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Singlet-triplet avoided crossings and effective g factor versus spatial orientation
of spin-orbit-coupled quantum dots
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We study avoided crossings opened by spin-orbit interaction in the energy spectra of one- and two-electron
anisotropic quantum dots in perpendicular magnetic field. We find that for simultaneously present Rashba and
Dresselhaus interactions the width of avoided crossings and the effective g factor depend on the dot orientation
within the (001) crystal plane. The extreme values of these quantities are obtained for [110] and [110] orientations
of the dot. The width of singlet-triplet avoided crossing changes between these two orientations by as much as two
orders of magnitude. The discussed modulation results from the orientation-dependent strength of the Zeeman
interaction, which tends to polarize the spins in the direction of the external magnetic field and thus remove the
spin-orbit coupling effects.
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I. INTRODUCTION

Spin-related phenomena in few-electron quantum dots have
been under extensive investigation during the past decade. The
studies have covered spin relaxation involving spin-orbit inter-
action and phonon emission,1 spin dephasing2 due to coupling
to nuclear spins,3 as well as the spin-exchange interaction.4

Besides the fundamental interest, these studies were motivated
by an idea to implement quantum computation5 on spins
of separate electrons confined in quantum dot arrays. The
spin-orbit (SO) coupling is considered for spin manipulation
within the orbital degrees of freedom6 as well as in the context
of the anisotropy7 of the exchange interaction for quantum
gating.8

Few-electron systems confined in circular quantum dots un-
dergo ground-state angular momentum transitions in external
magnetic field (B).9–11 For the electron pair these transitions
are observed only in presence of the electron-electron interac-
tion and are accompanied by spin transitions with ground-state
changing between singlet and triplet depending on the parity of
angular momentum quantum number.11 Singlet-triplet ground-
state transitions in two-electron quantum dots are observed
in charging experiments.12 In elliptical quantum dots as well
as in double dots,13 the angular momentum transitions are
replaced by ground-state parity symmetry transformations still
accompanied by singlet-triplet transitions.

The SO coupling mixes the eigenstates of opposite parities
and spin. In the presence of the SO interaction the singlet-
triplet transition occurs through an avoided crossing that for
planar quantum dots was discussed in a number of recent
theoretical papers.14 The SO interaction usually introduces
energetically weak effects hence the singlet-triplet avoided
crossing is narrow and difficult to observe experimentally. The
first observations of singlet-triplet avoided crossings due to SO
coupling were performed in transport experiments on quantum
dots formed in gated InAs quantum wires.15 A transport
experiment resolving this avoided crossing in a planar structure
was performed only recently16 on a single InAs self-assembled
quantum dot.

The SO interaction appears due to inversion asymmetry
of the crystal lattice (Dresselhaus17 coupling) and/or of

the nanostructure (Rashba18 coupling). The resulting SO
Hamiltonian is not invariant with respect to rotations within the
plane of confinement. The anisotropy of SO interaction was
investigated by observation of singlet-triplet avoided crossing
for rotated external magnetic-field vector.16 The study of
Ref. 16 extends the previous work19 in which the spin splittings
were controlled by orientation of the external magnetic field
superposing the effective magnetic field20 introduced by SO
coupling. It was also demonstrated21 that in the presence of
the SO coupling the nonlinear Kondo conductance depends on
the orientation of external magnetic field.

In this paper we consider a planar anisotropic quantum dot
in a perpendicular magnetic field and demonstrate that the
anisotropy of SO interaction can be used for tuning the width
of the singlet-triplet avoided crossing by spatial orientation
of the dot. This tunability appears provided that both SO
coupling types are present. The discussed effect results from
dependence of the effective strength of the Zeeman interaction
on the quantum dot orientation within the (001) crystal plane.
The Zeeman interaction tends to polarize electron spins in
the direction of the magnetic field. A complete polarization
amounts in removal of the SO coupling effects. The extent
of the spin polarization—and thus also the effective Landé
factor22—vary with the dot orientation. For similar values
of SO coupling constants the width of the avoided crossing
changes by two orders of magnitude between a few μeV to
about 0.5 meV. The dependence of the width of singlet-triplet
avoided crossing on spatial orientation of the dot is present for
any form of confinement potential (quantum well or parabolic
profile) for both single and double quantum dots.

