calculate
the zero-frequency cross correlator of currents flowing into two
outputs in the collider circuit with a SES in one input and a
biased metallic contact in the other input. In Sec. III we address
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FIG. 1. (Color online) A mesoscopic electron collider circuit
with a SES, S, a circular edge state, and a metallic contact source
biased with a voltage V . At the quantum point contact C the particles
emitted by the two sources can collide if the times of emission are
adjusted properly. Solid blue lines are edge states with direction of
movement indicated by arrows. Short dashed red lines are quantum
point contacts connecting different parts of a circuit. Black rectangles
are metallic contacts.

the effect of stochastic single-particle emitters that emit or do
not emit a particle in a given period that arrives at the QPC.
We demonstrate the irrelevance of such stochastic emission
to the ShNS effect. In Sec. IV the ShNS effect is found for
colliding single- and two-electron pulses. A discussion of our
results is given in Sec. V. Much of the analysis is grouped
into three appendices. In Appendix A we present a detailed
model of a SES. In Appendix B we calculate the current
correlation function for a periodically driven mesoscopic
scatterer connected to reservoirs biased with periodic voltages.
In Appendix C the zero-frequency cross-correlation function
for a circuit with two SESs is expressed in terms of single- and
two-particle probabilities.

II. SINGLE-ELECTRON EMITTER AND BIASED
METALLIC CONTACT AS AN ELECTRON SOURCE

We consider an electron collider with a SES in one branch
and a MC with a potential V

(∼)
2 (t) = V

(∼)
2 (t + T ) periodic in

time in another branch (see Fig. 1). The potential U (t) driving
the SES and V

(∼)
2 (t) have the same period, T = 2π/�, which

is assumed to be large enough to consider adiabatic transport
and neglect relaxation and decoherence processes21,22 relevant
for high-energy excitations. In addition, the MC is biased with
a constant potential V2 with respect to the other contacts that
all have the same chemical potential μ. The temperature is
taken to be zero.

We utilize the scattering matrix approach23 to transport in
mesoscopic systems, and describe this circuit with the help of
the frozen scattering matrix,

Ŝ(t) =
(

eikL1S SSES(t)rC eikL1V tC

eikL2S SSES(t)tC eikL2V rC

)
, (1)

where SSES(t) is the scattering amplitude of the SES [see
Appendix A, Eq. (A5)], rC (tC) is the reflection (transmission)
amplitude for the central quantum point contact C, and LjX

is the length from the SES (X = S) or the MC (X = V ) to
the contact j = 1,2, where the corresponding current Ij (t) is
measured. At zero temperature we need all quantities at the
Fermi energy μ only.

We are interested in the zero-frequency correlation
function12 P12 of the currents I1(t) and I2(t) flowing into
contacts 1 and 2 (see Fig. 1). The corresponding calculations

are presented in Appendix B. In the adiabatic regime and at
zero temperature we have P12 ≡ P (sh,ad)

12 [see Eq. (B26)]:

P12 = −P0

∞∑
q=−∞

|{SSESϒ∗
2 }q |2

∣∣∣∣eV2

h̄�
− q

∣∣∣∣, (2)

where P0 = e2RCTC/T is the shot noise2 produced by one
particle (either an electron or a hole) emitted by the SES during
the period T . The oscillating potential at contact 2 appears in
the form of a phase factor,

ϒ2(t) = exp

[
−i

e

h̄

∫ t

−∞
dt ′ V (∼)

2 (t ′)
]

, (3)

which multiplies the scattering amplitude of the SES. The
symbol {· · ·}q indicates the qth Fourier component (in time)
of these two amplitudes. Equation (2) illustrates that the
correlation tests the coherence properties of the two sources.

Note that the decoherence processes, which we neglect in
the present work, can lead to suppression of coherence.

A. Quantized voltage pulse

With a Lorentzian-shaped voltage pulse and a time integral
quantized to a single flux quantum,18,19 one can excite an
electron from a Fermi sea without any other disturbance to the
Fermi sea. The state for an excited electron has a Lorentzian
density profile (the time-dependent current is a Lorentzian
pulse), which is similar to the one2 emitted by the SES in the
adiabatic regime. Thus we can expect a ShNS effect if an
electron is excited out of a metallic contact with a quantized
voltage pulse, and an electron that is emitted by the SES collide
at the central QPC. Below we show that this is really the case.

Thus let us assume that a periodic pulsed potential is applied
to the MC,

eV2(t) = 2h̄�

(t − t0)2 + �2
, 0 < t � T , (4)

where � � T is the half-width of the pulse, and t0 is the time
when the electron is excited. Such a pulse excites one electron
during the period T .

The potential V2(t) [Eq. (4)] has a dc component, eV2 =
h/T , and a component that is periodic in time,

eV
(∼)

2 (t) = 2h̄�

(t − t0)2 + �2
− h

T , 0 < t � T . (5)

The corresponding phase factor ϒ2(t) [Eq. (3)] (for 0 <

t � T ) is

ϒ2(t) = exp

{
i

[
�t − 2

(
arctan

t − t0

�
+ arctan

t0

�

)]}
. (6)

The result of a numerical evaluation of the shot noise based
on Eq. (2), as a function of the time t0, is given in Fig. 2.
For almost all times t0 the noise is −3P0, and only at a very
special coincidence time is there a sharp reduction of the noise.
The noise, −3P0, is produced by three uncorrelated particles
emitted during a period: One electron is emitted by the metallic
contact and two particles, an electron and a hole, are emitted
by the SES. However, if the MC and the SES emit electrons
at the same time, t0 = t

(−)
0 , then after colliding at the central

QPC these electrons become correlated and do not contribute
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FIG. 2. The noise P12 [Eq. (2)] as a function of the time t0 when
an electron is excited out of the metallic contact by the voltage pulse
V2(t). The plot assumes that the half-widths of the voltage pulse at the
MC and the pulse of the SES are the same (� = �0). The parameters
of the SES [Eq. (A1)] are as follows: T = 0.1, U0 = 0.25, U1 = 0.5.
Inset: The noise at the minimum as a function of �.

effectively to the shot noise. The remaining value, −P0, is
owing to the hole emitted by the SES.

