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Circular photogalvanic effect on topological insulator surfaces:
Berry-curvature-dependent response
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We study theoretically the optical response of the surface states of a topological insulator, especially the
generation of helicity-dependent direct current by circularly polarized light. Interestingly, the dominant current,
due to an interband transition, is controlled by the Berry curvature of the surface bands. This extends the
connection between photocurrents and Berry curvature beyond the quasiclassical approximation, where it has
been shown to hold. Explicit expressions are derived for the (111) surface of the topological insulator Bi2Se3,
where we find significant helicity-dependent photocurrents when the rotational symmetry of the surface is broken
by an in-plane magnetic field or a strain. Moreover, the dominant current grows linearly with time until a scattering
occurs, which provides a means for determining the scattering time. The dc spin generated on the surface is also
dominated by a linear-in-time, Berry curvature-dependent contribution.

DOI: 10.1103/PhysRevB.83.035309 PACS number(s): 72.40.+w, 72.25.Fe, 78.68.+m, 72.10.Bg

I. INTRODUCTION

Topological insulators (TIs) have caught the eye of many
a condensed-matter physicist and materials scientist in recent
years. In very simple terms, these are materials that have an
insulating bulk but conducting surface states (SSs) that are
protected against disorder by time-reversal symmetry. The
reason for the tremendous amount of attention they have
received is twofold. One, they have been predicted to exhibit
a number of exotic phenomena such as the magnetoelectric
effect,1 magnetic monopolelike behavior,2 and the existence
of topologically protected Majorana modes3 with potential ap-
plications for topological quantum computing.4 Two, a number
of materials have already been theoretically predicted5–9 and
experimentally found10–16 to be in this fascinating phase.

In their simplest incarnation, the SSs of TIs correspond
to the dispersion of a single Dirac particle, which cannot
be realized in a purely two-dimensional band structure with
time-reversal invariance. This dispersion is endowed with
the property of spin-momentum locking, that is, for each
momentum there is a unique spin direction of the electron.
Since several materials were theoretically predicted to be in
this phase, most of the experimental focus on TIs so far has
been toward trying to directly observe these exotic SSs in real
or momentum space, in tunneling,10 and photoemission11–16

experiments, respectively, and to establish their special topo-
logical nature. However, so far there has been a dearth of
experiments that study the response of these materials to
external perturbations, such as an external electromagnetic
field.

In order to fill this gap, we calculate here the response of
TI surfaces to circularly polarized (CP) light. Since photons in
CP light have a well-defined angular momentum, CP light can
couple to the spin of the surface electrons. Then, because of
the spin-momentum-locking feature of the SSs, this coupling
can result in dc transport that is sensitive to the helicity (right-
versus left-circular polarization) of the incident light. This
phenomenon is known as the circular photogalvanic effect
(CPGE). In this work, we derive general expressions for the
direct current on a TI surface as a result of the CPGE at normal
incidence within a two-band model, and we estimate its size

for the (111) surface of Bi2Se3, an established TI, and find
it to be well within measurable limits. Since bulk Bi2Se3 has
inversion symmetry and the CPGE, which is a second-order
nonlinear effect, is forbidden for inversion symmetric systems,
this current can only come from the surface.

We find, remarkably, that the dominant contribution to the
current is controlled by the Berry curvature of the electron
bands and grows linearly with time. In practice, this growth is
cut off by a scattering event that resets the current to zero.
At the microscopic level, this part of the current involves
the absorption of a photon to promote an electron from the
valence to the conduction band. The total current contains two
other terms—both time-independent—one again involving an
interband transition and the other resulting from intraband
dynamics of electrons. However, for clean samples at low
temperatures, the scattering or relaxation time is expected
to be large, and these contributions will be eclipsed by the
linear-in-time one. Hence, this experiment can also be used to
measure the relaxation time for TI SSs.