II. THEORY

A. Hamiltonian

We consider a quantum dot defined within the (001)
plane with x and y axes identified with [100] and [010]
crystal directions, respectively. The magnetic field is oriented
parallel to the growth [001] direction (z). We adopt a two-
dimensional approximation assuming that the confinement
potential is separable into vertical and planar components
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W (r) = Vz(z) + V (x,y) and that the vertical confinement is
much stronger than the planar one. Under these conditions
the contribution of states excited in the vertical direction
that could be introduced by the spin-orbit coupling and
by the electron-electron interaction is negligible. The two-
dimensional single-electron Hamiltonian takes the form14

H = h1 + 1
2gμBBσz + HSIA + HBIA, (1)

where h = [ h̄2k2

2m∗ + V (x,y)] is the spatial Hamiltonian, 1 is the
identity matrix, k = −i( ∂

∂x
, ∂
∂y

) + e
h̄

(Ax,Ay), g stands for the

Landé factor, and HSIA and HBIA describe Rashba18 (struc-
ture inversion asymmetry) and Dresselhaus17 (bulk inversion
asymmetry) SO interactions. We use the symmetric gauge
with Ax = −y B

2 , Ay = x B
2 . The two-dimensional Rashba

interaction is composed of the diagonal and linear parts
HSIA = H lin

SIA + H
diag
SIA with

H lin
SIA = α(σxky − σykx), (2)

and

H
diag
SIA = α3Dσz

[
∂W

∂y
kx − ∂W

∂x
ky

]
. (3)

The two-dimensional coupling constant α in Eq. (2) is related
to the bulk coupling constant α3D as α = α3D〈 ∂W

∂z
〉, where the

average value is calculated for the ground-state wave function
in the growth direction. The Dresselhaus interaction contains
a linear and cubic terms HBIA = H lin

BIA + H cub
BIA,

H lin
BIA = β[σxkx − σyky], (4)

H cub
BIA = γ3D

[
σykyk

2
x − σxkxk

2
y

]
, (5)

where γ3D is the bulk coupling constant and the two-
dimensional constant is defined by β = γ3D〈k2

z 〉. We adopt
the material parameters for an In0.5Ga0.5As quantum dot,
α3D = 0.572 nm2 (see Ref. 23) and γ3D = 32.2 meV nm3

(see Ref. 24), the electron effective mass m∗ = 0.0465m0, and
the Landé factor g = −8.97. For Vz in the form of an infinite
quantum well of height d the two-dimensional Dresselhaus
constant is β = γ3D

π2

d2 . For d = 5.42 nm we have β =
10.8 meV nm. The two-dimensional Rashba constant achieves
this value when (an external or built-in) vertical electric field
acquires 188.8 kV/cm.

Below we consider a model confinement potential

Vc(x ′,y ′) = − V0(
1 + [

x ′2
K2

]μ)(
1 + [

y ′2
L2

]μ) , (6)

where V0 = 50 meV is assumed for the depth of the quantum
dot. The exponent μ = 10 is applied for which the potential
profile has a form of a rectangular potential well with smoothed
boundaries. We take 2K = 40 nm as the smaller length of the
dot and the larger length is taken 2L = 90 nm, unless stated
otherwise. The primes standing in Eq. (6) are referred to the
crystal directions x and y by

x ′ = x cos(φ) − y sin(φ), y ′ = x sin(φ) + y cos(φ). (7)

The orientation of the dot with respect to the crystal directions
is displayed in Fig. 1 for φ = π/4. The effects discussed below
remain qualitatively the same for other profiles of the dots. At
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FIG. 1. (Color online) The contour shows a quantum dot of width
2K = 40 nm and length 2L = 200 nm placed along [110] crystal
direction [φ = π/4 in Eq. (7)]. With the colors we plotted the values
of the cosine in the integrand of Eq. (13) for α = 10.8 meV nm.

the end of next section we present also results for elliptical
parabolic confinement potential.

B. Method

The eigenstates of the single-electron Hamiltonian (1) are
calculated on a basis of multicenter Gaussian functions which
is a precise tool for treatment of confinement potentials of
arbitrary or no symmetry,25

φν =
∑
ks

cν
ksχs exp

[
− (r − Rk)2

2a2
+ ieB

2h̄
(xYk − yXk)

]
, (8)

where the centers of Gaussians Rk = (Xk,Yk), are distributed
on a rectangular array,25 and the localization parameter a

is optimized variationally. In Eq. (8) s = ±1 and χs are
eigenstates of the Pauli matrix σz.