The ShNS effect depends on the overlap of wave packets in
time (hence the times of emission should be the same) and in
space (hence the width of wave packets should be the same). If
the wave packets have a different width (see the inset of Fig. 2),
there is some extra noise. Therefore, the ShNS effect provides
a direct tool to compare the states of particles emitted from the
sources of different types, not only from the similar sources.
The ShNS of two SESs was already discussed in Ref. 2.

The most used source of electrons in mesoscopics is a biased
(with dc or ac voltage) metallic contact. Now we show that
the electron collider circuit with SES and a biased MC as an
electron source does not show what we call the ShNS effect.
Therefore, the state of electrons emanating from a biased MC
is different from the state of an electron emitted by the SES.

B. dc bias

If no ac bias is applied, V
(∼)

2 (t) = 0, the phase factor
is |ϒ2(t)|2 = 1 and only the Fourier coefficients, |SSES

q |2 =
4�2�2

0 exp(−2��0|q|), enter Eq. (2). We recall that we
assume an adiabatic limit of ��0 � 1, where 2�0 is the
time during which an electron (a hole) is emitted by the
SES. Because |Sq |2 = |S−q |2, we conclude from Eq. (2) that
in this case the shot noise is independent of the sign of the
voltage. Therefore, the result will be the same regardless of
whether the MC emits electrons, eV > 0, or holes, eV < 0.
For definiteness we will use eV2 > 0.

Evaluation of the cross correlator gives

P12 = −P0

{
eV2

h̄�
+ 2e−2��0( eV2

h̄�
)

[
1 + 2��0

(
eV2

h̄�

)]}
, (7)

where we have introduced the integer part [eV2/(h̄�)]. This
correlator has the following asymptotics:

P12 =
{−2P0, eV2 � h̄�,

−(e3V2/h)RCTC, eV2 � h̄�−1
0 .

(8)
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FIG. 3. The noise P12 [Eq. (2)] as a function of the amplitude
eV

(∼)
2 of the ac potential applied to the metallic contact. The

parameters of the SES in Eq. (A1) are as follows: T = 0.1, U0 = 0.25,
U1 = 0.5.

Here the first line is the shot noise owing to the SES emitting
one electron and one hole during the period. The second line
is the shot noise owing to a dc-biased metallic contact alone.12

The latter noise is due to scattering at the quantum point contact
C of extra electrons flowing out of a biased contact above the
Fermi sea with a chemical potential μ. These electrons are
emitted with a rate eV2/h. Therefore, one could naively expect
that, if the rate of emission of electrons from the SES and from
the MC is the same, h̄� = eV2, then each emitted electron will
collide at the central QPC with an electron propagating within
another edge state and the shot noise gets suppressed.

This is not the case. As follows from Eq. (7), the shot
noise has no strong feature at eV2 ∼ h̄�. The shot noise is
a monotonous function of the dc bias V2. A possible reason
for this is that the states of electrons emitted from the SES
and from the dc-biased MC are quite different: The electrons
emitted from the SES can be thought of as wave packets with
a spatial extent proportional to the duration of emission �0.
In contrast, the electrons emitted by the metallic contact are
rather plane-wave-like, extended along the whole edge state.
Thus their overlap at the central QPC is minute, hence they do
not acquire any significant correlations. The shot noise remains
roughly the sum of the noises produced independently by the
SES and by the dc-biased MC.

Next we show that the noise suppression effect is also absent
if the metallic contact is driven by an ac bias.

C. ac bias

Next consider the case of a metallic contact with an ac
bias, V (∼)

2 (t) = V
(∼)

2 cos(�t), V2 = 0. In this case the metallic
contact emits both electrons and holes. The cross correlator
[Eq. (2)] as a function of amplitude V

(∼)
2 is given in Fig. 3.

There is a small feature at eV
(∼)

2 = h̄� that is visible in Fig. 3,
but this feature is minute compared to the huge dip of interest
in this work. Therefore, there is no indication of a ShNS at
eV

(∼)
2 ∼ h̄� when the rate of emission of particles from the

SES and from the MC is the same.
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This is in contrast to the case when sinusoidal voltages are
applied to both inputs.24 Then the discussion can best be cast
into excitations of electron-hole pairs,25 which create a shot
noise that has been measured.26 For two oscillating voltages,
theory predicts significant two-particle correlations owing to
the Hanbury-Brown–Twiss effect, which depend on the phase
delay of the two oscillating voltages.24

One can wonder whether the absence of the ShNS effect
is possibly due to fluctuations in emission of electrons
from the biased metallic contact. Our expectation is that
neither fluctuations nor a possible presence of multielectron
(multihole) states play a crucial role. To show this, next we
consider two circuits.

III. ShNS EFFECT WITH STOCHASTIC SESs

In Fig. 4 we show a circuit with two SESs, SL and SR , each
emitting one electron and one hole per period T . Initially the
particle stream is regular. However, say, for particles emitted
by the source SL, at the quantum point contact L an electron
(a hole) can be either reflected to the metallic collector 3
or be transmitted to the central part of a circuit. Thus, the
SES, Sj , together with a corresponding quantum point contact
j = L,R, comprise a stochastic SES that can either inject into
the central part of a collider one electron (hole) during a given
period or not.

