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Quantum critical transport at a semimetal-to-insulator transition on the honeycomb lattice
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In this paper, we study transport properties of electrons on the two-dimensional honeycomb lattice. We
consider a half-filled system in the vicinity of a symmetry-breaking transition from a semimetallic phase toward
an insulating phase with either charge-density- or spin-density-wave order. The effect of either order is to
break the sublattice inversion symmetry, which induces a finite gap for the electronic single-particle excitations.
Phenomenologically, such a scenario is described in the framework of a Gross-Neveu theory. We analyze
two related formulations of the model by means of (i) a controlled renormalization-group calculation and
(ii) the large-N method, both of which in combination with a Boltzmann transport equation. We determine
the quantum critical conductivity and also discuss crossover behavior from quantum critical behavior into the
insulating and/or the semimetallic phases. We find that at asymptotically low temperatures, the quantum critical
conductivity is given by a temperature-independent universal number. Over a large temperature window, the
temperature-independent quantum-critical conductivity is masked by a logarithmically temperature-dependent
contribution due to the marginally irrelevant long-range Coulomb interaction. We discuss possible origins of this
peculiarity in the two complementary formulations of the model. Furthermore, we consider possible relations of
our findings to recent experiments, with a special emphasis on the quantum-critical-to-insulator crossover. We
find that our results are in remarkably good qualitative and quantitative agreement with a recent analysis of the
data sets under the hypothesis of an underlying gap in the single-particle spectrum.
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I. INTRODUCTION

Two-dimensional electronic systems on a honeycomb
lattice have seen tremendous activity over the past couple of
years. This development was triggered by the experimental
isolation of single-layer graphene, which comes with a variety
of fascinating and unusual properties.1

Commonly, graphene is considered to be an excellent
conductor with extremely high mobilities.2 The effective
low-energy theory describing the system is given in terms
of massless Dirac fermions moving at the Fermi velocity
vF instead of the speed of light c ( vF

c
≈ 1

300 ). Most of the
experimental findings in graphene to date can be explained
in terms of weakly interacting massless Dirac quasiparticles.3

A prominent exception is provided by the recently observed
fractional quantum Hall effect.4–6

Despite this predominant lack of signatures of correlation
effects, many authors have analyzed the role of local and long-
range Coulomb interaction and possible interaction-driven
insulating phases.7–18

In this paper, we study transport in the vicinity of a
semimetal-to-insulator quantum phase transition, in which
the opening of the single-particle gap in the insulating phase
is driven by spontaneous sublattice symmetry breaking. The
sublattice inversion symmetry breaking is driven by collective
instabilities of the charge-density- or spin-density-wave type.
Note that this scenario does not describe the Mott transition
in the traditional sense due to the additional symmetry
breaking.19 In that sense, the treatment presented here is closer
to the excitonic insulator obtained due to long-range Coulomb
interaction and chiral symmetry breaking15,16 than it is to a pure
Hubbard model. Within this paper, we analyze the simplest
possible transition from a semimetal to an insulator described
by a Hubbard-like model and discard the possible existence of
interesting intermediate phases such as a spin liquid phase.18

Transport properties at quantum criticality have tradition-
ally been a very active branch of research in strongly correlated
matter. In two dimensions, microscopic calculations have been
performed with the quantum critical conductivity being given
by a temperature-independent universal number.20–23 This has
to be expected for dimensional reasons if the critical point
of the field theory has relativistic invariance and is located at
finite interaction strength.

In the context of clean intrinsic graphene, which shares a
number of characteristics with a quantum critical system,24

the critical conductivity was shown to diverge in a logarithmic
manner upon lowering the temperature.25 This behavior is
rooted in the renormalization-group fixed point of the system
lying at zero interaction, with the interaction parameter
describing long-range Coulomb interaction being marginally
irrelevant, thus flowing to zero logarithmically upon lowering
the energy scale.

In our problem, the insulating phase is characterized by
the presence of a collective order of charge-density-wave
(CDW) or spin-density-wave (SDW) type.10 The finite order
parameter acts like a mass term for the Dirac fermions and
consequently opens a gap in the electronic excitation spectrum.
Both sorts of long-range order break sublattice inversion (Z2)
symmetry (conventionally referred to as chiral symmetry),
which is the driving force behind the finite electronic gap.
SDW additionally breaks spin rotation symmetry [SU(2)].

Within this paper, we choose a simple field-theoretic
formulation of the Gross-Neveu type,26,27 which captures
the collective instability and the opening of the electronic
quasiparticle gap. We consider two related formulations: (i)
a Landau-Ginzburg-type bosonic order-parameter theory cou-
pled to Dirac fermions via a Yukawa-type coupling (henceforth
referred to as model I) and (ii) a locally interacting theory of
Dirac fermions (henceforth referred to as model II). In both
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FIG. 1. Schematic phase diagram. The dashed lines denote
crossover lines, whereas full lines denote phase transitions. The
different regions and the crossovers are discussed in the main text.
The insulating region III differs for the scenarios CDW and SDW.
Whereas for CDW there is a finite-temperature phase transition of the
Ising type, there is no finite-temperature transition for the SDW due to
the Hohenberg-Mermin-Wagner theorem, which forbids the breaking
of a continuous symmetry at finite temperature in two dimensions.

cases, there is a quantum phase transition of the semimetal-
to-insulator type, which is second order and described by an
interacting fixed point. In both cases, an appropriate order pa-
rameter can easily be defined, which is zero in the semimetallic
phase and finite in the insulating phase. Thinking in terms
of the Landau-Ginzburg description of phase transitions, the
order-parameter symmetry is O(N ) with N = 1 (Ising or Z2)
for CDW and N = 3 (Heisenberg) for SDW.

Microscopically, local interactions can trigger these in-
stabilities: on-site Coulomb repulsion favors SDW, whereas
repulsion between adjacent sites favors CDW. Figure 1
sketches a phase diagram with the vertical axis being
temperature and the horizontal axis the local interaction
parameter. The strength of local repulsion, denoted U , serves
as a tuning parameter for the quantum phase transition. In
the case of a quantum phase transition toward CDW, U

denotes repulsive interaction between adjacent sites, whereas
for the case of a transition toward SDW, the repulsion is
on-site. Our analysis proceeds along the lines of a combina-
tion of a semiclassical Boltzmann equation combined with
renormalization-group arguments (model I) and a large-N
expansion (model II).20–23,25,28–30 Throughout the paper, all
mathematical expressions are explicitly shown for the CDW
case. The SDW expressions differ in combinatorial factors
due to the difference in order-parameter symmetry, but not in
their structure. However, qualitative differences occur at finite
temperature due to the absence of long-range order in the SDW
case. In the CDW case, a finite gap in the electronic excitation
spectrum is stable at finite temperatures, whereas there is no
hard gap for the SDW. This is discussed in great detail in the
conclusions.