The two-electron states are found by the exact diagonal-
ization approach, which uses the basis of the antisymmetrized
products of operator (1) eigenstates,

� = 1√
2

N∑
μ=1

N∑
ν=μ+1

[φμ(1)φν(2) − φμ(2)φν(1)], (9)

for diagonalization of the two-electron Hamiltonian H2 =
H (1) + H (2) + e2

4πεε0r12
(ε = 13.55 is taken for the dielectric

constant). For 2K = 40 nm and 2L = 90 nm we use a basis
of 25 × 25 centers, which gives 1250 elements including
the spin degree of freedom. In the two-electron calculations
we take N = 30 lowest-energy single-electron spin orbitals
which produces a basis of 435 elements and guarantees the
convergence of the variational result better than 1 μeV.

III. RESULTS AND DISCUSSION

A. Effective g factor and orientation of the dot

In order to explain the dependence of the strength of
the Zeeman interaction on the orientation of the dot—which
underlies the results to be presented below—let us consider the
special case of equal linear SO coupling constants α = β =
10.8 meV nm and neglect the cubic Dresselhaus and diagonal
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Rashba terms of SO interaction, which are small anyway.26

We consider the approximate Hamiltonian for B = 0 defined
as H0 = h1 + H lin

SIA + H lin
BIA. H0 commutes with the operator

of the [110] spin component and SO coupling shifts the
entire electron energy spectrum by a constant quantity27 EN =
εN − 2α2m∗

h̄2 , where EN and εN denote energy eigenvalues with
and without SO coupling, respectively. For B = 0 the SO
coupled eigenfunctions of the H0 operator 
N± corresponding
to ±h̄/2 spin eigenvalues in the [110] direction are related to
orbital eigenfunctions ϕN that are obtained in the absence of
the SO coupling as

φN±(x,y) = 1√
2

(
1

±e−iπ/4

)
ϕN (x,y) e∓(i

√
2αm/h̄2)(x+y). (10)

The magnetic-field vector parallel to the growth direction
introduces the Zeeman interaction with the σz matrix to the
Hamiltonian, and the [110] spin component is no longer a good
quantum number. Let us try to diagonalize the Hamiltonian
including the Zeeman effect Hz = H0 + 1

2gμBBσz taking H0

eigenstates (10) as the basis. The shortest reasonable basis
contains two degenerate ground-state wave functions φ1±
corresponding to opposite spin orientations and the same
orbital wave function ϕ1. The matrix of the Hz operator takes
the form

Hz =
( 〈φ1+|Hz|φ1+〉 〈φ1+|Hz|φ1−〉

〈φ1−|Hz|φ1+〉 〈φ1−|Hz|φ1−〉
)

, (11)

where both diagonal terms are 〈φ1±|HB |φ1±〉 = E1 − 2α2m

h̄2 ,

and the off-diagonal ones are

〈φ1±|HB |φ1∓〉= 1

2
gμBB

∫
|ϕ1(x,y)|2e±i(2

√
2αm∗/h̄2)(x+y)dxdy.

(12)

For potentials with an in-plane inversional symmetry that are
considered in this paper the matrix element (12) is real and is
given by

〈φ1±|HB |φ1∓〉

= 1

2
gμBB

∫
|ϕ1(x,y)|2 cos

[
2
√

2αm∗

h̄2 (x + y)

]
dxdy.

(13)

Figure 1 shows the plot of the cosine term in the integrand.
The argument of the cosine has a fixed orientation with respect
to the crystal directions and changes sign along [110] with a
period of λSO = πh̄2