Historically, the Berry curvature has been associated with
fascinating phenomena such as the anomalous Hall effect17 and
the integer quantum Hall effect,18 and therefore it is exciting
that it appears in the response here. Its main implication here
is that it gives us a simple rule, in addition to the requirement
of the right symmetries, for identifying the perturbations that
can give a linear-in-time CPGE at normal incidence: we look
for perturbations that result in a nonzero Berry curvature. Put
another way, we can identify perturbations that have the right
symmetries but still do not give this current because the Berry
curvature vanishes for these perturbations. Importantly, for
TI SSs, the requirement of a nonzero Berry curvature amounts
to the simple physical condition that the spin direction of the
electrons have all three components nonzero. In other words,
if the electron spin in the SSs is completely in-plane, the Berry
curvature is zero and no linear-in-time CPGE is expected. The
spins must somehow be tipped slightly out of the plane, as
shown in Fig. 1(a), in order to get such a response. Thus, a
pure Dirac (linear) dispersion, for which the spins are planar,
cannot give this response; deviations from linearity, such as
the hexagonal warping on the (111) surface of Bi2Te3,19 are
essential for tilting the spins out of the plane.
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FIG. 1. (Color online) (a) Schematic illustration of preferential
absorption at one out of two points related by the reflection symmetry
about the yz plane. The short arrows denote the spin direction of
electrons in various states. At low energies, the spins are completely
in-plane. They acquire a small out-of-plane component at higher
energies. The dotted lines represent incoming photons of helicity
−1 (left-CP photons). These photons can only raise the 〈Sz〉 of an
electron, and thus are preferentially absorbed by electrons whose
〈Sz〉 < 0 in the valence band. The chemical potential μ must be
between the initial and final states for any absorption to occur.
(b) Constant energy contours for the surface conduction band of
Bi2Se3. Dark lines denote lower energy. Part (a) is drawn at py = 0.
(c) Geometry of the experiment. Light is incident normally on the
(111) surface of Bi2Se3. The dotted lines represent the mirror plane
m about which the lattice has a reflection symmetry. The current ja2(t)
(see text) is along x̂.

CPGE has been observed in the past in GaAs,20 SiGe,21

and HgTe/CdHgTe (Ref. 22) quantum wells—all systems
with strong spin-orbit coupling. The effect in these systems
can be understood within a four-band model consisting of
two spin-orbit-split valence bands and two spin-degenerate
conduction bands. In contrast, TI SSs can be faithfully treated
within a two-band model. The simplicity of the latter system
makes it more convenient for theoretical study compared
to semiconductor quantum wells, and, hence, enables us to
determine a connection between the CPGE and the Berry
curvature. In general, if a surface has no rotational symmetry
about the surface normal, such a photocurrent is allowed.

Finally, we estimate the current on the (111) surface of
Bi2Se3 using an effective model for the SSs.19,23 This model
captures the deviations from linearity of the SS dispersion due
to the threefold rotational symmetry of the (111) surface of
Bi2Se3. These deviations have been observed in photoemission
experiments on Bi2Te3.11 Similar deviations are expected for
Bi2Se3,23 though they cannot be seen in the slightly smaller
momentum range compared to Bi2Te3 over which data are
currently available.24 To get a direct current with CP light
at normal incidence, rotational symmetry about the surface
normal needs to be broken. Based on the requirement of
nonzero Berry curvature, we propose to do this in two ways:
(i) by applying an in-plane magnetic field and including

deviations from linearity of the dispersion, and (ii) by applying
a strain.

With a magnetic field of 10 T (with a 1% strain) and
assuming a scattering time of 10 ps (the scattering time in
GaAs is ∼1 ns over a wide range of temperatures;25 we use a
conservative estimate for Bi2Se3 here), we find that a current
density of ∼100 nA/mm (∼10 nA/mm) can be obtained due
to the CPGE with a 1 W laser. This value can be easily
measured by current experimental techniques. Conversely, the
scattering time, crucial for transport processes, for Bi2Se3 SSs
can be determined by measuring the current. In comparison,
circular photogalvanic currents of a few nanoamperes per Watt
of laser power have been measured in quantum wells of the
semiconductors GaAs,20 SiGe,21 and HgTe/CdHgTe.22

A connection between the optical response of a sys-
tem and the Berry curvature of its bands has been pre-
viously noted at low frequencies, where a semiclassical
mechanism involving the anomalous velocity of electrons
in a single band explains it.26,27 Here, we show it for
interband transitions where no quasiclassical approximation
is applicable. Instead, we calculate the quadratic response
function directly. A connection is still present that points
to a deeper relation between the response functions and the
Berry curvature.

This paper is organized as follows. In Sec. II, we state
the symmetry conditions under which a CPGE may occur.
We present our results, both general as well as for Bi2Se3

in particular, in Sec. III A and describe the microscopic
mechanism in Sec. III B. The calculation is described briefly
in Sec. III C and in detail in Appendix B. In Sec. IV, we give
our results for the optical injection of dc spin, and in Sec. V
we briefly discuss the situation where the rotational symmetry
of the surface is broken by shining the light off-normally.

II. SYMMETRY CONSIDERATIONS FOR THE CPGE

In this section, we specify the symmetry conditions under
which one can get a CPGE on the surface of a TI. But first, let
us briefly review the concept of the CPGE in general.