A. Overview of the results

We calculated the quantum critical minimal conductivity of
graphene at the semimetal-to-insulator transition using two dif-
ferent phenomenological models. Furthermore, we estimated
crossover functions for the conductivity that are obtained upon
lowering the temperature and entering the semimetal or the
insulating phase, respectively. Most interestingly, we estimated

the crossover function for the quantum-critical-to-insulator
crossover and compared it to experimental data in graphene.

Considering two slightly distinct models, we find seemingly
contrasting transport properties:

(1) Within model I, in contrast to other relativistically
invariant critical points at finite interaction strength in two-
dimensional systems, the dc conductivity is not independent
of temperature, but instead seemingly diverges upon lowering
the temperature.20–23 This surprising result is obtained because
of a conspiracy of matrix elements and kinematic constraints
that prohibits electronic current relaxation from the Yukawa
coupling to all orders in perturbation theory. This statement,
however, is only strictly true if the electrons and bosons are
treated as sharp quasiparticles at all times. It turns out that
the minimal conductivity (at charge neutrality) is eventually
determined by a marginally irrelevant operator, namely long-
range Coulomb interaction. The critical transport to leading
order in temperature turns out to be identical to that of a gas of
hot Dirac electrons interacting solely via long-range Coulomb
interaction.24,25,28–31

(2) Within model II, we find a universal temperature-
independent conductivity, as has to be expected from dimen-
sional reasoning. However, we find that the prefactor of the
inverse relaxation time is extremely small compared to the one
associated with the marginally irrelevant long-range Coulomb
interaction. In contrast to model I, the scattering from the CDW
(SDW) order-parameter fluctuations is not completely inac-
tive, but is still extremely small. A simple order-of-magnitude
estimate suggests that for all experimental purposes, the
universal quantum critical conductivity is masked by the
current relaxation due to the long-range Coulomb interaction.

We comment on the seeming discrepancy between the
transport properties of model I and model II and argue that
the two different pictures are actually compatible and describe
the same basic physics, with model I overestimating the
kinematic blocking.

On a more technical note, another interesting result is
obtained within model I in which bosons and fermions are
directly coupled, namely, the absence of boson-drag effects
for the coupled Boltzmann equations. Boson drag constitutes
a serious complication in obtaining transport coefficients
in field theories of electrons coupled to bosons, where the
bosons are an effective degree of freedom whose dynamics
itself is governed by the underlying electrons. An often
employed approximation for the calculation of electronic
transport properties in such systems is that the bosonic system
is assumed to be equilibrated on time scales relevant for
electronic transport, and drag effects are neglected. This
approximation turns out to be exact in our case.

Finally, the crossover behavior of the conductivity for the
quantum-critical-to-insulator crossover is discussed for both
forms of collective ordering, namely, the CDW and SDW. As
we argued before, in the case of the CDW an Ising degree
of freedom condenses, which is allowed at finite temperature.
Thus the electronic degrees of freedom have a hard gap, which
entails an exponentially suppressed conductivity. In the case
of the SDW, on the other hand, a real quasiparticle gap only
opens at temperature T = 0 and finite-temperature behavior
is not governed by a hard gap, but rather by a “pseudogap,”
leading to a power-law suppression of the conductivity.
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Both scenarios allow us to determine crossover curves that
show remarkable similarities to experiments performed on
suspended high-mobility graphene samples.32 It appears that
they are qualitatively and quantitatively widely compatible
with a recent analysis of the data sets under the hypothesis
of an underlying electronic quasiparticle gap, and might thus
be a natural starting point for the identification of the fitting
parameters discussed in Ref. 33.

B. Outline

In Sec. II, we introduce the scenario for the semimetal-to-
insulator transition and motivate two different phenomenolog-
ical models, called model I and model II. During the course
of the paper we will switch between model I and model II,
since different aspects of the problem are more conveniently
discussed in one or the other formulation.

We review the renormalization-group treatment of model
I following Ref. 10 and also the large-N treatment of model
II following Ref. 8. We furthermore stress some of the main
physical properties of the models. In Sec. III, we introduce the
general formalism of the Boltzmann approach. We apply the
formalism to both models. In Sec. III A, we consider model
I and solve a system of coupled Boltzmann equations for
the fermionic and bosonic degrees of freedom. The bosonic
degrees of freedom capture the physics of the collective
instability and are eventually responsible for the opening of
the electronic quasiparticle gap. We explicitly show that in this
system of coupled transport equations, neglecting the effect of
“boson-drag” is exact to linear order in the applied electric
field, and we proceed to analyze the Boltzmann equation for
the massless Dirac particles. We find that inelastic scattering
due to the Yukawa-coupling is kinematically forbidden (see
Sec. III A 2) to all orders in perturbation theory. This results
in the absence of a temperature-independent minimal dc
conductivity. In Sec. III B, we solve the Boltzmann equation
of model II. In contrast to model I, we find that there is a finite
universal conductivity that does not depend on temperature.
However, we find that the prefactor of the inverse-scattering
time is tiny. This leads us to Sec. III C, in which we compare
the results of model I with those of model II and argue
in which sense the two results are compatible. In Sec. IV,
we discuss the minimal conductivity in the quantum critical
regime and make an estimate of crossover temperatures. In
a final section (Sec. V), we discuss crossover behaviors that
occur upon lowering the temperature. Furthermore, we discuss
the fundamental difference between the CDW and SDW cases,
with a special eye on pseudogap behavior in the SDW case.
A discussion of experimental conditions and reference to
some puzzling results of recent experiments on suspended
high-mobility graphene samples conclude Sec. V.