2αm∗ (for the applied parameters λSO = 238.4
nm). For the quantum dot of length L = 200 nm oriented along
[110] (see Fig. 1) the cosine has the same sign within the
quantum dot area. For this orientation the off-diagonal terms of
Hamiltonian matrix (11) are the largest. On the other hand, for
the dot oriented along [110] the sign of the integrand oscillates
within the quantum dot area and the off-diagonal terms
are necessarily smaller. The off-diagonal matrix elements mix
the σx−y eigenstates leading to alignment of the spin along
the direction of the field (z). Therefore the spin polarization
due to the Zeeman effect should be the strongest for the [110]
dot orientation and the weakest for the dot oriented along the
[110] crystal direction.
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FIG. 2. (Color online) (a) The dots show the eigenvalues of
Hamiltonian (11) and the lines present the results of diagonalization
of the exact Hamiltonian in function of the external magnetic field for
α = β = 10.8 meV nm, 2K = 40 nm, and 2L = 350 nm. The results
for [110] and [110] orientations of the dot are shown by gray (red
online) and black lines, respectively. (b) The spin of the two lowest
energy levels for both orientations of the dot. The dots in (c) and (d)
show the results of diagonalization of 4 × 4 matrix Hamiltonian with
basis including the first excited state (see text).

The results of the diagonalization of matrix Hamiltonian
(11) are displayed in Fig. 2(a) for the dot oriented along [110]
(black dots) and [110] (red dots) directions. In Fig. 2(b) we
display the average spin for the two lowest-energy states for
both orientations of the dot. The lines in Fig. 2 show the
results of the exact diagonalization with the basis given by
Eq. (8). The eigenvalues of matrix (11) quite well reproduce
the exact energy levels and the average spin.28 According to
the intuition given by Fig. 1, the electron spin reacts to the
application of the external magnetic field in a more pronounced
manner for the [110] orientation of the dot than for the
perpendicular orientation [110]. As the nonzero magnetic field
lifts the ground-state degeneracy, the ground state (the first
excited state) becomes nearly spin-up (spin-down) polarized.
Polarization of the spin by infinitesimal B for the dot oriented
along the [110] direction is much weaker and increases for
higher fields. This increase [black lines in Fig. 2(b)] is not
very well reproduced by the two-element basis (black dots).
Inclusion of the first excited scalar wave function ϕ2 to the
approximate calculation gives four basis elements of type
(10). The results are displayed in Figs. 2(c) and 2(d). The
four-element basis reproduces also the excited energy levels
and an improvement of the description of sz(B) dependence is
obtained, particularly for the [110] orientation.

The extent of the spin polarization that varies with the dot
orientation results in the dependence of the Kramers multiplet
splitting induced by weak magnetic fields. This in turn leads
to the orientation dependence of the effective g∗ factors,22

which in the experiments are estimated by the splitting of
energy levels by weak magnetic field. We estimate the effective
factor by

g∗ = lim
B→0

E2 − E1

μBB
, (14)
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FIG. 3. (Color online) Energy spectrum (upper row) and mean values of the z component of the spin (lower row of plots) for a single
electron in a quantum dot of width 2K = 40 nm and various lengths 2L. The results for the dot oriented along [110] and [110] are given in
black and gray (red online), respectively. Equal Rashba and Dresselhaus linear coupling constants were assumed, α = β = 10.8 meV nm. In
(a) and (e) the green dotted lines show the energy spectrum in the absence of SO interaction shifted down on the energy scale by 0.142 meV.

which for the antidiagonal [110] orientation of the dot gives
g∗ = −8.7 (quite close to g = −8.97) and for the diagonal
orientation [110] g∗ = −2.5 only.

B. Single-electron results

Let us now consider the results obtained by diagonalization
of Hamiltonian (1) with basis (8). Figure 3 shows the energy
levels and mean spin z components for various lengths of the
dot 2L for the diagonal [110] (black color) and the antidiagonal
[110] (red color) dot orientation. For the dot which is close to
the square profile [2K = 40 nm and 2L = 50 nm; see Fig. 3(a)]
we plotted the results without SO coupling by the green dotted
line (shifted down on the energy scale by 0.142 meV). The
first and second energy levels correspond to opposite parity and
spin. For B below the avoided crossing, the first excited state is
of even parity with spin oriented down and the second excited
state is of odd parity with spin oriented up. The SO coupling
opens an avoided crossing between these two energy levels.
This avoided crossing is wider for the diagonal and thinner for
the antidiagonal dot orientation [Fig. 3(a)]. The width of this
avoided crossing is determined by an extent to which the SO
coupling entangles the spin and orbital wave functions. The
width varies more strongly with the dot orientation when the
anisotropy of the dot is enhanced, i.e., for larger lengths of
the dot [Figs. 3(a), 3(c), 3(e), and 3(g)], particularly when it
becomes comparable to λSO. For the antidiagonal orientation
of the dots, the strong Zeeman effect quickly polarizes the
electron spin and thus removes the SO coupling effects from
the energy spectrum. The energy spectra obtained without SO
coupling are close to the ones obtained for the antidiagonal
orientation of the dot—see Figs. 3(a) and 3(e).