We assume that all the metallic contacts are grounded and
calculate the zero-temperature cross correlator P12 ≡ P (sh,ad)

12
[Eq. (B26)]:

P12 = e2�

4π

∞∑
q=−∞

|q|
4∑

γ,δ=1

{S1γ S∗
1δ}q{S2γ S∗

2δ}∗q . (9)

Because there is no bias, all the phase factors are ϒδ = 1 in
Eq. (B25) and Vγδ = 0 in Eq. (B26). The elements of the frozen
scattering matrix are expressed in terms of the transmission
(reflection) amplitude(s) ti (ri) for the quantum point contacts

2

SL

1I (t)

C
L

R
SR

I (t)

21

4

3

FIG. 4. (Color online) A mesoscopic electron collider circuit with
two stochastic single-particle streams originating from the quantum
point contacts L and R. In this case, two particles enter the central
part of a circuit and they can collide at the quantum point contact
C if the times of emission by the sources SL and SR are adjusted
properly. Solid blue lines are edge states with direction of movement
indicated by arrows. Short dashed red lines are quantum point contacts
connecting different parts of the circuit. Black rectangles numbered
by 1–4 are metallic contacts.

i = L,R,C, time-dependent amplitudes SSES
j (t) for sources

Sj , j = L,R, and corresponding phase factors eikLαβ , where
Lαβ is a length between metallic contacts α and β. For instance,
S13(t) = eikL13SSES

L (t)tLrC . For SSES
j (t) we use Eq. (A5) with

emission times t
(±)
0 and a pulse half-width �0 replaced by t

(±)
j

and �j , respectively. Then we find

P12 = −2P0{(TL − TR)2 + TLTR[γ (
t (−)) + γ (
t (+))]},
(10)

where 
t (±) = t
(±)
L − t

(±)
R with t

(±)
j (j = L,R) the time of an

electron-hole (e-h) emission by the SES j , and the suppression
function

γ (
t) = (
t)2 + (�L − �R)2

(
t)2 + (�L + �R)2 . (11)

If the SESs emit particles at different times, 
t (±) �
�L,�R , then the correlation is

P12 = −2P0
{
T 2

L + T 2
R

}
. (12)

This expression results from the shot noise produced by the
four uncorrelated particles (two electrons and two holes)
emitted by the two sources during the period T . Apparently the
single-particle contribution (to the cross correlator) is negative.
We call this regime classical, because the shot noise can be
explained in terms of single-particle probabilities only (see
Appendix C).

On the other hand, if pulses of the same width, �L = �R ,
are emitted at the same time, t

(−)
L = t

(−)
R (for electrons) and

t
(+)
L = t

(+)
R (for holes), then the cross correlator is suppressed:

P12 = −2P0 (TL − TR)2 . (13)

In addition, if the circuit is symmetric, TL = TR , then the
cross correlator is suppressed down to zero.

This suppression is due to a positive two-particle contribu-
tion arising (in addition to negative single-particle contribu-
tions that are also present) when particles (either two electrons
or two holes) collide at the quantum point contact C. Owing
to such collisions, each of the particles loses information
about its origin (i.e., about the source that emitted it), and
the pair of particles propagating to contacts 1 and 2 in Fig. 4
becomes orbitally entangled.3 We call this regime a quantum
regime, because to describe a shot noise we additionally
need to take into account the existence of both direct
and exchange two-particle quantum-mechanical amplitudes
for colliding particles [see Appendix C, Eq. (C6)].

Thus with this circuit we showed that the ShNS effect is
sensitive to space-time confinement of electron states rather
than to a regularity in appearance of electrons at the place (the
QPC C) where they can overlap.

IV. ShNS EFFECT WITH SINGLE- AND
TWO-PARTICLE SOURCES

Now we consider a circuit (see Fig. 5) that contains both
a single-particle emitter S and a two-particle emitter S2. As
a two-particle source we use two SESs placed close to each
other and emitting in synchronism.27 In the adiabatic case of
interest here, the scattering amplitude STES(t) is the product
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FIG. 5. (Color online) A mesoscopic electron collider circuit with
a SES, S, and a two-particle source, S2. At the quantum point contact
C the particles emitted by different sources can collide if the times of
emission were adjusted properly. Solid blue lines are edge states with
direction of movement indicated by arrows. Short dashed red lines
are quantum point contacts connecting different parts of a circuit.
Black rectangles are metallic contacts.

of scattering amplitudes of SESs comprising a two-particle
source. For simplicity, we assume both sources to be identical.
Then STES is the square of the amplitude given by Eq. (A5)
with t

(±)
0 and �0 replaced with t

(±)
2 and �2, respectively. At the

time t
(−)
2 (t (+)

2 ) the pair of electrons (holes) is emitted by the
source S2. The cross correlator P12 [Eq. (B26)] reads

P12 = −P0

∞∑
q=−∞

|q||{SSES(STES)∗}q |2, (14)

where SSES(t) is the scattering amplitude [Eq. (A5)] for a SES,
S, and STES(t) is the scattering amplitude for the two-electron
(two-particle) source S2 shown in Fig. 5.

Simple calculations yield

P12 = −P0{γ 2(
t (−)) + 2γ (
t (−)) + χ (
t (−))

+ γ 2(
t (+)) + 2γ (
t (+)) + χ (
t (+))}, (15)

where 
t (±) = t
(±)
0 − t

(±)
2 . The function χ (
t) is

χ (
t) = 16�2
2�

2
0

[(
t)2 + (�2 + �0)2]2
, (16)

and the suppression function γ (
t) is given in Eq. (11) with �L

and �R replaced by �0 (for a SES) and �2 (for a two-particle
source), respectively.

If all the particles are emitted at different times, 
t (±) �
�0,�2, the cross correlator, P12 = −6P0, is determined by
contributions of six uncorrelated particles (three electrons and
three holes) emitted during the period T , while for simul-
taneous emission, 
t (∓) = 0, the cross correlator is partially
suppressed. If �2 = �0, the cross correlator is suppressed down
to the level generated by two particles, P12 = −2P0. So when
the two-electron wave packet collides with a single-electron
wave packet, two colliding electrons, one from each side,
produce no noise while the remaining electron produces noise
as if it had been propagated alone through the QPC. The same
holds for hole wave packets.

V. CONCLUSION

A method to compare quantum states of initially uncor-
related electrons in mesoscopic circuits was proposed. The
electron streams should be directed onto a quantum point

contact from different sides and the cross correlator of currents
flowing out of the QPC should be measured. In general, two
uncorrelated streams produce additive noises. However, if the
particles overlap at the QPC, they become correlated and
the noise gets suppressed. The closer the quantum states of
particles resemble each other, the better the overlap that can
be achieved, and hence the noise is suppressed more strongly.

