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Direct current driven by ac electric field in quantum wells
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It is shown that the excitation of charge carriers by ac electric field with zero average driving leads to a direct
electric current in quantum well structures. The current emerges for both linear and circular polarization of the
ac electric field and depends on the field polarization and frequency. We present a microscopic model and an
analytical theory of such a nonlinear electron transport in quantum wells with structure inversion asymmetry. In
such systems, the dc current is induced by ac electric field that has both the in-plane and out-of-plane components.
The ac field polarized in the interface plane gives rise to a direct current if the quantum well is subjected to an
in-plane static magnetic field.
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I. INTRODUCTION

The excitation of charge carriers by ac electric field in
noncentrosymmetric semiconductor structures may lead to a
direct electric current even in the absence of dc driving. In
the high-frequency spectral range, when mechanisms of the
current formation involve quantum optical transitions, such
effects are usually referred to as photogalvanic effects.1,2

At present, they are intensively studied in various low-
dimensional systems and provide the insight into the band-
structure details as well as the kinetics of photoexcited
carriers.3–8 In the classical frequency range, i.e., ω � ε̄/h̄,
where ω is the field frequency and ε̄ is the mean kinetic
energy of carriers, the photogalvanic effects can be treated
fruitfully as nonlinear electron transport and included in the
more general class of quantum ratchets (for a review, see
Ref. 9). The ratchet transport of charge carriers induced
by the ac electric field was studied both theoretically and
experimentally for semiconductor structures with artificially
fabricated asymmetric scatterers.10,11 Recently, it has also been
addressed theoretically for bulk wurtzite crystals and low-
symmetry quantum wells (QWs) based on zinc-blende-lattice
compounds.12,13 However, the proposed mechanisms of the
current formation require the multiband mixing of states and,
therefore, vanish in the effective-mass approximation.

Here, we show that in conventional QWs, where the
space inversion is lifted by structure asymmetry, the ratchet
transport of free carriers emerges in the simple one-band
model of size-quantized states. We develop a microscopic
model and an analytical theory of the dc current generation
by the ac electric field, which are valid for the classical range
of the field frequency. It is shown that the electric current
emerges for both linear and circular polarization of the ac
field and its magnitude depends on the radiation frequency.
We also study the effect of an in-plane static magnetic field on
the electron transport and show that the magnetic field gives
rise to additional contributions to the dc current, which have
different polarization dependences. For simplicity, we neglect
spin splitting of the conduction band and focus on the orbital
mechanisms of the current formation.

Phenomenologically, the density of direct current j induced
by the ac electric field is described by

jα =
∑
βγ

χαβγ EβE∗
γ +

∑
βγ δ

φαβγ δBβEγ E∗
δ , (1)

where E is the complex amplitude of the electric field ,

E(t) = E exp(−iωt) + E∗ exp(+iωt), (2)

assumed to be homogeneous, the indices α, β, γ , and δ

enumerate the Cartesian coordinates, and components of the
tensors χ and φ satisfy the relations χαβγ = χ∗

αγβ and φαβγ δ =
φ∗

αβδγ , respectively, which follow from the reality of the current
density j . The third-rank tensor χ describes the photogalvanic
effect (or high-frequency nonlinear conductivity). The model
and microscopic theory of this effect are presented in Sec. II.
The fourth-rank tensor φ is responsible for additional current
contributions emerging in the presence of an external static
magnetic field B; they are addressed in Sec. III.