The dominant dc response of matter to an oscillating electric
field is, in general, quadratic in the electric field. When the
response of interest is a current, the effect is known as the
photogalvanic effect. This current can be written as

jα = ηαβγ Eβ(ω)Eγ (−ω), (1)

where Eα(t) = Eα(ω)eiωt + E∗
α (ω)e−iωt is the incident electric

field, E∗
α (ω) = Eα(−ω), and ηαβγ is a third-rank tensor, which

has nonzero components only for systems that break inversion
symmetry, such as the surface of a crystal.

For jα to be real, one has ηαβγ = η∗
αγβ . Thus, the real

(imaginary) part of ηαβγ is symmetric (antisymmetric) under
interchange of β and γ , and therefore describes a current that is
even (odd) under the transformation ω → −ω. Consequently,
jα can be conveniently separated according to

jα = Sαβγ

(Eβ(ω)E∗
γ (ω) + E∗

β (ω)Eγ (ω)

2

)
+ iAαμ(E × E∗)μ,

(2)

where Sαβγ is the symmetric part of ηαβγ and Aαμ is a second-
rank pseudotensor composed of the antisymmetric part of ηαβγ .
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For CP light, E ∝ x̂ ± iŷ if ẑ is the propagation direction and
only the second term in Eq. (2) survives, and hence represents
the CPGE. This effect is odd in ω. On the other hand, the first
term, which is even in ω, represents the linear photogalvanic
effect as it is the only contribution for linearly polarized light.
Since the transformation ω → −ω, or equivalently, E → E∗,
reverses the helicity of CP light, that is, changes right-CP
light to left-CP light and vice versa, the CPGE is the helicity-
dependent part of the photogalvanic effect.

The helicity of CP light is odd (i.e., right- and left-CP
light get interchanged) under mirror reflection about a plane
that contains the incident beam, but invariant under arbitrary
rotation about the direction of propagation. Let us consider
normal incidence of CP light on a TI surface normal to the
z axis. Let us further assume that there is a mirror plane that
is the y-z plane [see Fig. 1(c)]. Then, the only component of
direct current that reverses direction on switching the helicity is
a current along the x axis. If there is also rotation symmetry Rz

about the z axis [such as the threefold rotation symmetry on the
(111) surface of Bi2Se3], then no surface helicity-dependent
direct photocurrent is permitted. One needs to break this
rotation symmetry completely by applying, for example, and
in-plane magnetic field, strain, etc., to obtain a nonvanishing
current.

III. HELICITY-DEPENDENT DIRECT PHOTOCURRENT

We now present our main results for the photocurrent and
estimate it for Bi2Se3. After painting a simple microscopic
picture for the mechanism, we give a brief outline of the full
quantum-mechanical treatment of the phenomenon.

A. Results

A general two-band Hamiltonian (in the absence of the
incident light) can be written as

H =
∑

p

c†pHpcp =
∑

p

|Ep|c†pn̂(p).σcp (3)

up to a term proportional to the identity matrix, which is not
important for our main result, as it involves only interband
transitions. Here n̂(p) is a unit vector, σ are the spin-Pauli
matrices, and cp = (cp↑,cp↓)T is the electron annihilation
operator spinor at momentum p. Clearly, this can capture
a Dirac dispersion, for example, with E(p) = ±vF p and
n̂(p) = vF ẑ × p. It can also capture the SSs of Bi2Se3 in
the vicinity of the Dirac point, which includes deviations
beyond the Dirac limit. We also assume the Hamiltonian has a
reflection symmetry m about the y axis, where ẑ is the surface
normal. Using the zero-temperature quadratic response theory
described in Sec. III C, we calculate the current due to the
CPGE and find that


jCPGE(t) = [jna + ja1 + ja2(t)]x̂, (4)

where the subscripts a (na) stand for “absorptive” and “non-
absorptive,” respectively. The absorptive part of the response
involves a zero-momentum interband transition between a pair
of levels separated by energy h̄ω. These terms are only nonzero
when there is one occupied and one empty level. In this
part of the response, we find a term that is time-dependent,

ja2(t). In particular, this term grows linearly with the time
over which the electromagnetic perturbation is present, which
is allowed for a dc response. In reality, this linear growth
is cut off by a decay process that equilibrates populations,
and is characterized by a time constant τ . In clean samples
at sufficiently low temperatures, characterized by large τ , this
contribution is expected to dominate the response, and hence it
is the focus of our work. The other contributions are discussed
in Appendix B. Conversely, because of the linear growth with
time, one can determine the lifetime of the excited states by
measuring the photocurrent. This term is

ja2(t) = −πe3h̄E2
0 t sgn(ω)