We considered several sources of electrons, in partic-
ular, (i) a metallic contact, emitting a rather continuous
stream of electrons with a rate proportional to the bias, and
(ii) a periodically driven quantum capacitor, a SES, emitting
traveling wave packets of electrons that are rather localized
in space and alternate with the wave packet of holes. We
found that the streams produced by the MC biased with a dc
(ac) voltage and by the SES remain almost uncorrelated after
passing the QPC, even if the electrons are emitted with the
same rate. Therefore, we conclude that the electrons of these
streams are in quite different quantum states. On the other
hand, if the periodic sequence of quantized voltage pulses is
applied to a MC, then the resulting electron stream can be
easily correlated with a stream emitted by the SES, resulting
in a complete suppression of the shot noise. From this we can
conclude that the electrons of these streams are in the same
quantum states.

If the streams are fluctuating, then the shot noise can be
suppressed by the amount proportional to the average number
of particles overlapping at the QPC. We also found a partial
suppression of the shot noise in the case of pulses carrying
different numbers of particles. Basically the remaining noise
results from the difference of the numbers of particles carried
by the colliding pulses.

Note added in proof. Recently, a related discussion by
Grenier et al.38 appeared. That work is aimed at electron state
tomography and it deals with a SES working in a non-adiabatic
regime. In contrast, we assume an adiabatic regime for the SES
and we are interested in a comparison of quantum states for
electrons emitted from different sources.
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APPENDIX A: SCATTERING AMPLITUDE
AND CURRENT OF A SES

As a SES we use a quantum capacitor1,28–30 described by a
model in which a single circular edge state of circumference L

in a cavity is coupled via a QPC with transmission probability
T to a linear edge state (see the upper left-hand corner of
Fig. 1). A potential, U (t) = U0 + U1 cos(�t + ϕ), periodic in
time is induced uniformly over the cavity with the help of a
top gate. In the case of a slow potential, �τ � T , where τ is
the time of one turn around the cavity, the (frozen31) scattering
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MICHAEL MOSKALETS AND MARKUS BÜTTIKER PHYSICAL REVIEW B 83, 035316 (2011)

amplitude of a capacitor for an electron with incident energy
E and propagating in the linear edge state at time t is

SSES(t,E) = eiθr

√
1 − T − eiφ(t,E)

1 − √
1 − T eiφ(t,E)

. (A1)

Here θr is the phase of the reflection amplitude r = √
1 − T eiθr

of the QPC connecting the circular edge state in the cavity
to the linear edge state. φ(t,E) = θr + φ(E) − 2πeU (t)/
 is
the phase accumulated by an electron with energy E during
one trip along the cavity, and 
 is the level spacing in the
cavity. The phase φ(E) = kF L + (E − μ)L/(h̄vD) with kF

as a constant and vD as a drift velocity can be taken to
depend linearly on the energy. In the following, we consider
the scattering amplitude for electrons with Fermi energy,
SSES(t) ≡ SSES(t,μ). We are interested in the limit of a small
transparency, T → 0, when the width of the levels in the cavity
is much smaller than the level spacing 
. The amplitude
U1 of the oscillating potential is chosen in such a way that
during a period only one level of the cavity crosses the Fermi
level μ in the linear edge state. The time of crossing t0 is
defined by the condition φ(t0,μ) = 0 mod 2π . By introducing
the deviation of the phase from its resonance value, δφ(t) =
φ(t,μ) − φ(t0,μ), we obtain the scattering amplitude

SSES(t) = −eiθr
T + 2iδφ(t)

T − 2iδφ(t)
+ O(T 2). (A2)

We keep only terms to leading order in T � 1.
There are two time moments when resonance conditions

occur (two times of crossing). The first crossing time is the
instant when the level rises above the Fermi level, and the
second crossing time is when the level sinks below the Fermi
level. We denote these as times t

(−)
0 and t

(+)
0 , respectively. At

the time t
(−)
0 , one electron is emitted by the cavity into the

linear edge state, while at the time t
(+)
0 , one electron enters the

cavity, and a hole is emitted.
We suppose that the constant part of the potential U0

accounts for a detuning of the nearest electron level En in
the SES from the Fermi level. Then the resonance times can
be found from the following equation:

En + eU (t (∓)
0 ) = μ0 ⇒ U0 + U1 cos(�t

(∓)
0 + ϕ) = 0. (A3)

For |eU0| < 
/2 and |eU0| < |eU1| < 
 − |eU0| we find

t
(∓)
0 = ∓t

(0)
0 − ϕ

�
, t

(0)
0 = 1

�
arccos

(
−U0

U1

)
. (A4)

The deviation from the resonance time, δt (∓) = t − t
(∓)
0 ,

can be related to the deviation from the resonance
phase, δφ(∓) = ∓M�δt (∓), where ∓M = dφ/dt |

t=t
(∓)
0

/� =
∓2π |e|
−1

√
U 2

1 − U 2
0 . With these definitions we can rewrite

Eq. (A2) as follows:

SSES(t) = eiθr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t−t

(+)
0 −i�0

t−t
(+)
0 +i�0

, |t − t
(+)
0 | � �0,

t−t
(−)
0 +i�0

t−t
(−)
0 −i�0

, |t − t
(−)
0 | � �0,

1, |t − t
(∓)
0 | � �0.

(A5)

0.0 0.2 0.4 0.6 0.8 1.0
−600

−400

−200

0

200

400

600

t (2π/Ω)

I(
t)

  (
eΩ

/2
π)

FIG. 6. The time-dependent current [Eq. (A8)] generated by the
SES at zero temperature. The positive (negative) peak corresponds to
emission of an electron (a hole). The parameters of the SES described
by Eq. (A1) are as follows: T = 0.1, U0 = 0.25
, U1 = 0.5
, ϕ = 0.