II. HIGH-FREQUENCY NONLINEAR CONDUCTIVITY

We consider a semiconductor QW with structure inversion
asymmetry and assume that the well is isotropic in the in-
terface plane (C∞v point-group symmetry). A straightforward
symmetry analysis yields that the in-plane dc current in such
structures can be induced only by the ac field, which has both
the in-plane E‖ = (Ex,Ey) and out-of-plane Ez components.
The tensor χ has nonzero components χxxz = χyyz = χ∗

xzx =
χ∗

yzx , and the current density given by the first term in the
right-hand side of Eq. (1) can be rewritten in the form

j = L (E‖E∗
z + Ez E∗

‖) + C i(E‖E∗
z − Ez E∗

‖). (3)

Here, the phenomenological parameter L = Re χxxz describes
the electric current that is induced by a linearly polarized ac
field and is insensitive to the sign of radiation helicity for
elliptical polarization. In contrast, C = Im χxxz stands for the
radiation-helicity-dependent electric current vanishing for the
linearly polarized radiation. This is owing to the fact that
i(EαE∗

β − EβE∗
α) (α �= β) is nothing but a component of the

pseudovector i[E × E∗] = |E|2(q/q)Pcirc, where q and Pcirc

are the wave vector and the circular polarization degree of the
electromagnetic wave.

The microscopic mechanisms of the current generation are
illustrated in Figs. 1(a) and 1(b) for the linearly and circularly
polarized ac field, respectively. We assume that the electric
field E(t) is polarized in the (x,z) plane and the electron
mobility is limited by electron scattering from static impurities.
The structure inversion asymmetry is modeled here by placing
the δ layer of impurities (dotted line) closer to the lower
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FIG. 1. (Color online) Microscopic model of dc current j
generation by (a) linearly polarized and (b) circularly polarized ac
electric field E(t) in a QW.

interface rather than exactly in the QW center. However, the
microscopic model presented below is also valid for QWs
where nonequivalence of the z and −z directions is achieved
by the asymmetry of confinement potential.

Figure 1(a) sketches the mechanism of dc current genera-
tion by the linearly polarized ac field, i.e., when the in-plane
Ex(t) and out-of-plane Ez(t) components are cophased. The
in-plane oscillating field Ex(t) causes an alternating current of
electrons along the x axis. The time-average value of the force
eEx(t) acting upon carriers is zero, therefore, dc current driven
solely by the in-plane electric field would vanish. However,
the electric field E(t) has also the out-of-plane component
Ez(t), which oscillates at the same frequency and acts upon
the charge carriers as well. The force eEz(t) pushes the carriers
to the upper or lower interface depending on the force direction
and thereby changes the electron wave function along the QW
normal ϕ(z,t) [see Fig. 1(a)]. Such time dependence of the
envelope function ϕ(z,t) results, in turn, in the modulation
of the electron mobility μ(t) at the frequency ω because the
impurities, which determine the mobility, are shifted off the
QW center in our model. Therefore, when the carriers are
driven in one direction in the QW plane their mobility and,
hence, the drift velocity vd are higher than those a half period
later when the carriers flow in the opposite direction. Such an
asymmetry in the drift of charge carriers along the x and −x

directions implies a nonvanishing dc electric current.
For a circularly polarized ac electric field [Fig. 1(b)], the

in-plane and out-of-plane components of E(t) are phase shifted
by ±π/2: The component Ez(t) reaches maximum when
Ex(t) is zero and vice versa. Now, the time-average product
Ex(t)Ez(t) vanishes and no dc current emerges in the static
limit ω → 0. The time-average flow of carriers along the
x axis is obtained only at finite frequency if one takes into
account the retardation of the drift velocity vd (t) with respect
to the in-plane field Ex(t). Indeed, as is well known from
the classical Drude theory of high-frequency conductivity,
vd (t) does not follow E‖(t) exactly but is behind the field
with the retardation phase shift of arctan(ωτp), where τp is
the momentum relaxation time. Owing to the retardation, the
carriers keep moving in the QW plane even when Ex(t) = 0
and the field component Ez(t) efficiently affects the mobility
[see Fig. 1(b)]. Similarly to the case of linearly polarized field,
such modulation of the mobility leads to a time-average drift

current along the x axis. An interesting feature of dc current
induced by a circularly polarized ac field is that the current
direction is opposite for right-handed (σ+) and left-handed
(σ−) polarization. Indeed, for σ+ and σ− polarizations the
phase shift between the field components Ex(t) and Ez(t) has
an opposite sign. Therefore, the inversion of radiation helicity
changes the sign of the mobility oscillations and reverses the
electric current.