4

∑
p

δ(h̄|ω| − 2|Ep|)vx(p)F(p)

(5)

where we have assumed that the chemical potential is in
between the two energy levels ±|Ep| connected by the optical
frequency h̄ω, and that temperature can be neglected compared
to this energy scale. Here, vx(p) = ∂|Ep|

∂px
is the conventional

velocity and F(p) = i〈∂px
u(p)|∂py

u(p)〉 + c.c., where |u(p)〉
is the conduction band Bloch state at momentum p, is the
Berry curvature of the conduction band at momentum p. For
the class of Hamiltonians (3) with which we are concerned,
the Berry curvature is given by (see Appendix A)

F(p) = n̂ ·
(

∂n̂
∂px

× ∂n̂
∂py

)
, (6)

which is the skyrmion density of the unit vector n̂ in
momentum space. Since ∂pi

n̂ ⊥ n̂ for i = x,y, F(p) �= 0 only
if all three components of n̂ are nonvanishing. For linearly
dispersing bands, n̂ has only two nonzero components [e.g.,
Hp = pyσx − pxσy , n̂ ∝ (py, − px,0)]. Hence, corrections
beyond the pure Dirac dispersion are essential. Also, due to
m, the Berry curvature satisfies F(px,py) = −F(−px,py).
Since in Eq. (5) we have the x velocity multiplying the
Berry curvature, which also transforms the same way, a finite
contribution is obtained upon doing the momentum sum.

We now calculate ja2(t) for the threefold-symmetric (111)
surface of Bi2Se3 starting from the effective Hamiltonian19,23

H = vF (pxσy − pyσx) + λ

2
(p3

+ + p3
−)σz, (7)

where vF ∼ 5 × 105 m/s (Ref. 6) and λ = 50.1 eV Å3.23 A
spin-independent quadratic term has been dropped since it
does not modify the answers for interband transitions, which
only involve the energy difference between the bands.

To get a nonzero jCPGE, the threefold rotational symmetry
must be broken. We propose to do this in two separate ways,
which are detailed as follows.

1. Applying a magnetic field B in the x direction

This field has no orbital effect, and can be treated by adding
a Zeeman term

H ′
Zeeman = −gxμBBσx, (8)
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where gx is the appropriate g factor and μB is the Bohr
magneton, to the Hamiltonian (7). To lowest order in λ and B,
we get

ja2(t) = 3e3vFE2
0 λ(gxμBB)2t

16 h̄2ω
A, (9)

where A is the laser spot size. For gx = 0.5,23 and assuming
the experiment is done in a 10-T field with a continuous-wave
laser with h̄ω = 0.1 eV, which is less than the bulk band
gap of 0.35 eV,13 A ∼ 1 mm2, a laser power of 1 W, and
the spin relaxation time t ∼ 10 ps, we get a current density
of ∼100 nA/mm, which is easily measurable by current
experimental techniques. Note that the expression (9) for ja2(t)
contains the parameter λ, which measures the coupling to σz

in Eq. (7). Since 
B = Bx̂ breaks the rotation symmetry of
the surface completely, a naive symmetry analysis suggests,
wrongly, that deviations from linearity, measured by λ, are not
needed to get ja2(t).

2. Applying a strain along x

This can be modeled by adding a term

H ′
strain = δλp3

xσz (10)

to H in Eq. (7). This gives

ja2(t) = 3e3vF (δλ)E2
0 ωt

27
A (11)

to lowest order in λ and δλ. For a 1% strain, δλ/λ = 0.01,
and the same values for the other parameters as in Eq. (9), we
get a current density of ∼10 nA/mm. Equation (11) does not
contain λ; this is because δλ alone both breaks the rotation
symmetry and tips the spins out of the xy plane.

B. Physical process

The appearance of the Berry curvature suggests a role
of the anomalous velocity in generating the current. Such
mechanisms have been discussed in the literature in the context
of the CPGE.26,28 However, those mechanisms only work
when the electric field changes slowly compared to the typical
scattering time. The SSs of Bi2Se3 probably have lifetimes
of tens of picoseconds, and thus we are in the opposite limit
when h̄ω = 0.1 eV, which corresponds to a time scale 103

times shorter.
In this limit, the dc responses are a result of a preferential

absorption of the photon at one of the two momentum points for
each pair of points (±px,py) related by m, as shown in Fig. 1(a)
for py = 0. According to the surface Hamiltonian (7), the spin
vector S = σ

2 h̄ gets tipped out of the xy plane for states that lie
beyond the linear dispersion regime, but the direction of the
tipping is opposite for (px,py) and (−px,py). Thus, photons
of helicity −1, which can only raise 〈Sz〉 of an electron, are
preferentially absorbed by the electrons that have 〈Sz〉 < 0
in the ground state. The response, then, is determined by the
properties of these electrons. Clearly, the process is helicity-
dependent as reversing the helicity would cause electrons with
〈Sz〉 > 0 to absorb the light preferentially.