Here �0 is (half of) the time during which the level rises above
or sinks below the Fermi level:

��0 = T 


4π |e|
√

U 2
1 − U 2

0

. (A6)

Equation (A5) assumes that the overlap between the reso-
nances is small:

|t (+)
0 − t

(−)
0 | � �0. (A7)

The basic equation for the time-dependent current is (see,
e.g., Ref. 32)

I (t) = − e

2π

∫
dE

(
−∂f0

∂E

)
SSES ∂(SSES)∗

∂t
. (A8)

By using Eq. (A5), we find the adiabatic current at zero
temperature (for 0 < t < T ):

I (t) = e

π

[
�0

(t − t
(−)
0 )2 + �2

0

− �0

(t − t
(+)
0 )2 + �2

0

]
. (A9)

In each time interval 2π/�, the current (shown in Fig. 6)
consists of two pulses of Lorentzian shape with a half-width,
�0. The pulses correspond to the emission of an electron and a
hole. Integrating over time, it is easy to check that the first
pulse carries a charge e while the second pulse carries a
charge −e.

APPENDIX B: CURRENT CORRELATION FUNCTION

A. General formalism

Let the scatterer be connected via one channel lead to
reservoirs having different potentials,

Vα(t) = Vα + V (∼)
α (t). (B1)

Following the approach developed in Refs. 33 and 34, we
include the potential V (∼)

α (t) = V (∼)
α (t + T ), T = 2π/�, os-

cillating with frequency � into the phase of the wave function
for electrons injected into the circuit from reservoir α. The
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constant part of the potential changes the Fermi distribution
function in contact α,

fα(E) = 1

1 + exp E−μα

kBTα

, μα = μ0 + eVα. (B2)

We introduce the second quantization operator â′
α(E)

annihilating an electron in the state with energy E carrying a
unit flux35 in reservoir α. Then the corresponding distribution
function is

〈a′†
α (E)a′

α(E′)〉 = fα(E)δ(E − E′). (B3)

If the reservoir α is subject to a periodic in time potential
V (∼)

α (t), then the wave function for particles described by the
operators â′

α is a Floquet-type function having sidebands with
energies En = E + nh̄�, n = 0,±1,±2, . . .. The amplitudes
of the sidebands are

ϒα,n =
∫ T

0

dt

T ein�tϒα(t),

(B4)

ϒα(t) = exp

[
−i

e

h̄

∫ t

−∞
dt ′ V (∼)

α (t ′)
]

.

We suppose that there is no oscillating potential in the leads
connecting the reservoirs to the scatterer. Then the operator for
particles in lead α is34

âα(E) =
∞∑

n=−∞
ϒα,nâ

′
α(E−n). (B5)

If the scatterer is driven periodically, then it is characterized
by the Floquet scattering matrix ŜF .36 We assume that the
scatterer is driven with the same period T as the reservoirs.
The element SF,αβ(En,E) is a current scattering amplitude35

for an electron incoming from the lead β with energy E

to be scattered with energy En = E + nh̄� into the lead α.
With these amplitudes we find the operators for scattered
particles,31

b̂α(E) =
∑

β

∞∑
m=−∞

SF,αβ(E,Em)âβ(Em)

=
∑

β

∞∑
m=−∞

∞∑
n=−∞

SF,αβ(E,Em)ϒβ,nâ
′
β(Em−n). (B6)

Now we calculate the symmetrized current correlation
function in a frequency representation,

Pαβ(ω1,ω2) = 1
2 〈
Îα(ω1)
Îβ(ω2) + 
Îβ(ω2)
Îα(ω1)〉,

(B7)

where 〈· · ·〉 stands for quantum-statistical averaging over the
(equilibrium) state of reservoirs, 
Îα(ω) = Îα(ω) − 〈Îα(ω)〉,
and Îα(ω) is the operator for the current in lead α,

Îα(ω) = e

∫ ∞

0
dE{b̂†α(E)b̂α(E + h̄ω) − â†

α(E)aα(E + h̄ω)}.
(B8)

By using Eqs. (B3) and (B5)–(B8) we find

Pαβ(ω1,ω2) =
∞∑

l=−∞
2πδ(ω1 + ω2 − l�)Pαβ,l(ω1),

Pαβ,l(ω1) = e2

h

∫
dE

[
δαβfαα(E,E + h̄ω1) − fαα(E,E + h̄ω1)

∑
n

∑
p,q

SF,βα(El+n,Ep)ϒα,pS∗
F,βα(En + h̄ω1,Eq + h̄ω1)ϒ∗

α,q

− fββ (E,E + h̄ω2)
∑

n

∑
p,q

SF,αβ(El+n,Ep)ϒβ,pS∗
F,αβ(En + h̄ω2,Eq + h̄ω2)ϒ∗

α,q

+
∑
γ,δ

∑
n.m.s

∑
p,q,p1,q1

fγ δ(En,Em + h̄ω1)SF,βγ (El+s ,En+q)ϒγ,qS
∗
F,αγ (E,En+p)ϒ∗

γ,p

× SF,αδ(E + h̄ω1,Em+q1 + h̄ω1)ϒδ,q1S
∗
F,βδ(Es + h̄ω1,Em+p1 + h̄ω1)ϒ∗

δ,p1

]
. (B9)

Here

fαβ (E1,E2) = 1
2 {fα(E1)[1 − fβ(E2)] + fβ(E2)[1 − fα(E1)]}.

(B10)

We are interested in the zero-frequency limit of the equation
given above, when the noise can be conveniently represented
as the sum of the thermal noise P (th)

αβ (vanishing at kBTα =
0, ∀α) and the shot noise P (sh)

αβ (vanishing at � = 0 and
eVα = eV0, ∀α).

B. Zero-frequency noise power

At l = 0 and ω1 = ω2 = 0, Eq. (B9) can be represented as
follows:

Pαβ = e2

h

∫
dE

{
P (th)

αβ (E) + P (sh)
αβ (E)

}
, (B11a)

P (th)
αβ (E) = δαβ

{
fαα(E,E) +

∑
γ

Fαγ (E)

}
−Fαβ(E) − Fβα(E),
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with Fαγ (E) = fγγ (E,E)
∑
n,p,q

SF,αγ (En,Eq)ϒγ,q

× S∗
F,αγ (En,Ep)ϒ∗

γ,p, (B11b)

P (sh)
αβ (E) = 1

2

∑
γ,δ

∑
n.m.s

∑
p,q,p1,q1

{fγ (En) − fδ(Em)}2

× SF,βγ (Es,En+q)ϒγ,q S∗
F,αγ (E,En+p)ϒ∗

γ,p

× SF,αδ(E,Em+q1 )ϒδ,q1S
∗
F,βδ(Es,Em+p1 )ϒ∗

δ,p1
.