The expression for dc electric current can be readily
derived in the framework of the classical Drude theory. In
this approach, the time evolution of the in-plane drift velocity
vd (t) is found from the Newton equation

dvd (t)

dt
= eE‖(t)

m∗ − vd (t)γ (t), (4)

where m∗ is the effective mass and γ (t) is the rate of velocity
relaxation that depends on time owing to the effect of the
out-of-plane field component Ez(t) on the function of size
quantization (see Fig. 1). In the linear in Ez(t) regime, the
time dependence of γ (t) follows Ez(t) and can be presented in
the form

γ (t) = 1/τp + ζeEz(t), (5)

where τp is the velocity (momentum) relaxation time at Ez = 0
and ζ is a constant to be calculated below. Note that both
E‖(t) and Ez(t) oscillate at the same frequency [see Eq. (2)],
therefore the drift velocity vd (t) contains harmonics at zero as
well as the double frequencies. To solve Eq. (4) we decompose
the drift velocity into harmonics,

vd (t) =
∑

n=0,±1,...

v
(n)
d exp(−inωt), (6)

and finally obtain within linear in Ez and E‖ approximation

v
(0)
d = −ζeτp

(
v

(1)
d E∗

z + v
(−1)
d Ez

)
, (7)

v
(1)
d = eE‖/m∗

1/τp − iω
, v

(−1)
d = eE∗

‖/m∗

1/τp + iω
. (8)

The direct electric current is then found by multiplying v
(0)
d by

the electron charge e and the carrier density Ne, which yields

j = −Ne

ζe3τ 2
p

m∗

(
E‖E∗

z

1 − iωτp

+ E∗
‖Ez

1 + iωτp

)
. (9)

Equation (9) contains both linear and circular currents and can
be rewritten in the form of Eq. (3) with the phenomenological
parameters

L = −Ne

ζe3τ 2
p/m∗

1 + (ωτp)2
, C = −Ne

ζe3τ 3
p ω/m∗

1 + (ωτp)2
. (10)

Shown in Fig. 2 are the frequency dependences of the
electric currents driven by linearly polarized and circularly
polarized radiation, j lin and j circ, respectively. The spectral
behavior of j lin repeats that of the Drude absorption: It is
maximal at zero frequency and decays as 1/ω2 at ωτp � 1. In
contrast, the frequency dependence of the circular current is
nonmonotonic. The current j circ is proportional to ω at small
frequencies, reaches maximum at ωτp = 1, and decays as 1/ω

at higher frequencies.
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FIG. 2. (Color online) Frequency dependences of electric cur-
rents induced by a linearly polarized and circularly polarized ac
electric field.

Equations (9) and (10) accurately describe the photocurrent
provided τp is independent of the electron energy, as it happens
in the case of short-range scatterers, or the electron gas is
degenerate. In the latter case, τp should be taken at the Fermi
energy. The more general expressions for the current can be
derived by solving the Boltzmann kinetic equation

∂f ( p,t)

∂t
+ eE‖(t) · ∂f ( p,t)

∂ p
= St f ( p,t) (11)

for the electron distribution function f ( p,t). Here, p =
(px,py) is the electron momentum and St f ( p,t) is the
collision integral. In the case of elastic scattering, the integral
has the form

St f ( p,t) =
∑

p′
[W p p′f ( p′,t) − W p′ pf ( p,t)], (12)

where W p′ p = (2π/h̄)〈|V p′ p|2〉 δ(ε p − ε p′) is the rate of scat-
tering between the states p and p′, V p′ p is the scattering matrix
element, and the angle brackets denote averaging over the
positions of impurities.