This is consistent with the requirement of a nonzero Berry
curvature, which essentially amounts to the spin direction n̂
having to be a three-dimensional vector. In the linear limit,

where H = vF (pxσy − pyσx), the spin is entirely in-plane,
and all the electrons absorb the incident light equally.

C. Calculation in brief

We now briefly outline the calculation of the helicity-
dependent photocurrent. The detailed calculation can be found
in Appendix B. Readers only interested in our results may wish
to skip this section.

1. The model

The Hamiltonian and relevant electric field (vector poten-
tial) perturbations for getting a direct current to second order
in the electric field of the incident photon are

H = |Ep|n̂(p).σ , (12)

H ′ = jxAx(t) + jyAy(t), (13)

jα = ∂H

∂pα

, (14)

Ax(t) + iAy(t) = A0e
i(ω−iε)t , (15)

where A is the vector potential, ẑ is assumed to be the surface
normal, and ε is a small positive number that ensures slow
switch-on of the light.

2. Quadratic response theory

In general, the current along x to all orders in the
perturbation H ′ is

〈jx〉(t) = 〈
T ∗(ei

∫ t

−∞ dt ′H ′(t ′))jx(t)T
(
e−i

∫ t

−∞ dt ′H ′(t ′))〉, (16)

where T (T ∗) denotes time-ordering (anti-time-ordering) and
O(t) = eiHtOe−iH t . Terms first order in H ′ cannot give a
direct current. The contribution to the current from the second-
order terms can be written as

〈jx〉(t) =
∫ t

−∞
dt ′

∫ t1

−∞
dt ′′〈[[jx(t),H ′(t ′)],H ′(t ′′)]〉

=
∫ t

−∞
dt ′

∫ t1

−∞
dt ′′χxαβ (t,t ′,t ′′)Aα(t ′)Aβ(t ′′), (17)

where α,β ∈ {x,y}, χxαβ (t,t ′,t ′′) = χxαβ(0,t ′ − t,t ′′ − t) =
〈[[jx,jα(t ′ − t)],jβ(t ′′ − t)]〉 ≡ χxαβ (t ′ − t,t ′′ − t) due to time
translational invariance, and the expectation value is over
the ground state, which has all states with Ep < (>) 0 filled
(empty). For Hamiltonians of the form of Eq. (12), the
expectation value of any traceless operator O in the Fermi
sea ground state can be written as a trace,

〈O〉 =
∑

p

1

2
Tr

{(
1 − H

|Ep|
)

O

}
= −

∑
p

Tr (HO)

2|Ep| . (18)

This gives

χxαβ(t1,t2) = −
∑

p

Tr(H [[jx,jα(t1)],jβ(t2)])
2|Ep| . (19)

Equation (19) is the zero-temperature limit of the finite-
temperature expression for the quadratic susceptibility proven
in Ref. 29.
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Because of the mirror symmetry m, χxαβ (t1,t2) is non-
vanishing only for α �= β. To get a direct current, we
retain only the nonoscillating part of Ax(t + ti)Ay(t + tj ) =
A2

0
2 e2εt {sin[2ωt + ω(ti + tj )] − sin[ω(ti − tj )]}. Thus,

j dc
x (t) = A2

0e
2εt

4

∫ 0

−∞
dt1

∫ t1

−∞
dt2{(χxxy − χxyx)(t1,t2)eε(t1+t2)

× sin ω(t2 − t1)]}. (20)

3. The result

After carrying out the two time integrals, we get the
three currents mentioned in Eq. (4). For clean samples at
low temperatures, ja2(t), which grows linearly with time, is
expected to dominate. A general expression for this term is (in
the units e = h̄ = vF = 1, where vF is the Fermi velocity)

ja2(t) = iA2
0πt sgn(ω)

2ω2

∑
p

δ(|ω| − 2|Ep|)

× Tr(Hjx)Tr(H [jx,jy]). (21)

Using Eqs. (12) and (14) and the Lie algebra of the Pauli
matrices, [σi,σj ] = 2iεijkσk , where εijk is the antisymmetric
tensor, the above traces can be written as

Tr(Hjx) = 2|Ep|vx(p), (22)

Tr(H [jx,jy]) = 4i|Ep|3n̂ ·
(

∂n̂
∂px

× ∂n̂
∂py

)

= 4i|Ep|3F(p). (23)

Equations (21), (22), and (23) give our main result, Eq. (5).