(B11c)

Now we show how Eq. (B9) was obtained.

C. Derivation of the current correlation function

To make the calculations more transparent it is convenient
to represent the current as a sum, Îα(ω) = Î (out)

α (ω) + Î (in)
α (ω),

of a current I (out)
α carried by the scattered particles and a current

I (in)
α carried by the incident particles:

Î (out)
α (ω) = e

∫ ∞

0
dE b̂†α(E)b̂α(E + h̄ω),

(B12)

Î (in)
α (ω) = − e

∫ ∞

0
dE â†

α(E)âα(E + h̄ω).

Then Pαβ(ω1,ω2) [Eq. (B7)] can be represented as the sum of
four terms,

Pαβ(ω1,ω2) =
∑

i,j=in,out

P
(i,j )
αβ (ω1,ω2),

(B13)

P
(i,j )
αβ = 1

2

〈

Î (i)

α (ω1)
Î
(j )
β (ω2) + 
Î

(j )
β (ω2)
Î (i)

α (ω1)
〉
.

We evaluate each of these four contributions separately.

1. Correlator for incoming currents

The first term in Eq. (B13) reads

P
(in,in)
αβ (ω1,ω2) = e2

∫ ∫ ∞

0
dE1 dE2

J
(in,in)
αβ + J

(in,in)
βα

2
, (B14)

where

J
(in,in)
αβ =〈{â†

α(E1)âα(E1 + h̄ω1) − 〈â†
α(E1)âα(E1 + h̄ω1)〉}

× {â†
β (E2)âβ(E2 + h̄ω2) − 〈â†

β(E2)âβ(E2 + h̄ω2)〉}〉.

In the correlation J
(in,in)
βα with the indices interchanged, the

order of operators in each of the products contributing to J
(in,in)
βα

is interchanged. By using Wick’s theorem, we represent the
average of the product of four operators via the average of pair
products and find

J
(in,in)
αβ = �

(in,in)
αβ �

(in,in)
αβ ,

�
(in,in)
αβ = 〈â†

α(E1) âβ(E2 + h̄ω2)〉, (B15)

�
(in,in)
αβ = 〈âα(E1 + h̄ω1) â

†
β(E2)〉.

Then by using Eq. (B5) we obtain, after straightforward but
slightly lengthy calculations,

P
(in,in)
αβ (ω1,ω2) = 2πδ (ω1 + ω2)P (in,in)

αβ (ω1) ,
(B16)

P (in,in)
αβ (ω1) = δαβ

e2

h

∫
dE1 fαα (E1,E1 + h̄ω1) .

This is exactly what could be expected for equilibrium
electrons. Therefore, uniform oscillating potentials at the
reservoirs in themselves do not produce additional noise.

2. Correlator between incoming and outgoing currents

The next term in Eq. (B13) is

P
(in,out)
αβ = −e2

∫ ∫ ∞

0
dE1 dE2

J
(in,out)
αβ + J

(out,in)
βα

2
, (B17)

where

J
(in,out)
αβ = �

(in,out)
αβ �

(in,out)
αβ ,

�
(in,out)
αβ = 〈â†

α(E1)b̂β(E2 + h̄ω2)〉, (B18)

�
(in,out)
αβ = 〈âα(E1 + h̄ω1)b̂†β(E2)〉.

In the correlation J
(out,in)
βα the order of operators in the averages

of pairs is interchanged. By using Eqs. (B5) and (B6) we find

�
(in,out)
αβ =

∑
n,m,p

ϒ∗
α,nSF,βα(E2 + h̄ω2,E2,m + h̄ω2)

×ϒα,pfα(E1,−n)δ(E1,−n − E2,m−p − h̄ω2),

�
(in,out)
αβ =

∑
n1,m1,p1

ϒα,n1ϒ
∗
α,p1

[1 − fα(E1,−n1 + h̄ω1)]

×S∗
F,βα(E2,E2,m1 )δ(E1,−n1 − E2,m1−p1 + h̄ω1).

Next we integrate over energy E2 by using the Dirac delta
function in �

(in,out)
αβ . In the reminder, we use E2,m−p = E1,−n −

h̄ω2 and find

P
(in,out)
αβ = −e2

h̄

∫
dE1

∑
n,m,p

∑
n1,m1,p1

fαα(E1,−n,E1,−n1 + h̄ω1)

×ϒ∗
α,nϒα,pϒα,n1ϒ

∗
α,p1

δ(ω1 + ω2 − �[p − n

−m − p1 + n1 + m1])SF,βα(E1,p−n−m,E1,p−n)

×S∗
F,βα(E1,p1−n1−m1 + h̄ω1,E1,p1−n1 + h̄ω1).

We shift (under the integral over E1) E1 → E1 + nh̄�. Then
we introduce w = n − n1 instead of n1. The sum over w gives
us δw0. Then we introduce l = p − m − p1 + m1 instead of m

and r = p1 − m1 instead of m1. Finally we get

P
(in,out)
αβ (ω1,ω2) =

∞∑
l=−∞

2πδ (ω1 + ω2 − l�)P (in,out)
αβ,l ,

(B19)

P (in,out)
αβ,l (ω1) = − e2

h

∫
dE1fαα(E1,E1 + h̄ω1)

×
∑

r,p,p1

SF,βα(E1,l+r ,E1,p)ϒα,p

× S∗
F,βα(E1,r + h̄ω1,E1,p1 + h̄ω1)ϒ∗

α,p1
.
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With similar steps we find that P
(out,in)
αβ can be obtained from

P
(in,out)
αβ if one replaces α ↔ β, E1 ↔ E2, and ω1 ↔ ω2.