The effect of the out-of-plane field component Ez(t) on the
function of size quantization can be treated as the field-induced
admixture of excited electron states to the ground-subband
wave function. To first order in the perturbation theory, the
wave function of the ground subband e1 has the form

ϕ(z,t) = ϕ1(z) + eEz(t)
∑
ν �=1

zν1

εν1
ϕν(z), (13)

where ϕν(z) are the wave functions along z at zero electric field,
zν1 = ∫

ϕν(z)zϕ1(z) dz are the coordinate matrix elements,
εν1 are energy separations between the subbands, and ν is
the subband index [the dominant contribution ∝Ez(t) comes
usually from ν = 2]. Then, the scattering rate can be presented
in the form

W p′ p = W
(0)
p′ p + δW, (14)

where W
(0)
p′ p = (2π/h̄)〈|V11( p′, p)|2〉 δ(ε p − ε p′) is the scatter-

ing rate at zero electric field and δW is the linear in Ez(t) term
given by

δW = 8πe

h̄
Ez(t)

∑
ν �=1

zν1

εν1
〈Re V ∗

11V1ν〉δ(ε p − ε p′), (15)

with V11 and V1ν being the “intrasubband” and “intersubband”
matrix elements of scattering. The rate W

(0)
p′ p is determined

by intrasubband scattering and may depend on the initial p
and final p′ electron momenta. In contrast, the scattering

processes between states described by different functions ϕν(z)
require the transfer of momentum comparable to πh̄/a (a is
the QW width), which is much larger than the in-plane electron
momentum. Such processes can be caused by short-range
scatterers only, therefore, we assume that δW is independent
of the directions of p and p′. In this case, the contribution to
the collision integral (12) proportional to Ez(t) has the form

δStf ( p,t) = −ζeEz(t)[f ( p,t) − f̄ ( p,t)], (16)

where f̄ ( p,t) is the distribution function averaged over the
directions of p and

ζ = 4m∗

h̄3

∑
ν �=1

zν1

εν1
〈Re V ∗

11V1ν〉. (17)

We note that the products zν1〈Re V ∗
11V1ν〉 and, hence, the

parameter ζ are equal to zero in absolutely symmetric
structures where the impurity profile is an even function with
respect to the QW center and the functions ϕν are either odd
or even.

To solve the kinetic equation (11) with the scattering
rate (14) we decompose the distribution function f ( p,t) into
frequency n and angular m harmonics as follows:

f ( p,t) =
∑
n,m

f (n)
m exp(imθ p − inωt), (18)

where θ p is the polar angle of the vector p. Then, for
the time-independent asymmetric part of the distribution
function δf ( p) = f

(0)
1 exp(iθ p) + f

(0)
−1 exp(−iθ p), which de-

termines the dc current, we derive

δf ( p) = ζe2τ 2
p

[
(E‖ · v)E∗

z

1 − iωτp

+ (E∗
‖ · v)Ez

1 + iωτp

]
dfε

dε
, (19)

where fε is the equilibrium distribution function of carriers,
ε = p2/(2m∗) and v = p/m∗ are is the electron kinetic energy
and velocity, respectively, the momentum relaxation time is
given by τ−1

p = ∑
p′ W

(0)
p′ p(1 − cos θ p′ p), and θ p′ p = θ p′ − θ p

is the angle between p′ and p.
The electric current is obtained from Eq. (19) by multiply-

ing δf ( p) by the electron charge e and velocity v, and summing
up the result over the momenta p. It gives

j = 2ζe3

m∗
∑

p

τ 2
p

(
E‖E∗

z

1 − iωτp

+ E∗
‖Ez

1 + iωτp

)
ε dfε

dε
, (20)

where the factor of 2 accounts for the spin degeneracy.
Equation (20) accurately takes into account the possible
dependence of the momentum relaxation time on energy and is
more general than Eq. (9). In the case of short-range scattering,
where the energy dependence of τp vanishes, Eqs. (20) and (9)
are equivalent to each other and can also be rewritten in the
form of Eq. (3) with the parameters

L = −4Nee
3τp/m∗

1 + (ωτp)2

∑
ν �=1

zν1

εν1
ξν, (21)