II. SPONTANEOUS INVERSION SYMMETRY BREAKING
IN THE FRAMEWORK OF TWO DIFFERENT MODELS

It is well known that a tight-binding description of nonin-
teracting electrons on the honeycomb lattice in its low-energy
version can be cast in the form of the Dirac theory for massless
fermions. The Hamiltonian for the electronic part reads1

H = ivF

∫
d2x�̄σ,κγμ∂μ�σ,κ , (1)

with vF being the Fermi velocity. We explicitly consider
half-filling, that is, chemical potential μ = 0 throughout the
paper. Double indices are henceforth summed over unless
stated otherwise. In the preceding notation, we take �σ,κ to
be a spinor whose two components are associated with the
two sublattices A and B. The index σ denotes the spin degree
of freedom, whereas κ denotes the valley (K and K ′ point in
the Brillouin zone). The γ matrices are defined as γ1 = iσy

and γ2 = −iσx , and �̄σ,κ = �†
σ,κσz, where σx,y,z are the Pauli

matrices acting in sublattice space.
Local interactions in this system can induce collective

instabilities. Spontaneous symmetry breaking leads to a gap
in the electronic single-particle excitation spectrum. We con-
centrate on order parameters that break the sublattice inversion
symmetry, that is, the two sites per unit cell become chemically
distinguishable. Two possible instabilities correspond to CDW
and SDW states, whose order parameters in terms of electronic
operators read

χ = (χs, �χt ) = (〈�̄σ,κ�σ,κ〉,〈�̄σ,κ �τσσ ′�σ ′,κ〉), (2)

where �τ acts in spin space and is simply a vector composed of
Pauli matrices. In the preceding representation, the singlet χs

corresponds to staggered charge density (CDW) and the triplet
�χt to staggered local magnetization (SDW). Microscopically,
a finite χs ( �χt ) may be induced by a large nearest-neighbor
(on-site) repulsion. In the following, we explicitly study the
case of the CDW and comment on differences with the SDW
case as we go along.

A. Model I: Yukawa theory and the description of the
semimetal-to-insulator transition in the framework

of an ε expansion

We start by introducing model I, which is a field theory of
Dirac fermions coupled to a Landau-Ginzburg order-parameter
theory via a Yukawa-type coupling. For the following discus-
sions, we generalize the model to d dimensions and adopt a
Lagrangian formulation. The generalization to d dimensions
eventually allows us to treat the bosonic and fermionic sectors
on an equal footing in a perturbative renormalization-group
treatment. We generalize the Dirac Hamiltonian to three
dimensions such that matrix elements have a structure like
in two dimensions: on a technical level, this implies that we
evaluate angular integrals as if they were in two dimensions,
but keep the integrals over absolute values in d dimensions.
The following discussion closely mimics the main steps of
Ref. 10. We decompose the local interaction into separate
dynamical fields via Hubbard-Stratonovich decoupling and
formulate the effective action near the semimetal-to-insulator
transition as S = ∫

dτd �xL, with L = Lf + Ly + Lb + Lc,
where the bosonic part is described by

Lb = 1
2χs

( − ∂2
τ − v2

s ∇2 + t
)
χs + us(χsχs)

2, (3)

and the Yukawa term that couples bosonic and fermionic fields
reads

Ly = gsχs�̄σ,κ�σ,κ . (4)

We note that Lb describes the CDW fluctuation mode, where t

is the tuning parameter, us is the self-interaction, and vs is the
velocity. It is thus a Landau-Ginzburg theory for an Ising order
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parameter. The physical meaning of the Yukawa term is that a
CDW can decay into a pair of fermions. We also introduce the
inverse bosonic propagator at this point,

D−1(x,y,τ,τ ′) = (−∂2
τ − v2

s ∇2 + t
)
δ(x − y)δ(τ − τ ′),

(5)

since it is needed for the generic transport equations. It is
important to note here that L lacks the Lorentz symmetry due
to the bosonic velocity vs �= vF .

Interestingly, the above Gross-Neveu theory is renormaliz-
able in 3 + 1 dimensions, where both the Yukawa coupling gs

and the self-interaction coupling us become dimensionless.
It is then possible to study the effective Yukawa theory
in d = 3 − ε dimensions using renormalization-group (RG)
methods with ε being the control parameter for the perturbative
series (ε = 1 corresponds to the two-dimensional model).
We note that other authors have considered similar field
theories using an RG framework in the context of d-wave
superconductors.34

1. RG description of the semimetal-to-insulator (SMI) transition

In the following discussion, we sketch the RG treatment
of Ref. 10. We first restore Lorentz invariance of the model,
implying we set vs = vF = 1 throughout this paragraph. This
is a crucial point and we comment extensively on this step
later.

We take L as the starting point and integrate out fermionic
and bosonic modes within the momentum shell defined by
�/b < (ω2 + k2)1/2 < �. We furthermore introduce dimen-
sionless couplings g = gs

8π2�ε and u = us

8π2�ε with ε = 3 − d

yielding

dg2

d ln b
= g2(ε − 7g2) and

(6)
du

d ln b
= u(ε − 8g2) − 36u2 + 2g4,

to one-loop order. The above flow equations are obtained
for the bosonic mass t tuned to criticality. The intricate flow
diagram is schematically depicted in Fig. 2. Most interestingly,
the usual Wilson-Fisher fixed point (WF) of the φ4 theory
is unstable toward finite Yukawa coupling g, leading to an
additional nontrivial fixed point called SMI located at

g∗ =
√

ε

7
and u∗ = 2

63
ε. (7)

This fixed point describes the SMI transition and the associated
tuning parameter is the bosonic mass parameter t [Eq. (5)].
The correct theory is thus described by coupled electrons and
bosons. A simple order-parameter theory would not suffice
to describe the physics correctly, since there the critical point
would essentially be given by WF.

In Fig. 2, we have assumed the equivalence of bosonic and
fermionic velocities, that is, Lorentz invariance. A closer look
at the theory reveals that this is only asymptotically correct,
and breaking the relativistic invariance actually corresponds to
an irrelevant perturbation with respect to the fixed point SMI.

g

SMI

WFG u

FIG. 2. Schematic RG flow diagram: g and u are the Yukawa and
the bosonic couplings, respectively; G denotes the unstable Gaussian
fixed point of the Landau theory and WF the Wilson-Fisher fixed
point, which is unstable toward SMI (semimetal-to-insulator fixed
point) upon switching on the Yukawa coupling g. The transition is
tuned by the bosonic mass parameter t , which is perpendicular to the
u-g plane and not shown explicitly.

The corresponding RG equation was derived in Ref. 10 and
reads

dδ

d ln b
= −4ε

7
δ (8)

at g∗, where δ = vF −vb

vF
. This parameter will play a vital

role in the analysis of the leading scattering mechanism in
Sec. III A 2.