Therefore, from Eq. (B19), we immediately obtain

P
(out,in)
αβ (ω1,ω2) =

∞∑
l=−∞

2πδ (ω1 + ω2 − l�)P (out,in)
αβ,l ,

(B20)

P (out,in)
αβ,l (ω2) = −e2

h

∫
dE2fββ(E2,E2 + h̄ω2)

×
∑

r,p,p1

SF,αβ (E2,l+r ,E2,p)ϒβ,p

× S∗
F,αβ(E2,r + h̄ω2,E2,p1 + h̄ω2)ϒ∗

β,p1
.

Subsequently, to compare Eqs. (B19) and (B21) with Eq. (B9)
we need to additionally redefine r → n and p1 → q.

3. Correlator between outgoing currents

The last term in Eq. (B13) reads

P
(out,out)
αβ = −e2

∫ ∫ ∞

0
dE1 dE2

J
(out,out)
αβ + J

(out,out)
βα

2
, (B21)

where

J
(out,out)
αβ = �

(out,out)
αβ �

(out,out)
αβ ,

�
(out,out)
αβ = 〈b̂†α(E1)b̂β(E2 + h̄ω2)〉,

�
(out,out)
αβ = 〈b̂α(E1 + h̄ω1)b̂†β(E2)〉.

In the correlation J
(out,out)
βα the order of operators in the pair

averages is interchanged.
By using Eqs. (B5) and (B6) we calculate

�
(out,out)
αβ =

∑
γ

∑
n,m,p,q

δ(E1,n−p − E2,m−q − h̄ω2)

× fγ (E1,n−p)S∗
F,αγ (E1,E1,n)

×ϒ∗
γ,pSF,βγ (E2 + h̄ω2,E2,m + h̄ω2)ϒγ,q,

�
(out,out)
αβ =

∑
γ1

∑
n1,m1,p1,q1

δ(E1,n1−p1 + h̄ω1 − E2,m1−q1 )

×[1 − fγ1 (E1,n1−p1 + h̄ω1)]S∗
F,βγ1

(E2,E2,m1 )

×ϒ∗
γ1,q1

SF,αγ1 (E1 + h̄ω1,E1,n1 + h̄ω1)ϒγ1,p1 .

Then we integrate over energy E2 by using the Dirac delta
function in �

(out,out)
αβ . In the rest, we use E2 = E1,n−p−m+q −

h̄ω2 = E1,n1+q1−p1−m1 + h̄ω1 and find

P
(out,out)
αβ

= e2

h̄

∫
dE1

∑
γ,γ1

∑
n,m,p,q

∑
n1,m1,p1,q1

× fγγ1 (E1,n−p,E1,n1−p1 + h̄ω1)δ(ω1 + ω2 − �

× [n + q − p − m − n1 − q1 + p1 + m1])

× S∗
F,αγ (E1,E1,n)ϒ∗

γ,pSF,βγ (E1,n−p−m+q,E1,n−p+q )

× S∗
F,βγ1

(E1,n1+q1−p1−m1 + h̄ω1,E1,n1+q1−p1 + h̄ω1)

×ϒγ,qϒ
∗
γ1,q1

SF,αγ1 (E1 + h̄ω1,E1,n1 + h̄ω1)ϒγ1,p1 .

To simplify, we introduce t = n − p instead of n, w = n1 −
p1 instead of n1, l = n + q − p − m − n1 − q1 + p1 + m1

instead of m, and s = n1 + q1 − p1 − m1 instead of m1. Then
we get

P
(out,out)
αβ (ω1,ω2) =

∞∑
l=−∞

2π δ (ω1 + ω2 − l�)P (out,out)
αβ,l ,

P (out,out)
αβ,l (ω1)

= e2

h

∫
dE1

∑
γ,γ1

∑
s,t,w

∑
p,q,p1,q1

fγγ1 (E1,t ,E1,w + h̄ω1)

× S∗
F,αγ (E1,E1,t+p)ϒ∗

γ,pSF,βγ (E1,l+s ,E1,t+q )

×ϒγ,qS
∗
F,βγ1

(E1,s + h̄ω1,E1,w+q1 + h̄ω1)ϒ∗
γ1,q1

× SF,αγ1 (E1 + h̄ω1,E1,w+p1 + h̄ω1)ϒγ1,p1 . (B22)

Subsequently, to compare with Eq. (B9), we need to addition-
ally redefine t → n, w → m, p1 ↔ q1, and γ1 → δ.

Collecting together Eqs. (B16), (B19), (B21), and (B22),
we arrive at Eq. (B9).

D. Adiabatic regime

In the adiabatic regime the Floquet scattering matrix
elements to leading order in � → 0 are the Fourier coefficients
for the frozen scattering matrix Ŝ(t,E),36

SF,αβ (En,Em) = Sαβ,n−m (E) . (B23)

Within this approximation we find, from Eqs. (B11b)
and (B11c),

P (th,ad)
αβ (E) = −fαα(E,E)|Sβα(E)|2 − fββ(E,E)|Sαβ(E)|2

+ δαβ

{
fαα(E,E) +

∑
γ

fγγ (E,E)|Sαγ (E)|2
}

,

(B24a)

P (sh,ad)
αβ (E) = 1

2

∑
γ,δ

∞∑
q=−∞

{fγ (Eq) − fδ(E)}2�(γ δ)
α,q �

(γ δ)∗
β,q ,

(B24b)

where �α,q is a Fourier transform of

�(γ δ)
α (t) = S∗

αγ (t,E)ϒ∗
γ (t)Sαδ(t,E)ϒδ(t). (B25)

Here the overbar stands for a time average, X = ∫ T
0 dtX(t)/T .

Calculating the shot noise, we made a shift of E → E − mh̄�

and introduced q = n − m instead of m.
One can see that the potentials oscillating at reservoirs have

no effect on the thermal noise. Their effect on the shot noise
in the adiabatic regime can be taken into account formally by
changing the phase of the scattering elements Sϕρ(t,E) by the
factor ϒρ(t) [Eq. (B4)].