C = −4Nee
3τ 2

p ω/m∗

1 + (ωτp)2

∑
ν �=1

zν1

εν1
ξν, (22)
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where

ξν = 〈Re V ∗
11V1ν〉

〈|V11|2〉 =
∫ ∞
−∞ ϕ3

1(z)ϕν(z)u(z) dz∫ ∞
−∞ ϕ4

1(z)u(z) dz
, (23)

with u(z) being the profile of impurity distribution along
the QW growth direction. Following Eqs. (3), (21), and
(22), one can estimate the electric current magnitude. The
estimate gives j ∼ 10−3 A/cm for a GaAs-based QW with
the electron density Ne = 1011 cm−2, the well width 20 nm,
the structure asymmetry degree ξ2 = 0.1, the electric-field
amplitude Ez = E‖ = 1 kV/cm, and the frequency ω = 1/τp.

The above developed microscopic theory describes the
formation of dc current by ac electric field in the whole
range of classical frequencies, no matter how large is ωτp. At
even higher frequencies, when h̄ω becomes comparable to the
mean electron energy ε̄, another approach involved quantum
optical transitions is required. However, both classical and
quantum approaches unite and should give the same results
in the intermediate frequency range 1/τp � ω � ε̄/h̄. This
is indeed the case: Our results for the circular current
Eq. (22) in the limit ωτp � 1 coincide with those obtained
in Ref. 7, where virtual indirect optical transitions were
considered. The linear current Eq. (21) decreases as 1/(ω2τp)
at ωτp � 1 and becomes much smaller than the circular
current at h̄ω ≈ ε̄. The microscopic theory of the linear
photocurrent in this spectral range is a task for the future.

It is also worth mentioning that, in QWs grown from zinc-
blende-type semiconductors, there are additional contributions
to linear and circular currents caused by bulk inversion
asymmetry. Those currents flow in different directions with
respect to the currents caused by structure inversion asymmetry
and can be easily discriminated in experiment.3 The presented
model of high-frequency nonlinear conductivity can be applied
to evaluate those currents as well. In this case, one should
consider the modulation of electron mobility caused by the
electric-field-induced admixture of the valence-band states to
the electron wave function.7 Finally, we note that the effect
of electric field on the mobility can originate not only from
the change of scattering rate but also from the variation of the
effective electron mass, as was proposed in Ref. 8.

III. MAGNETIC-FIELD-INDUCED CURRENTS

The application of a static magnetic field B in the QW plane
enables the generation of a direct current even in the geometry
where the ac electric field oscillates in the interface plane.
Within a linear in B approximation, such currents are described
by the second term of the right-hand side of phenomenological
Eq. (1). A symmetry analysis shows2,14 that, for this particular
geometry, the polarization dependence of the electric current
caused by QW structure inversion asymmetry is given by

jx = M1[By(|Ex |2 − |Ey |2) − Bx(ExE
∗
y + EyE

∗
x )]

+M2By |E|2 + M3Bxi(ExE
∗
y − EyE

∗
x ),

(24)
jy = M1[Bx(|Ex |2 − |Ey |2) + By(ExE

∗
y + EyE

∗
x )]

−M2Bx |E|2 + M3Byi(ExE
∗
y − EyE

∗
x ).

Here, the parameter M1 describes the electric current whose
magnitude and direction depend on the linear polarization of

the field, M2 describes the polarization-independent current,
and M3 is responsible for the circular current sensitive to the
radiation helicity.

Microscopically, magnetic-field-induced currents emerge
owing to the modification of electron states in the in-plane
magnetic field, which can be of both diamagnetic (pure
orbital) and paramagnetic (spin-dependent) origins, see, e.g.,
Refs. 14–19 and references therein. To first order in the
magnetic field, the diamagnetic and spin-related mechanisms
additively contribute to the current generation and, therefore,
can be considered independently. Spin-related mechanisms of
the current formation are based on the Zeeman splitting of
electron states together with spin-dependent electron scatter-
ing; they are studied for ωτp � 1 in Refs. 20 and 21. Below we
focus on diamagnetic mechanisms, which are less investigated
and do not require spin-orbit coupling.