Figure 4 shows the dependence of the effective g∗ factor on
the orientation of the dots for 2L = 90 nm and 200 nm. The
g∗ factor acquires maximal (minimal) absolute value for the
antidiagonal (diagonal) dot orientation. For nonequal coupling
constants, variation of g∗ is reduced, and disappears for a single
type of SO coupling present. Note that for the antidiagonal

orientation of the dot the same g∗ is obtained for both L

considered.
For completeness, in Fig. 5 we display the mean value of the

z component of the spin in the function of the dot orientation
angle for α = β, 2L = 90 nm, and two values of the magnetic
field B = 1 T (red) and B = 3 T (black curves). The spin
polarization is the largest for φ = π/4 and the smallest for
φ = −π/4.

The spatial orientation of the dot has a significant influence
on the SO-related avoided crossings only when both types
of the coupling are of comparable strength. Figure 6 shows
the results for the dominant Dresselhaus term α = 0.2β for
2L = 90 nm. The dependence of the width of the avoided
crossing on orientation is qualitatively the same as for α = β

[see Figs. 3(c) and 3(d)], only much weaker. For comparison,
the energy spectrum for α = 0 and β = 10.8 meV nm is given
in Fig. 6(a) with the black dotted line. For a single type of SO
coupling present the same energy spectrum is obtained for any
dot orientation.

C. Two-electron results

The two-electron spectrum without SO coupling is given in
Fig. 7(a) by the dotted lines (green online). When the magnetic

FIG. 4. (Color online) Effective g∗ factor estimated by Eq. (14)
in function of the spatial orientation of the dot for 2K = 40 nm,
2L = 90 nm (solid lines), and 2L = 200 nm (dashed lines) for β =
10.8 meV nm and various values of α.
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FIG. 5. (Color online) 〈sz〉 for B = 1 T and 3T plotted in function
of angle φ with black and gray (red online) lines, respectively, for
2L = 90 nm and α = β = 10.8 meV nm.

field is swept across B = 1.1 T the ground state changes from
the singlet with even spatial parity to the spin-up polarized
triplet with odd spatial parity. The dashed and solid lines in
Fig. 7 correspond to SO coupling for α = β = 10.8 meV nm.
The results for [110] and [110] dot orientations are plotted
with the black and red lines, respectively. For the [110]
dot orientation the singlet-triplet transition produces a very
narrow avoided crossing of width 6 μeV as compared to the
pronounced (0.37 meV wide) avoided crossing obtained for
the [110] orientation. For the [110] orientation the mean values
of the spin vary smoothly as functions of B [see Fig. 7(b)],
while for [110] the mean spin is nearly a bivalued function of
magnetic field [see Fig. 7(b)], which indicates a removal of the
SO coupling effects. The corresponding energy spectrum [red
lines in Fig. 7(a)] is very close to the spectrum obtained without
SO coupling (green dotted lines) up to a constant energy shift
[the energy levels without SO coupling are shifted down by
0.285 meV in Fig. 7(a)]. A similar fact was presented above
for the single electron in Fig. 3(a).

In Fig. 8(a) we present two lowest-energy levels as functions
of the orientation of the dot for three values of magnetic
field: 1 μT (residual B), 0.5 T—before the singlet-triplet
avoided crossing—and for 1.1 T—at the center of avoided
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FIG. 6. (Color online) (a) Energy spectrum for a single-electron
dot with a larger length aligned with [110] (black), and [110] (red)
crystal directions given by solid and dashed lines. The dot size is
2K = 40 nm and 2L = 90 nm, β = 10.8 meV nm, and α = 0.2β.
The dotted curve shows the results without the linear Rashba term
(α = 0). (b) Mean value of sz operator for three lowest energy states,
respectively, for [110] and [110] dot orientations. The results for these
geometrical parameters and α = β were given in Figs. 3(c) and 3(d).
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FIG. 7. (Color online) (a) Two-electron energy spectrum for
single-elongated dot aligned along [110] (black) and [110] (dark
gray–red online). The dotted curve (green online) shows the results
without SO coupling shifted down by 0.285 meV. (b) Mean value
of sz for two lowest-energy states (solid, short dashed, respectively)
for [110] (black) and [110] (dark gray–red online) dot orientation.
The value of α = β = 10.8 meV nm is assumed, 2K = 40 nm and
2L = 90 nm.