E. Zero-temperature adiabatic regime

At zero temperatures there is no thermal noise. By calculat-
ing the shot noise, we take into account that, in the adiabatic
regime, the frequency � is so small that we can neglect the
energy dependence of the scattering matrix elements over the
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interval of order several h̄�.31,36 In addition, we assume also
that all the potential differences Vαβ = Vα − Vβ are small as
compared to the significant energy scales of the scattering
matrix. Then, with Eq. (B24b), the integral over energy in
Eq. (B11a) becomes trivial and we find

P (sh,ad)
αβ = e2�

4π

∑
γ,δ

∞∑
q=−∞

∣∣∣∣eVγ δ

h̄�
− q

∣∣∣∣ �(γ δ)
α,q �

(γ δ)∗
β,q . (B26)

Note the dc bias and ac bias enter this equation in a strongly
nonequivalent way.

APPENDIX C: PROBABILITY DESCRIPTION
OF THE CURRENT CROSS CORRELATOR

FOR A CIRCUIT WITH SESs

The SES emits electrons and holes that are uncorrelated.
Hence electrons (e) and holes (h) contribute to noise in-
dependently, P12 = P (e)

12 + P (h)
12 . In the adiabatic regime we

can neglect the energy dependence of the scattering matrix.
Therefore, electrons and holes contribute to the noise equally,
P (e)

12 = P (h)
12 = 0.5P12. Below we restrict ourselves to the

electron contribution. We assume that the circuit has two inputs
and two outputs, 1 and 2. In each input there is a SES emitting
one electron per period.

A. Classical versus quantum regimes

It was noticed in Ref. 3 that the cross correlator P (e)
12 is

related to the electron number correlator δN12 as follows:

P (e)
12 = e2�

2π
δN12, (C1)

where

δN12 = N12 − N1N2. (C2)

Here N12 is the probability to find one electron in output 1 and
one electron in output 2 during the period T , whereas Nj is
the probability to find an electron in output j = 1,2 during the
same period.

To determine the probabilities entering Eq. (C2) we need to
consider a specific circuit. We consider the one given in Fig. 4.
For this circuit, the quantum-mechanical amplitudesAij for an
electron emitted by the source j = L,R to arrive at the output
i = 1,2 are the following:

A1L = eikF L1L tLrC, A1R = eikF L1R tRtC,
(C3)

A2L = eikF L2L tLtC, A2R = eikF L2R tRrC.

With these amplitudes we find single-particle probabilities,

N1 = |A1L|2 + |A1R|2 = TL + TC (TR − TL) ,
(C4)

N2 = |A2L|2 + |A2R|2 = TL − TC (TR − TL) .

The calculation of the two-particle probability N12 depends
crucially on whether electrons collide at the central QPC or
not.

If electrons pass the QPC C at different times, 
t (−) �
�L,�R , then there are two independent processes contributing
to N12 with amplitudes A(2)

I = A1LA2R and A(2)
II = A1RA2L.

Because the two-particle amplitudes factorize into the product

of single-particle amplitudes, we term this the classical regime.
With these amplitudes we find

N12 = ∣∣A(2)
I

∣∣2 + ∣∣A(2)
II

∣∣2 = TLTR

(
R2

C + T 2
C

)
. (C5)

By using Eqs. (C4) and (C5) in Eq. (C2) we find the cross
correlator P (e)

12 [Eq. (C1)] to be the same as the one given in
Eq. (12) (times 0.5 to account for the electron contribution).

In contrast, if electrons can collide at the QPC C,

t (−) = 0, then the two-particle amplitude is given by the
Slater determinant,

A(2) = det

∣∣∣∣A1L A1R

A2L A2R

∣∣∣∣ . (C6)

This is why we call this regime quantum. Then the two-particle
probability reads

N12 = |A(2)|2 = TLTR. (C7)

Note that this equation is independent of the parameters of
the central QPC, which can be used as an indication of a
quantum regime. We emphasize that in the quantum regime the
two-particle probability becomes the Glauber joint detection
probability,37 because electrons after collision of the QPC C

arrive at the outputs 1 and 2 simultaneously (disregarding
a possible difference in arrival times owing to the different
distances). With Eqs. (C7), (C4), (C2), and (C1), we recover
the result given in Eq. (13).

B. Positive two-particle correlations in quantum regime

Let us show that, in the quantum regime, colliding electrons
are positively correlated. To this end, we represent the single-
particle probabilities as the sum of contributions owing to each
of sources, Ni = N (L)

i + N (R)
i with N (j )

i = |Aij |2, i = 1,2,
j = L,R. Then we split the particle number correlator δN12

[Eq. (C2)] into the sum of three contributions,

δN12 = δN (LL)
12 + δN (RR)

12 + δN (L̂R)
12 . (C8)

Here the first two terms are contributions generated by either
source alone, δN (jj )

12 = −N (j )
1 N (j )

2 , j = L,R. Because the
source emits single particles, this contribution to the cross
correlator δN12 is definitely negative. The third contribution
results from a joint action of both sources,

δN (L̂R)
12 = N12 − N (L)

1 N (R)
2 − N (R)

1 N (L)
2 . (C9)

In the classical regime we use Eq. (C5) and find δN (L̂R)
12 = 0,

i.e., the particles emitted by different sources remain uncorre-
lated. In contrast, in the quantum regime, by using Eq. (C7),
we get

δN (L̂R)
12 = 2TLTRRCTC. (C10)

Therefore, in this regime the particles emitted by two sources
and colliding at the central QPC C (see Fig. 4) become
positively correlated. We stress that the total overall correlation
N12 remains negative.
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Phys. Rev. B 78, 205110 (2008).
28A. Prêtre, H. Thomas, and M. Büttiker, Phys. Rev. B 54, 8130
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36M. Moskalets and M. Büttiker, Phys. Rev. B 66, 205320 (2002).
37G. J. Glauber, Phys. Rev. 130, 2529 (1963).
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