The diamagnetic mechanisms of the current generation
originate from the Lorentz force acting upon charge carriers
confined in QWs and modifying their energies and wave
functions. To first order in B, the diamagnetic corrections to the
electron energy can be considered as displacements of electron
subbands in the momentum space.15 The shift of the ground
subband alone does not disturb the symmetric distribution of
carriers within the subband and, moreover, can be excluded by
a proper choice of the coordinate origin. Besides the energy
shift, the in-plane magnetic field changes the wave functions
of free carriers, which leads to the asymmetry in electron
scattering by impurities or phonons.22 Such an asymmetry
in electron scattering by impurities is illustrated in Fig. 3(a).
Here, we assume that the δ layer of impurities (dotted line)
is placed closer to the QW lower interface, and the magnetic
field B ‖ y. Electrons with different velocities move in the QW
plane and are pushed by the Lorentz force FL = (e/c)[v × B]
to the lower or upper interface depending on the sign of vx . This
leads to a variation of the electron function of size quantization
that results, in turn, in the asymmetry of electron scattering:
Carriers with vx > 0 are scattered by impurities at a higher rate
than those with vx < 0. The Lorentz force is proportional to
both the magnetic field and the electron velocity, therefore,
the small correction to the scattering rate is linear in p
and B. In QWs with a structure inversion asymmetry, the

FIG. 3. (Color online) (a) Asymmetry in electron scattering by
impurities caused by in-plane magnetic field. (b) and (c) Microscopic
model of dc current generation owing to electric-field-induced
alignment of electron momenta followed by asymmetric scattering.
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rate of elastic electron scattering can be presented in the
form22

W p′ p = W
(0)
p′ p + w′[Bx(py + p′

y) − By(px + p′
x)], (25)

where

w′ = − 4πe

h̄m∗c

∑
ν �=1

zν1

εν1
〈Re V ∗

11V1ν〉 δ(ε p − ε p′). (26)

The parameter w′ is determined by the same matrix elements
of scattering as ζ [see Eq. (17)]. Below it is assumed that w′
is independent of the directions of p and p′.

The asymmetry in electron scattering gives rise to a dc if
the carriers are excited by an ac electric field. Figures 3(b)
and 3(c) illustrate a mechanism of current formation for a
linearly polarized electric field oscillating along the y and x

axes, respectively. The ac electric field leads, in the second
order in the field amplitude E, to the alignment of electron
momenta along the axis of field oscillations. In the case of
E ‖ y, the carriers populate predominantly the states with
large |py |, which is indicated in Fig. 3(b) by the Fermi circle of
variable thickness. The processes of electron scattering shown
by dashed lines suppress the alignment tending to restore the
isotropic distribution of carriers in p space. However, in the
presence of magnetic field By , the rates of electron scattering
to the states with positive and negative px are different [see
Eq. (25)]. Such a difference in scattering rates is illustrated
in Fig. 3(b) by lines of different thicknesses. Therefore, the
scattering events result in an imbalance of carrier population
between positive and negative px (shown by full circles),
giving rise to an electric current jx .

Figure 3(c) sketches the same mechanism of the current
formation for E ‖ x. In this case, the ac electric field leads to
the alignment of the electron momenta along the x axis. The
subsequent asymmetric scattering of electrons in the magnetic
field By also causes imbalance in the carrier population
between positive and negative px , giving rise to a dc current
jx . However, as it follows from Figs. 3(b) and 3(c), the
current directions are opposite for E ‖ y and E ‖ x. Thus,
the illustrated mechanism of the current formation describes
the polarization-dependent contribution to the current, which
is given by the term ∝M1 in Eq. (24).