IV. OPTICAL SPIN INJECTION

Having understood the microscopic mechanism underlying
the generation of the photocurrent ja2(t), we wonder, next,
whether such a population imbalance can lead to any other
helicity-dependent macroscopic responses. Since each ab-
sorbed photon flips the z component of the spin of an electron,
a net 〈Sz〉 is expected to be generated on the surface. Such a
process of optical spin injection was discussed for thin films
of topological insulators,27 without, however, recognizing the
role of the Berry curvature in the interband transition.

The calculation of 〈Sz〉 is identical to that of jCPGE. The
total 〈Sz〉 generated consists of the same three parts as jCPGE,
and the dominant part is

Sz
a2(t) = −πe2E2

0 h̄t sgn(ω)

8

∑
p

δ(h̄|ω| − 2|Ep|)nz(p)F(p).

(24)

Sz does not break the rotational symmetry of the surface,
so we calculate Sz

a2(t) directly for the threefold-symmetric
Hamiltonian (7) and obtain

Sz
a2(t) = e2E2

0 (h̄ω)3λ2t

210
A. (25)

For the same values of all the parameters as for ja2(t),
we get Sz

a2(t) ∼ 10h̄, which means only ten electron spins
are flipped over an area of ∼1 mm2. This is a very small

number and cannot be measured by the current experimental
techniques. However, the result that the dominant spin injected
onto the surface is also controlled by the Berry curvature
is still theoretically interesting, as it points toward a deeper
connection between the Berry curvature of electron bands and
the helicity-dependent dc responses of systems with strong
spin-orbit-coupled coupling.

V. CPGE AT OBLIQUE INCIDENCE

Experimentally, a very attractive way of breaking the rota-
tional symmetry of the surface is by performing the experiment
with obliquely incident light. Indeed, such experiments have
already been performed successfully on graphene at low
frequencies.30 At the microscopic level, the effect there has
been attributed to photon drag, where the current arises as a
result of the in-plane component of the photon momentum q‖
getting transferred to the electrons in graphene. In general,
an analogous process is expected to contribute to the CPGE
at high frequencies as well. We can estimate the size of
the photon-drag effect on TI surfaces in the Dirac limit by
considering a mechanism similar to the one described in
Sec. III B, that is, the electrons at (±px,py) absorb the incident
light unequally if the light is incident in the yz plane. Now,
no out-of-plane tipping of the spin is needed, because, if
one thinks of the helical photon as simply a spin-raising
or -lowering operator for spins parallel to its propagation
direction ẑ′, the electrons at (±px,py) already have opposite
〈Sz′ 〉, and hence will absorb the light unequally. Thus, the
general expression for the current may contain only those
material parameters that appear in the pure Dirac dispersion.
As before, it must be quadratic in the photon electric field,
and must change sign when q‖ and ω are both reversed,
since that corresponds to switching the photon helicity.
Thus, to lowest order in q‖, the linear-in-time current, based
simply on symmetry and dimensional analysis, must be of
the form


jphoton drag(t) ∼ e3E2
0v

2
F q‖t

h̄2ω2
Ax̂. (26)

For q‖ = c/ω, c being the speed of light in vacuum, and the
same values for all the other parameters as in Sec. III A, we
get a current density of ∼1 μA/mm. This will dominate the
response at off-normal incidence, but can be suppressed by
careful alignment of the experimental setup. However, since a
response might appear even in the pure Dirac limit in which
the Berry curvature vanishes, the role of the Berry curvature
is not clear for this process.

In graphene, helicity-dependent direct photocurrents have
also been predicted by applying a dc bias.31 However, with a
dc bias across a TI surface and ordinary continuous lasers, we
find the current to be too low to be measurable.