We note that in the case of the SDW, the RG equations
remain structurally intact, with modified combinatorial factors
coming from the order parameter being O(3) instead of Z2.

2. Long-range tail of the Coulomb interaction

It is know that in a half-filled electronic system on the
honeycomb lattice, the long-range Coulomb interaction is
marginally irrelevant.35 It is thus also important to understand
the role of long-range Coulomb interaction at SMI. To do this,
one has to generalize the Coulomb interaction to d dimension
following Refs. 9 and 10,

Lc = ia0�̄σ,κσz�σ,κ + 1

2e2
a0|∇|d−1a0. (9)

This form ensures that integration over a0 induces a ∝ 1
r

density-density interaction between fermions in any dimen-
sion. It is found10 that Coulomb interaction obeys the following
RG equation:

de2

d ln b
= −32π2

3
(2δd,3 + 1)e4. (10)

One observes that our choice of Lc [Eq. (9)] indeed produces a
marginally irrelevant long-range interaction in any dimension.
This establishes the long-range Coulomb interaction as the
least irrelevant coupling at SMI.

3. Physics of SMI

The physics of the quantum critical point SMI has been
analyzed in great detail by Herbut et al.,10 and we only repeat
one key feature. A prediction of the field theory is that right at
the quantum critical point the fermion propagator behaves as

G−1
f ∝ (ω2 + k2)

1−ηf

2 , (11)
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where ηf = 3ε
14 is the anomalous dimension. In this sense,

there are no well-defined fermionic quasiparticles at the critical
point. However, it was shown by Damle and Sachdev21 that a
Boltzmann transport analysis in terms of quasiparticles still
captures the relevant physics in the hydrodynamic regime
(h̄ω � kBT ). In that sense, the semiclassical Boltzmann
equation only constitutes a convenient starting point to solve
the more complicated quantum-Boltzmann equation, which
we refrain from showing fully in this paper.

B. Model II: The Gross-Neveu model and description of the
semimetal-to-insulator transition in large N

In the following, we consider an alternative formulation of
the physics described earlier. The advantage of model II is that
we can analyze it directly in two dimensions. To do so, we
employ a generalization in the spirit of the large-N method.
The large-N limit is obtained by generalizing the fermionic
spinors with a new index i = 1, . . . ,N . The model of the free
electrons was introduced before in Eq. (1). In the formulation
of the model, we follow Ref. 8. The interaction is now modeled
by a contact interaction of the type

Lint = gs

N
(�̄σ,κ,i�σ,κ,i)

2 + gt

N
(�̄σ,κ,iτσσ ′�σ ′,κ,i)

2. (12)

The physical equivalence of model II with model I is
established upon noting that gs drives an instability toward
CDW, whereas gt drives it toward SDW.

1. Quantum criticality on the level of large N

In the following, we again concentrate on the case of the
CDW, implying that we set gt = 0. For large N , gs can give
rise to a dynamically generated mass of the type

m ∝ 〈�̄σ,κ,i�σ,κ,i〉, (13)

which is determined by the gap equation

− 1

gs

= 8
∫ ∞

−∞
dω

∫ �/vF d2k

(2π )3

1

ω2 + v2
F k2 + m2

, (14)

which can be integrated to yield

1 = 2gs�

v2
F π

(√
m2

�2
−

√
m2 + �2

�2

)
, (15)

where � 
 m is the ultraviolet cutoff. Demanding invariance
of m under rescaling � → �

b
, we obtain

dg

d ln b
= −g − g2, (16)

where 2gs�

v2
F π

= g was used [note that Eq. (15) differs from Ref. 8

due to a slightly different choice in the cutoff scheme]. g� =
−1 represents a quantum critical point, where for g < −1
runaway flow into a phase with broken chiral symmetry, that
is, m �= 0, is obtained. This model represents an alternative
starting point for studying the critical transport properties in
the framework of the Boltzmann equation.

2. The role of long-range Coulomb interaction

Without going into the details of the derivation,8 we simply
state that the effect of the long-range Coulomb interaction has

also been studied in the context of this model in the limit of
large N . To do so, the Coulomb interaction (9) for d = 2 is
equally generalized to large N and the flow equation of the
charge reads

de2

d ln b
= − e4

2πN
, (17)

which confirms that the long-range Coulomb interaction is
marginally irrelevant, in qualitative agreement with Eq. (10)
from model I and Ref. 35.

We close this section with a generic comment about recent
numerical simulations performed for Dirac fermions with only
long-range interactions in terms of a lattice gauge theory
simulation. It was shown16 that even without short-range
interactions, a quantum phase transition as a function of the
fine-structure constant can be driven from a semimetal to an
insulator, where in the insulating phase, chiral symmetry is
observed to be broken. This transition happens at a critical
value of the fine-structure constant, and numerical values for
this critical coupling come close to the value expected in
vacuum. Within numerical accuracy, the transition proves to
be second order, and more remarkably, the critical exponents
seem compatible with the two models presented herein with
short-range interactions exclusively.

We note that for a purely Hubbard-type model, there has
been a recent work discussing the Mott transition, which is not
driven by collective symmetry breaking, but a transition into an
intermediate paramagnetic spin liquid phase was observed.18

Only upon increasing the local interaction does the model have
a transition into an antiferromagnetic phase. The nature of this
spin liquid phase is currently not fully understood and is not a
subject of our discussion.

III. BOLTZMANN TRANSPORT EQUATION

The Boltzmann transport equation in combination with
RG methods and large N has proven to be a valuable tool
in analyzing the transport properties of quantum critical
systems.20–23,25 In this section, we introduce the basic notation
and concepts for the calculation of the critical conductivity,
following closely Ref. 25.