The analytical expression for magnetic-field-induced cur-
rents can be derived in the framework of kinetic theory by
solving Eq. (11) with the scattering rate (25). To solve the
equation, we decompose the distribution function f ( p,t) into
frequency n and angular m harmonics according to Eq. (18)
and obtain the system of coupled equations. Its solution for the
time-independent asymmetric part of the distribution function
δf ( p), which determines dc current, in the geometry B ‖ y

assumes the form

δf ( p) = −[(|Ex |2 + |Ey |2)vx − (ExE
∗
y − EyE

∗
x )vy]

× ζ τp e3By

4m∗c

(
2 + ε

d

dε

)
τpτ2 dfε/dε

(1 − iωτp)(1 − iωτ2)

− [(|Ex |2 − |Ey |2)vx + (ExE
∗
y + EyE

∗
x )vy]

× ζ τpτ2 e3By

4m∗c

(
ε

d

dε

)
τp dfε/dε

1 − iωτp

+ c.c., (27)

where τ2 is the relaxation time of the second angular harmonic
of the electron distribution function, τ−1

2 = ∑
p′ W

(0)
p′ p(1 −

cos 2θ p′ p).
The current density j is obtained by multiplying δf ( p) by

the electron charge and velocity, and summing up the result
over the momentum. This procedure yields Eq. (24) with the
following parameters:

M1 = ζe4

c m∗2

∑
p

τp d(τpτ2 ε2)/dε

1 + (ωτp)2

dfε

dε
, (28)

M2 = ζe4

c m∗2

∑
p

(1 − ω2τpτ2) τpτ2 ε2τ ′
p

[1 + (ωτp)2][1 + (ωτ2)2]

dfε

dε
, (29)

M3 = − ζe4

c m∗2

∑
p

ωτpτ2(τp + τ2) ε2τ ′
p

[1 + (ωτp)2][1 + (ωτ2)2]

dfε

dε
, (30)

where τ ′
p = dτp/dε, and the factor 2 of spin degeneracy is

already taken into account. It follows from Eqs. (24) and (28)–
(30) that the polarization-independent and circular currents
given by M2 and M3, respectively, emerge owing to the energy
dependence of the momentum relaxation time. If the energy
dependence of τp and τ2 can be neglected and τp = τ2, the
parameter M1 assumes the form

M1 = −4
Nee

4τ 2
p/(cm∗2)

1 + (ωτp)2

∑
ν �=1

zν1

εν1
ξν, (31)

while M2 and M3 vanish. It is also worth mentioning that there
are additional contributions to the polarization-independent
current that originate from the energy relaxation of hot carriers
in magnetic field.18,22 These contributions depend on the
energy relaxation mechanisms and are out of the scope of
the present paper.

The magnetic-field-induced current (24) can be consid-
erably larger than the current (3) excited at an oblique
polarization of the ac electric field at B = 0. For linearly
polarized radiation, the ratio between the current magnitudes is
estimated as M1B/L = eBτp/(m∗c), which can exceed unity
already at moderate magnetic fields.

Finally, we note that the presented theory describes orbital
currents to first order in the in-plane magnetic field. Such
an approximation is valid provided |B| � B0 = ε21m

∗c/(eh̄),
where ε21 is the energy distance between the subbands
e2 and e1. The estimation shows that B0 ∼ 102 T for
a rectangular QW of 100 Å width with infinitely high
barriers.

IV. SUMMARY

We have developed the microscopic theory of high-
frequency nonlinear conductivity in QWs with a structure
inversion asymmetry. It is shown that the excitation of free
carriers in QWs by an ac electric field, which has both
the in-plane and out-of-plane components, leads to a dc
in-plane current, its direction and magnitude being determined
by the field polarization and frequency. The frequency depen-
dence of the current induced by the linearly polarized field
repeats that of the free-carrier absorption: It is maximal at zero
frequency and decays as 1/ω2 at frequencies ω higher than
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the momentum relaxation rate 1/τp. In contrast, the current
induced by circularly polarized field increases linearly with
the field frequency at small ω, reaches maximum at ω = 1/τp,
and then decays as 1/ω. The application of a static magnetic
field B in the QW plane enables the generation of a dc current
even if the ac electric field oscillates in the interface plane. In
such a geometry, the current depends linearly on B at small
magnetic fields and can be induced by a linearly or circularly
polarized electric field.

The developed theory of high-frequency nonlinear transport
can also be applied to study the generation of combination
frequencies (frequency mixing).
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