VI. CONCLUSIONS

In summary, we studied the CPGE on the surface of a
TI at normal incidence, and applied the results to the (111)
surface of Bi2Se3. If the rotational symmetry of the TI surface
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is broken by applying an in-plane magnetic field or a strain,
we predict an experimentally measurable direct photocurrent.
A striking feature of this current is that it depends on the
Berry curvature of the electron bands. Such a dependence can
be understood intuitively as a result of the incident photons
getting absorbed unequally by electrons of different momenta,
and hence different average spins. The current grows linearly
with time until a decay process equilibrates populations, which
provides a way of determining the excited-states lifetime.
We also calculated the amount of dc helicity-dependent
out-of-plane component of the electron spin generated. This
does not require any rotational symmetry breaking; however,
the numerical value is rather small with typical values of
the parameters. Finally, we estimated the size of the CPGE
due to the photon-drag effect at oblique incidence assuming
a differential absorption mechanism similar to the one dis-
cussed for normal incidence, and found a rather large value.
However, the role of the Berry curvature in this process was
unclear.

For future work, we wonder whether the Berry curvature
dependence of the helicity-dependent response to CP light sur-
vives for three- and higher-band models. This is a practically
relevant question, as semiconductor quantum wells such as
those of GaAs, SiGe, and HgTe/CdHgTe demand a four-band
model for modeling the CPGE.
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APPENDIX A: PROOF OF BERRY CURVATURE
EXPRESSION

Here we show that the Berry curvature defined for Bloch
electrons as

F(p) = i(〈∂px
u|∂py

u〉 − 〈∂py
u|∂px

u〉) (A1)

can be written as

F(p) = n̂ · (∂px
n̂ × ∂py

n̂) (A2)

for the band with energy |Ep| for Hamiltonians of the form
Hp = |Ep|n̂(p) · σ .

At momentum p, the Bloch state |up〉 with energy |Ep| is
defined as the state whose spin is along n̂(p). Defining |↑〉 as
the state whose spin is along +ẑ, |up〉 is obtained by performing
the appropriate rotations,

|up〉 = e−i
σz
2 φ(p)ei

σy

2 θ(p)|↑〉, (A3)

where θ (p) and φ(p) are the polar angles that define n̂(p):

n̂(p) = sin θ (p) cos φ(p)x̂ + sin θ (p) sin φ(p)ŷ + cos θ (p)ẑ.

(A4)

Substituting Eq. (A3) in Eq. (A1), one gets

F(p) = sin θ (p)[∂px
θ (p)∂py

φ(p) − ∂px
φ(p)∂py

θ (p)], (A5)

which, on using Eq. (A4) and some algebra, reduces to the
required expression Eq. (A2).

APPENDIX B: CURRENT CALCULATION FOR
THE CPGE

Here we explain the current calculation of Sec. III A in more
detail and also state results for the parts of the current that we
chose not to focus on there.

As shown in Sec. III C, the relevant susceptibility is

χxαβ(t,t ′,t ′′) = −1

2

∑
p

Tr

(
H

|Ep| [[jx(t),jα(t ′)],jβ(t ′′)]
)

= −
∑

p

1

2|Ep|Tr(H [[jx,jα(t1)],jβ(t2)])

≡ χxαβ (t1,t2), (B1)

where t1 = t ′ − t, t2 = t ′′ − t , and the nonvanishing compo-
nents of χxαβ are those for which α �= β. The nonoscillating
part of the current, hence, is

〈
j dc
x

〉
(t) = jCPGE(t) = A2

0e
2εt

4

∫ 0

−∞
dt1

∫ t1

−∞
dt2[χxxy(t1,t2)

−χxyx(t1,t2)]eε(t1+t2) sin[ω(t2 − t1)]. (B2)

Since jCPGE(t) is an odd function of ω, it reverses on reversing
the polarization, as expected.

The traces in the susceptibility expressions are calculated
by introducing a complete set of states in place of the identity
several times. Thus,

χxxy(t1,t2) = −
∑

p

1

2|Ep|Tr(H [[jx,jx(t1)],j y(t2)])

= −1

2

∑
p

∑
nml

sgn(En){ei(Em−En)t2

× (ei(El−Em)t1 − e−i(El−En)t1 )XnlXlmYmn + c.c.},
(B3)

where Xnl = 〈n |jx | m〉, etc., and the subscript p on Ep has
been dropped to enhance the readability. Similarly,

χxyx(t1,t2) = −
∑

p

1

2Ep
Tr(H [[jx,jy(t1)],j x(t2)])

= −1

2

∑
p

∑
nml

sgn(En){ei(Em−En)t2Xmn

× (ei(El−Em)t1XnlYlm − e−i(El−En)t1YnlXlm)

+ c.c.}. (B4)

Substituting (B3) and (B4) in (20), we get

jCPGE(t) = A2
0e

2εt

4
Re

∫ 0

−∞
dt1

∫ t1

−∞
dt2e

ε(t1+t2)