crossing. The average spins are displayed in Fig. 8(b). For the
residual magnetic field the energy spectrum is independent
of the dot orientation and the ground-state spin is zero.
Nevertheless, a dependence of the spin of the excited state
(threefold degenerate at B = 0) on the orientation of the dot is
noticeable. For 0.5 T the energy levels weakly depend on the
dot orientation, but the dependence of the spins is strong. The
situation is opposite for 1.1 T. In both the cases for φ = π/4
the spins approach closest to 0 and h̄—values that are found
in the absence of SO interaction. For 1.1 T there is a stronger
peak or dip structure in the spins displayed in Fig. 8(b), which
results from the near degeneracy of energy levels [see Fig. 8(a)]
that makes the system particularly susceptible to perturbation
by external magnetic field.

-86

-85.8

-85.6

-85.4

-85.2

0

0.5

1

1.5

2

z
ħ

-0.5 -0.25 0 0.25 0.5

FIG. 8. (Color online) (a) Two lowest two-electron energy levels
plotted in blue for B = 1 μT, in black for B = 0.5 T, and in red for
B = 1.1 T. (b) sz mean value. The same parameters as in Fig. 7 were
adopted.
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D. Parabolic and double quantum dots

The profiles of the confinement potentials depend strongly
on the type of quantum dots, their size, and growth conditions.
The effects discussed above occur in the low-energy part of
the spectrum and appear as functions of the dot orientation. In
order to demonstrate that they are not specific to any profile
of confinement potential, we considered also an elliptical
parabolic quantum dot and a double dot.

Confinement potential of electrostatic quantum dots29 is
generally parabolic close to its minimum, although potential
profiles closer to a quantum well can also be realized.30 We
considered the potential in the form

Vp(x ′,y ′) = m∗ω2
x

2
x ′2 + m∗ω2

y

2
y ′2, (15)

with h̄ωx = 2 meV and h̄ωy = 5 meV. The results for x ′

identified with [110] and [110] directions are given in
Fig. 9. The avoided crossing between the first and second
excited states of the single-electron [Fig. 9(a)] as well as
the singlet-triplet [Fig. 9(b)] avoided crossing vary strongly
with the orientation of the dots in consistence with the above
discussion for the confinement potential given by Eq. (6).

We model a double dot by introducing a barrier in the center
of the quantum dot,

Vd (x ′,y ′) = Vc(x ′,y ′) + Vb(
1 + [

x ′2
K2

]μ)(
1 + [

y ′2
B2

]μ) , (16)

where Vc is defined by Eq. (6) with 2K = 40 nm and
2L = 90 nm, Vb = 10 meV, and 2B = 10 nm is taken for
the barrier width. For comparison, the results for the single
dot were presented in Fig. 3(c) for the single electron and in
Fig. 6(a) for the electron pair. Both the single- and two-electron
avoided crossings that were discussed above involved mixing
of even and odd spatial parity states by SO interaction. For the
double dot these states correspond to bonding and antibonding
orbitals, respectively. The avoided crossings observed for the
double dot are considerably thinner than in the single-dot case
which is due to the introduction of the interdot barrier (in
the limit of an impenetrable interdot barrier the bonding and
antibonding orbitals are degenerate). In Fig. 10 we find the
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FIG. 9. (Color online) One- (a) and two-electron (b) energy
spectrum for elliptical dot aligned along [110] (black) and [110]
(gray–red online) for the elliptic parabolic confinement potential
given by Eq. (15). Results are obtained for α = β = 10.8 meV nm.
The insets present the equipotential lines.
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FIG. 10. (Color online) Same as Fig. 9 only for the double dot
potential (16).

dependence of the width of avoided crossing on the orientation
of the dot that agrees with the precedent results.