It is well known that in momentum space, one can diago-
nalize the Hamiltonian (1) using a unitary matrix of the form

Ûk = 1√
2k

(
K∗ −K∗
k k

)
(18)

with

K ≡ kx + iky (19)

and k = |k| = |K|. Expressing the Hamiltonian H0 in terms
of particle and hole operators(

γ+,σ,κ (k)
γ−,σ,κ (k)

)
= Û−1

k �σ,κ (k), (20)

we obtain the diagonal form

H0 =
∑
λ=±

∫
d2k

(2π )2
λkγ

†
λ,σ,κ (k)γλ,σ,κ (k), (21)

where the sum λ extends over the electron and hole bands,
denoted +,−.
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We can also express the electrical current in terms of the
γ±. For the case of a spatially independent current, the result
can be written as

J = JI + JII (22)

with

JI = e
∑
λ=±

∫
d2k

(2π )2

λk
k

γ
†
λ,σ,κ (k)γλ,σ,κ (k). (23)

JI measures the current carried by the motion of the quasi-
particles and quasiholes; the prefactor λ accounts for these
excitations having opposite charges. The operator JII is not
shown explicitly; it describes the creation of a quasiparticle-
quasihole pair (it corresponds to the so-called Zitterbewegung,
see Ref. 1).

As in the problems studied in Refs. 20–23 and 25, in
a particle-hole symmetric situation, a current-carrying state
with holes and electrons moving in opposite directions has
a vanishing total momentum, and the current can decay by
creation or annihilation of particle-hole pairs without violating
momentum conservation. This is the physical reason why at the
particle-hole symmetric point, that is, at vanishing deviation of
the chemical potential from the Dirac point, the dc conductivity
is finite even in the absence of momentum-relaxing impurities.
However, at finite deviation from particle-hole symmetry,
driven by chemical potential or the presence of second-
neighbor hopping t ′, a driving electric field always excites
the system into a state with finite momentum that cannot
decay. This entails an infinite dc conductivity in the absence
of umklapp scattering or disorder.

As a first step, one defines the distribution function

fλ(k,t) = 〈γ †
λ,σ,κ (k,t)γλ,σ,κ (k,t)〉. (24)

Note, there is no sum over σ,κ on the right-hand side. We
assume furthermore that the distribution functions are the same
for all valleys and spins, which has to be expected for symmetry
reasons. In equilibrium, that is, in the absence of external
perturbations, the distribution functions are Fermi functions,

f+(k,t) = f 0(k) = 1

e(k−μ)/T + 1
,

(25)

f−(k,t) = f 0(−k) = 1

e(−k−μ)/T + 1
,

where we temporarily allow for a finite chemical potential μ.

In principle, off-diagonal elements such as 〈γ †
±γ∓〉 are also

created by an electric field. However, they are not needed to
evaluate JI, which is the part of the current that we focus
on in the hydrodynamic regime, ω � kBT . Furthermore, the
off-diagonal elements feed back to the kinetic equation of
the diagonal elements only to higher order in perturbation
theory. In the presence of an external electric field E acting as
a driving force on quasielectrons and quasiholes, we find the
semiclassical Boltzmann equation

(
∂

∂t
+ eE · ∂

∂k

)
fλ(k,t) = Icoll, (26)

where Icoll is the scattering integral. We parametrize the change
in fλ from its equilibrium value by36

fλ(k,ω) = 2πδ(ω)f 0(λk)

+ λevF

k · E(ω)

k
f 0(λk)[1 − f 0(λk)]g(k,ω),

(27)

where we have performed a Fourier transform in time to
frequencies, ω, and we introduced the unknown function
g(k,ω). At the particle-hole symmetric point (μ = 0), an
applied electric field generates deviations in the distribu-
tion functions having opposite sign for quasiparticles and
quasiholes. Formally, this is a consequence of the driving
term in Eq. (26) being asymmetric under λ → −λ, and thus
the solution has to be asymmetric as well. This reflects
the fact that there is an increased number of quasiholes
and quasiparticles moving parallel and antiparallel to the
exciting field, respectively. As quasiparticles and quasiholes
have opposite charges, their electrical currents are equal and
add up, while their net momenta have opposing signs and
subtract to yield zero. In this paper, we consider instabilities
that do not break particle-hole symmetry, and thus the above
parametrization is strictly justified.

A. Boltzmann equations for model I

We can formulate the Boltzmann equation for the electrons
and holes (we only show the equation for the electrons; for
holes, it follows by symmetry) to lowest order in the electron-
boson coupling as

e
k
k

· E∂kf
0(k) = 4g2

s

∫
ddq

(2π )d
M++(k,k − q)ImD(q,k − |k − q|){nb(k − |k − q|)[f+(k) − f+(k − q)]

+ f+(k)[1 − f+(k − q)]} + 4g2
s

∫
ddq

(2π )d
M+−(k,k − q)Im D(q,k

+ |k − q|){nb(k + |k − q|) [f+(k) − f−(k − q)] + f+(k) [1 − f−(k − q)]}, (28)

where

Mλλ′ (k,k′) = Tλλ′ (k,k′)T −1
λ′λ (k,k′) (29)
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with

Tλλ′ (k,k′) = (
Û−1

k τzÛk′
)
λλ′ = −1

2

(
1 − λλ′ K(K ′)∗

kk′

)
.

(30)

D is the bosonic propagator (5) and nb(ε) is the boson
distribution function.

There exists an analogous equation for the bosonic degrees
of freedom. Since the bosons do not couple to the electromag-
netic field, the driving term (left-hand side) is exactly zero.
However, the scattering integral couples the nonequilibrium
fermions to the bosons constraining the bosonic distribution
function to solve

0 =
∫

ddq

(2π )d
M++(k,k + q)(nb(k){f+(k + q) + f−(k + q) − [f+(q) + f−(q)]})

+
∫

ddq

(2π )d
M+−(k,k + q)(nb(k){f+(k + q) + f−(k + q) − [f+(q) + f−(q)]})

+
∫

ddq

(2π )d
M++(k,k + q){f+(k + q)[1 − f+(q)] + f−(k + q)[1 − f−(q)]}

+
∫

ddq

(2π )d
M+−(k,k + q){f+(k + q)[1 − f−(q)] + f−(k + q)[1 − f+(q)]}. (31)

This bosonic Boltzmann equation (31) has to be solved
simultaneously with the fermionic one (28). In principle,
there is also a boson-only scattering term coming from the
self-interaction (χ4

s term).21 This term is not shown explicitly
for reasons of conciseness. It turns out that its neglect proves
to be exact in the case at hand. This is rooted in the fact that
the bosons remain in equilibrium, which is shown explicitly
later.