× sin[ω(t1 − t2)]
∑

p,nml

sgn(En)ei(Em−En)t2
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×{(ei(El−Em)t1 − e−i(El−En)t1 )XnlXlmYmn

−Xmn(ei(El−Em)t1XnlYlm − e−i(El−En)t1YnlXlm)},
(B5)

where Re denotes the real part. Carrying out the the two time
integrations gives

jCPGE(t) = A2
0e

2εt

8
Im

∑
p

∑
nml

sgn(En)

×
(

1

Em − En + ω − iε
− 1

Em − En − ω − iε

)

×
{

Xnl(XlmYmn − YlmXmn)

El − En − 2iε

+ Xlm(YmnXnl − XmnYnl)

El − Em + 2iε

}
, (B6)

where Im stands for the imaginary part. Using Im( 1
�−iε

) =
πδ(�) and Re( 1

�−iε
) = 1

�
in the limit ε → 0, we get,

after some algebra, jCPGE(t) = jna + ja1 + ja2(t), where (Tr
denotes the trace)

jna = A2
0

16

∑
p

ω
(
ω2 − 12E2

p

)
i|Ep|3

(
ω2 − 4E2

p

)2 Tr(Hjx)Tr(H [jx,jy]) (B7)

comes from intraband processes and is constant in time,

ja1 = −πA2
0sgn(ω)

32

∑
p

δ(|ω| − 2|Ep|)
E2

p

× Tr(H [jx,[jx,jy]]) (B8)

is a result of an interband transition absorption as indicated by
the δ function in energy and is also constant in time, and

ja2(t) = i
A2

0πt sgn(ω)

8

∑
p

δ(|ω| − 2|Ep|)

× Tr(Hjx)Tr(H [jx,jy])

E2
p

, (B9)

which also results from interband absorption and increases
linearly in time. The last term was the main focus of our work.
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21S. D. Ganichev, F. P. Kalz, U. Rössler, W. Prettl, E. L. Ivchenko,
V. V. Bel’kov, R. Neumann, K. Brunner, and G. Abstreiter, Mater.
Res. Soc. Symp. Proc. 690, F3.11.1 (2002).

22B. Wittmann, S. N. Danilov, V. V. Bel’kov, S. A. Tarasenko, E. G.
Novik, H. Buhmann, C. Brune, L. W. Molenkamp, Z. D. Kvon,
N. N. Mikhailov, S. A. Dvoretsky, N. Q. Vinh, A. F. G. van der
Meer, B. Murdin, and S. D. Ganichev, Semicond. Sci. Technol. 25,
095005 (2010).

23C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C. Zhang,
Phys. Rev. B 82, 045122 (2010).

24D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier,
J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V.
Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, Nature (London) 460, 1101 (2009).

25L. Munoz, E. Perez, L. Vina, and K. Ploog, Phys. Rev. B 51, 4247
(1995).

26E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak, e-print
arXiv:0904.1917.

27H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, and S. Q. Shen, Phys. Rev.
B 81, 115407 (2010).

28J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805 (2010).
29Paul N. Butcher, Nonlinear Optical Phenomena (Engineering

Experiment Station, Ohio State University, Columbus, 1965),
Chap. 7, Eq. 7.25.

30J. Karch, P. Olbrich, M. Schmalzbauer, C. Brinsteiner, U. Wurst-
bauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss,
J. Eroms, and S. D. Ganichev, e-print arXiv:1002.1047.

31T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).

035309-7

http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1126/science.1167747
http://dx.doi.org/10.1126/science.1167747
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1209/0295-5075/90/37002
http://dx.doi.org/10.1038/nmat2770
http://dx.doi.org/10.1103/PhysRevB.82.161108
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nmat2771
http://arXiv.org/abs/arXiv:1003.2615
http://dx.doi.org/10.1103/PhysRevLett.105.136802
http://dx.doi.org/10.1103/PhysRevLett.93.206602
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/PhysRevLett.86.4358
http://dx.doi.org/10.1103/PhysRevLett.86.4358
http://dx.doi.org/10.1088/0268-1242/25/9/095005
http://dx.doi.org/10.1088/0268-1242/25/9/095005
http://dx.doi.org/10.1103/PhysRevB.82.045122
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1103/PhysRevB.51.4247
http://dx.doi.org/10.1103/PhysRevB.51.4247
http://arXiv.org/abs/arXiv:0904.1917
http://dx.doi.org/10.1103/PhysRevB.81.115407
http://dx.doi.org/10.1103/PhysRevB.81.115407
http://arXiv.org/abs/arXiv:1002.1047
http://dx.doi.org/10.1103/PhysRevB.79.081406