E. Discussion

The presented results indicate that the width of SO-related
avoided crossings can be designed by specific orientation of
the dot with respect to the crystal axes. The choice of the
orientation has to be made at the sample fabrication stage.
In gated quantum dots with confinement potential of the
electrostatic origin29 the orientation of the dot can be chosen
quite arbitrarily by the shape of electrodes defined on the
sample surface. Orientation of quantum dots with structural
confinement can also be intentionally controlled. For instance,
InGaAs/GaAs double quantum dots are formed on pre-
patterned substrates along either [110] or [110] directions,31

for which the width of the SO-related avoided crossing
acquires extremal values. In electrostatic quantum dots with
a multielectrode setup,29 rotation of the confinement potential
should be possible to realize by voltages applied to the gates
on a single sample.

We find that the orientation of the dot influences the width
of avoided crossings provided that both the linear SO coupling
constants are similar. The Rashba interaction constant can be
adjusted by external electric fields,32 to match the Dresselhaus
constant in particular for observation33 of persistent spin helix
states in quantum wells.34 When only a single type of SO
coupling is present, the orientation of the dots has no influence
on the energy spectrum. In presence of the SO coupling, the
orbital angular momentum is not a good quantum number even
for circular confinement potentials. Nevertheless, both the spin
components of a single-electron wave function do possess a
definite, albeit different, angular momenta. In consequence,
the charge density reproduces the circular symmetry of the
confinement potential.35 In potentials of circular symmetry
the charge density becomes anisotropic only when both SO
coupling types are present and additionally the Zeeman effect
is introduced by external magnetic field.35

The effect of the dot orientation on the energy spectrum
is obtained in external magnetic field. For B = 0, the dot
orientation has no influence on the Kramers-degenerate energy
spectrum even when both SO coupling types are present.
For α = β the effective magnetic field introduced by SO
coupling is oriented along the [110] direction independent
of the orientation of the dot, nevertheless, its strength is dot-
orientation dependent.36 The electron spins precess in the ef-
fective magnetic field. Therefore the orientation of the dot does
matter for the spin manipulation at zero magnetic field,27,36

even though no effect on the energy spectrum is present.
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IV. SUMMARY AND CONCLUSIONS

We studied the avoided crossings opened by SO interaction
in the single- and two-electron planar (001) quantum dots
as functions of the external perpendicular magnetic field. We
demonstrated that the width of these avoided crossings can be
tuned within a range of two orders of magnitude by orientation
of the quantum dot with respect to the crystal directions.

The tunability is achieved provided that (i) both Rashba and
Dresselhaus interactions are present with comparable values
of linear coupling constants (α 	 β), (ii) the dot is anisotropic,
and (iii) its larger length is comparable to λSO = πh̄2/(2αm∗).
The dependence of the width of avoided crossings on the
orientation of the dot results from a different strength of the
Zeeman interaction, which more or less efficiently polarizes
the electron spin. The spin polarization removes the spin-

orbital entanglement from wave functions along with the
SO coupling effects from the energy spectrum. Thus the
dot orientation affects simultaneously the width of avoided
crossings and the effective Landé factor g∗. As a general rule,
the dot orientations producing large |g∗| values correspond to
narrow avoided crossings.

ACKNOWLEDGMENTS

This work was supported by the Krakow Interdisciplinary
Ph.D. Project in Nanoscience and Advanced Nanostruc-
tures’ operated within the Foundation for Polish Science
MPD Programme co-financed by the EU European Re-
gional Development Fund. Calculations were performed in
ACK–CYFRONET–AGH on the RackServer Zeus.

1P. Stano and J. Fabian, Phys. Rev. Lett. 96, 186602 (2006);
V. N. Golovach, A. Khaetskii, and D. Loss, Phys. Rev. B 77,
045328 (2008); K. Shen and M. W. Wu, ibid. 76, 235313 (2007);
T. Meunier, I. T. Vink, L. H. Willems van Beveren, K.-J. Tielrooij,
R. Hanson, F. H. L. Koppens, H. P. Tranitz, W. Wegscheider,
L. P. Kouwenhoven, and L. M. K. Vandersypen, Phys. Rev. Lett.
98, 126601 (2007).

2W. Yao, R.-B. Liu, and L. J. Sham, Phys. Rev. B 74, 195301
(2006); W. M. Witzel and S. Das Sarma, ibid. 74, 035322 (2006);
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