1. The effect of “boson drag”

Severe complications in calculating electromagnetic re-
sponse functions in systems in which fermions and collective
(slave) bosons are coupled to each other result from the fact
that one has to solve coupled Boltzmann equations [Eqs. (28)
and (31)]. The physical reason for that is simple: electrons
transfer momentum to the bosons, which themselves are driven
out of equilibrium. Since the bosons also scatter from the
fermions, there is a feedback effect that, in principle, has to
be taken seriously. Often this is circumvented by assuming
the bosonic sector to be in equilibrium, which is equivalent
to saying that the bosonic sector equilibrates due to lattice
effects or impurities on a time scale faster than the electronic
scattering time. This can be an oversimplifying assumption
with no a priori justification. One can appreciate this most
easily by considering a Galilean invariant electronic system
interacting with effective bosonic modes. In this situation,
neglecting the generic nonequilibrium situation for the bosonic
sector yields fundamentally wrong results, namely, a finite dc
conductivity. One can convince oneself that taking into account
the Boltzmann equation for the bosons reestablishes the phys-
ically correct result of infinite dc conductivity (see the chapter
on “phonon-drag” in Ref. 36).

We now turn our attention to Eq. (31) and expand the
fermionic and bosonic distribution functions to linear order
in the applied external field E using Eq. (27). For the bosonic
sector, we stick to the symbolic

nb(k) = n0
b(ε(k)) + uk�(k) (32)

with uk being linear in the applied field and n0
b(ε) as the

equilibrium Bose distribution function. A simple analysis
shows that �(k) drops out of Eq. (31) and the remaining
parts annihilate exactly, as they should for consistency.
The preceding scattering integral is thus solved exactly
by letting

nb(k) = n0
b(ε(k)) (33)

and using Eq. (27) for the fermions. We have thus
shown that at the Dirac point, the “boson drag” van-
ishes exactly, and considering the bosons in thermodynamic
equilibrium is exact.

One can convince oneself that in a situation with a finite
chemical potential μ, this ceases to be true, and that the bosons
have to be treated as being out of equilibrium. In such a
situation, a finite amount of disorder is needed to relax the
net momentum and the associated current.

We have thus established that in clean graphene at μ = 0,
the bosonic sector remains in equilibrium. We can understand
this more intuitively as follows: we first consider an electronic
band with quadratic dispersion interacting with phonons. In
this situation, the bosonic sector absorbs some momentum
from the electrons that scatter, and it is itself driven out of
equilibrium. In graphene, we have no quadratic dispersion,
and by virtue of the perfect particle-hole symmetry (μ = 0),
the charge-carrying modes at the Dirac point are modes with
net momentum zero. Thus the bosons do not absorb any
momentum that they have to dissipate. This implies they
are not driven out of equilibrium, and treating the bosons in
equilibrium is no approximation but is exact to linear order
in the applied external field E. Note that this reasoning is
exclusive to electrical transport and does not hold for thermal
transport.

This line of argument is not exclusive to graphene or the
matrix elements of the preceding interaction, but also applies
to other systems with perfect particle-hole symmetry that is
unbroken by the interaction mediated by the bosons. As a
timely example, one could consider bilayer graphene1 where
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ωφ = ±|k − q|
k − q

k q
ωi = λ|k| ωf = λ |q|

FIG. 3. Momentum and energy structure of the Yukawa ver-
tex g for scattering of quasiholes (λ = −, full line) and quasi-
electrons (λ = −) from the collective mode (wiggly line). One
can work out that for vs = vF , the bosonic spectral function is
composed of sharp quasiparticles and only collinear scattering is
allowed; collinear scattering, however, annihilates the associated
matrix elements.

the quasiparticles interact with effective bosonic degrees of
freedom and the reasoning still holds.

2. Cancellation to infinite order

For dimensional reasons, one expects the solution to
Eq. (28) to yield a quantum critical conductivity that is
independent of temperature.21–23 It turns out that this is not
true. To quadratic order in the interaction g, the scattering
integral (28) is exactly zero due to a conspiracy of the matrix
element and energy conservation. This in itself does not rule
out a temperature-independent conductivity, since contribu-
tions to all orders in g provide scattering times independent
of temperature. However, one can convince oneself that the
kinematic constraint shown in Fig. 3 annihilates contributions
to current relaxation due to the Yukawa coupling g to all orders
in perturbation theory, provided vF = vs . This can easily be
seen by looking at the matrix elements Eq. (30) and imposing
energy and momentum conservation as shown in Fig. 3. The

exact cancellation is only operational for vs = vF . Breaking
of Lorentz invariance, that is, allowing for vs �= vF , enables a
relaxation of the current. This implies that current relaxation
due to the collective CDW degree of freedom is determined
not only by gs but also by an irrelevant parameter, namely
δ, which was introduced as the dimensionless parameter
measuring the breaking of Lorentz invariance. Since gs

assumes its fixed-point value, which is a pure number, the
inverse-scattering time vanishes upon lowering temperature
at least like δ ∝ T 4/7, see Eq. (8), leading to a diverging dc
conductivity. One now has to determine the least irrelevant
scattering mechanism among all possible ones. As we argued
before, all scattering events coming from the interaction with
the collective mode scale with additional powers of δ and thus
are irrelevant.

We have seen in Sec. II A 2 that the long-range Coulomb
interaction constitutes another perturbation to SMI, which
is only marginally irrelevant and consequently vanishes
more slowly as temperature is lowered, namely in a log-
arithmic manner. From the previous analysis we conclude
that the dominant current relaxation mechanism stems from
the long-range Coulomb interaction. This implies that to
leading order, the behavior in the semimetal is the same
as at SMI.

This statement in itself is very surprising. We are now going
to reexamine and reinterpret it in the framework of model II.

B. Boltzmann equation for model II

The following analysis is carried out directly in two dimen-
sions starting from the interaction term Eq. (12). The collision
term on the right-hand side of Eq. (26) can be determined
using Fermi’s golden rule or equivalently from a quantum-
Boltzmann equation. We refrain from an explicit derivation and
refer the reader to Ref. 25, which gives an explicit derivation
for the case of long-range interactions that is easily generalized
to the present case. The generalization leads to

(
∂

∂t
+ eE · ∂

∂k

)
fλ(k,t)

= − (2π )

vF

∫
d2k1

(2π )2

d2q

(2π )2
{δ(k − k1 − |k+q| + |k1−q|)R1(k,k1,q){fλ(k,t)f−λ(k1,t)[1 − fλ(k + q,t)][1 − f−λ(k1 − q,t)]

− [1 − fλ(k,t)][1 − f−λ(k1,t)]fλ(k + q,t)f−λ(k1 − q,t)}δ(k + k1 − |k + q| − |k1 − q|)R2(k,k1,q){fλ(k,t)fλ(k1,t)

× [1 − fλ(k + q,t)][1 − fλ(k1 − q,t)] − [1 − fλ(k,t)][1 − fλ(k1,t)]fλ(k + q,t)fλ(k1 − q,t)}}, (34)

where

R1(k,k1,q) = 4N [|T+−−+(k,k1,q)|2 + |T+−+−(k,k1, − k − q + k1)|2], R2(k,k1,q) = 4N |T++++(k,k1,q)|2. (35)

Note that the collision kernels R1 and R2 both come with a
prefactor N . There are additional contributions coming from
crossed diagrams, which are, however, down by a factor 1/N ,
see Ref. 25. The terms proportional to R1 represent collisions
between oppositely charged particles, while those proportional
to R2 are collisions between like charges. Other processes,
where a particle-hole pair is created, turn out to have vanishing

phase space: it is not possible to fulfill momentum and energy
conservation at the same time. This is a peculiarity of the linear
dispersion, that is, εk = vF k (see also Ref. 25). The scattering
matrix elements are given by

Tλλ1λ2λ3 (k,k1,q) = g2
s

N2
Tλλ3 (k + q,k)Tλ1λ2 (k1 − q,k1). (36)
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We now proceed to the linearization of (35) by inserting the parametrization (27) [we define gλ(k,ω) ≡ λg(k,ω)] and find

[−iωgλ(k,ω) − λvF /T ]

(evF k/T + 1)(e−vF k/T + 1)

k
k

= − (2π )

vF

∫
d2k1

(2π )2

d2q

(2π )2

{
δ(k − k1 − |k + q| + |k1 − q|)R1(k,k1,q)

(e−vF k/T + 1)(evF k1/T + 1)(evF |k+q|/T + 1)(e−vF |k1−q|/T + 1)

×
(

k
k
gλ(k,ω) + k1

k1
g−λ(k1,ω) − (k + q)

|k + q| gλ(|k + q|,ω) − (k1 − q)

|k1 − q| g−λ(|k1 − q|,ω)

)

+ δ(k + k1 − |k + q| − |k1 − q|)R2(k,k1,q)

(e−vF k/T + 1)(e−vF k1/T + 1)(evF |k+q|/T + 1)(evF |k1−q|/T + 1)

×
(

k
k
gλ(k,ω) + k1

k1
gλ(k1,ω) − (k + q)

|k + q| gλ(|k + q|,ω) − (k1 − q)

|k1 − q| gλ(|k1 − q|,ω)

)}
. (37)

For the subsequent discussion, we take the limit ω = 0 and
focus on the solution of the linearized transport equation in
Eq. (37) for the function g. The following discussion closely
follows the presentation given in Ref. 25. We can view the
right-hand side of Eq. (37) as a linear operator, the so-called
collision operator C, acting on the function (k/k)g(k). A key
property of C is that it is Hermitian with respect to the natural
inner product

〈g1|g2〉 ≡
∑

λ

∫
d2k

(2π )2
g1,λ(k)g2,λ(k). (38)

This Hermiticity follows36 from symmetry properties of R1

and R2 under exchanges between incoming and outgoing
momenta, which are very similar to those used in establishing
Boltzmann’s H-theorem.

Related to the preceding properties of the collision operator,
we can introduce a functional Q[g], such that Eq. (37) is
equivalent to finding its stationary point

δQ[g]

δg
= 0 (39)

with the explicit form of the functional given by

Q[g] = (2π )

8vF

∫
d2k

(2π )2

d2k1

(2π )2

d2q

(2π )2

{
δ(k − k1 − |k + q| + |k1 − q|)R1(k,k1,q)

(e−vF k/T + 1)(evF k1/T + 1)(evF |k+q|/T + 1)(e−vF |k1−q|/T + 1)

×
(

k
k
g(k) − k1

k1
g(k1) − (k + q)

|k + q| g(|k + q|) + (k1 − q)

|k1 − q| g(|k1 − q|)
)2

+ δ(k + k1 − |k + q| − |k1 − q|)R2(k,k1,q)

(e−vF k/T + 1)(e−vF k1/T + 1)(evF |k+q|/T + 1)(evF |k1−q|/T + 1)

(
k
k
g(k) + k1

k1
g(k1)

− (k + q)

|k + q| g(|k + q|) − (k1 − q)

|k1 − q| g(|k1 − q|)
)2

}
−

∫
d2k

(2π )2

g(k)vF /T

(evF k/T + 1)(e−vF k/T + 1)
. (40)

In the previous analysis of a quantum-Boltzmann equation
for massless Dirac fermions in two dimensions,22 it was noted
that the phase space for scattering of particles was logarith-
mically divergent in the collinear limit. For the interaction
considered in that paper, the collinear scattering cross section
vanished, and so this singular phase-space density had no
important consequences. The collinear scattering does not
vanish for the present interaction, and so we need to take
this logarithmic divergence seriously.25,30

The physical origin of the divergent collinear scattering is
related to the linear dispersion, which implies that quasiparti-
cles or quasiholes moving in the same direction share the same
group velocity, independent of their energies. This leads to a
diverging duration of collisions of nearly collinear particles,
which is enhanced due to the low space dimensionality. To the
extent that collinear scattering is very strong, and considering
frequencies much smaller than the inelastic-scattering rate, we

may expect that quasiparticles and quasiholes that move in the
same direction in the plane will establish a pseudoequilibrium
characterized by an effective chemical potential and an effec-
tive temperature, which, however, depends on the direction of
motion.

In linear response, the deviations of these effective
parameters from the equilibrium values μ and T have to vary
with k/k · E for symmetry reasons. The remaining dominant
mode of the function g will correspond to an effective shift in
chemical potential, which translates into

g(k) = vF

T 2
χ, (41)

where the prefactor has been chosen so as to make χ (ω)
dimensionless. With this ansatz, which will be confirmed later,
it simply remains to determine the prefactor χ , yielding the
leading term in the nonequilibrium distribution. The whole
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reasoning presented here is given in much more detail in
Refs. 25 and 28. Note that the effective chemical potential
shift ranges between ±χh̄vF eE/T depending on the direction
of motion. Comparing this to the temperature allows us to
estimate the threshold electric-field strength, eElin = T 2/h̄vF ,
below which nonlinear effects should remain small.

The ansatz (41) can be justified along the lines of Ref. 25.
The phase space for scattering diverges upon the perpendicular
momentum going to zero. However, it turns out that the
scattering matrix is not zero for collinear scattering. This
implies that the logarithmic divergence for the perpendicular
momentum going to zero has to be cut off by higher-order
self-energy corrections to the free fermions. This implies that
modes that are not zero for the collinear scattering channel
have an additional factor ln N

gs
, which in the limit N 
 1 is a

large number.
It thus turns out that the diverging phase space for collinear

scattering helps to essentially solve the problem exactly in the
limit ln(N/gs) 
 1.

We conclude that up to corrections of order [ln(N/gs)]−1,
we can choose g to be of the form

g(k) ≈ vF

T 2
C. (42)

We insert this parametrization into the functional Q[g] in
Eq. (40); the solution of the stationarity condition in Eq. (39)
is then equivalent to requiring the vanishing of the derivative
with respect to C. We numerically evaluated the integrals in
Eq. (40) using an elliptic coordinate system to solve the energy
conservation constraint,22 and we obtained

Q[g] = 1

T

ln 2

4π

(
κ

g2
s T

2

v2
F N

C2 − 2C

)
,

with κ = 1.8448 × 10−4 ± 1.0 × 10−8. From the stationarity
condition, we then obtain

C = Nv2
F

κg2
s T

2
. (43)

The conductivity can be obtained from C by combining
Eqs. (23), (27), and (42):

σ (ω = 0) = e2

h

v4
F N2 ln 2

κg2
s (kBT )2 , (44)

where we have reinserted factors of h̄ and kB . This seems to
diverge upon lowering temperature; however, we have to keep
in mind that at criticality we have g� = 2gs�

v2
F π

= −1. Identifying
the running energy scale � with the temperature kBT , we end
up with

σ (ω = 0) = e2

h

4N2 ln 2

κπ2
. (45)

This result is independent of temperature, as we expect for
a quantum critical point in two dimensions. It is worthwhile
noting that the prefactor is ∝ N2, which is different from the
large-N transport analysis of the O(N ) rotor model shown
in Ref. 20, which only has a prefactor of N . The difference
stems from the fact that in our case, all N flavors couple to
the electromagnetic field, whereas in the latter case only two
components were coupled to the electromagnetic field. So in

contrast to the analysis of the transport equations in model I,
we find that the universal conductivity is finite, however with
a numerically huge prefactor. We will now comment on the
relationship between the two results.

C. Comparison of results in model I and model II

We have seen that model I and model II seemingly give
contradictory answers to the question of whether there is a
finite universal conductivity. Whereas in model I we find
that a kinematic constraint knocks out scattering from the
order-parameter fluctuations right at the critical point, in model
II we find a finite scattering due to the electron-electron
interaction. We will argue in the following that this can
actually be interpreted consistently. To do so, we have to
analyze the reason for the kinematic constraint in model I.
This discussion can most easily be carried out directly in
two dimensions, where for the moment we put all subtleties
about controlling the perturbation series aside. If we consider
the right-hand side of Eq. (28), we realize that the reason
for knocking out scattering processes stems from the fact
that the order-parameter fluctuations are described by sharp
quasiparticles, that is, the spectral function assumes the form
of δ peaks. One can now ask in which sense this describes
the right physics. To do so, we can pretend to derive model I
from model II via Hubbard-Stratonovich transformation and
integrating out electrons. It turns out that the propagator of the
order-parameter field is actually not given by

D(νn,k) ∝ 1

ν2
n + k2

(46)

but instead by

D(νn,k) ∝ 1√
ν2

n + k2
. (47)

This has severe consequences: while Eq. (46) implies that the
bosonic spectral function is sharply peaked, Eq. (47) describes
a continuum, which still has its maximum weight at the former
resonance. While a lot of the weight is still kinematically
blocked, using Eq. (47) in the Boltzmann approach would
immediately render the right-hand side of Eq. (28) finite,
albeit small. In that sense, the bosonic sector in model I
does not faithfully describe the character of the bosonic
spectral function in the real two-dimensional system. This
implies that in reality we expect the real bosonic spectral
function to still be peaked around the resonances, but also
to have a continuum background. The Boltzmann analysis in
model II backs up this statement. Directly in two dimensions
we find a finite-temperature independent inverse-scattering
time from interactions with the collective field, albeit with
a tiny numerical prefactor. The prefactor being so small can
consistently be interpreted as a remnant of the complete
kinematic blocking in model I. Our conclusion thus is that
the Boltzmann equation as it is presented for model I simply
overestimates the kinematic blocking by annihilating the
scattering completely. We thus conclude this section by stating
that the asymptotic quantum critical universal conductivity
is numerically huge, but independent of temperature, as we
expected to find.
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IV. QUANTUM CRITICAL CONDUCTIVITY

We will now discuss the implications of the results of
Sec. III. We choose to carry out the discussion in the framework
of model II for enhanced clarity. We found that the universal
quantum critical conductivity within model II is a pure number
times e2/h. This central result is shown in Eq. (45). However,
as we argued before, the prefactor of the inverse-scattering
time is numerically tiny, consistent with the complete blocking
found in model I. This naturally leads us to consider the
influence of the remaining marginally irrelevant interaction,
which is given by the long-range Coulomb interaction.

We established that in the clean system at zero chemical
potential there are two main sources of current relaxation,
namely (i) short-range interaction, which drives the phase
transition, and (ii) long-range Coulomb interaction.

In the following, we compare the inverse-scattering times
due to the two independent processes. The discussion is
simplified by the fact that we can restrict our discussion of
the inverse-scattering times to one hydrodynamic mode, see
Sec. III. We know that in the framework of the Boltzmann
equation, collision integrals add up. Thus, by virtue of the
most relevant relaxation processes for both types of interaction
living on the same hydrodynamic mode, inverse-scattering
times also simply add up. This is what is usually called
Matthiessen’s rule36 within the relaxation-time approximation,
but here it is essentially exact. In the following, we again
borrow from Ref. 25 and simply take the numerical value of
the inverse-scattering time on the zero mode and compare it to
the one obtained in Eq. (45). Since for practical purposes the
large-N parameter N is a number of order one, we can safely
drop it from our discussion in the physically relevant situation.
Schematically, we can write the collision integral composed
of the sum of the two processes as

1

τ
= [a + bα2(T )]T , (48)

where

α(T ) = α0

1 − α0
4 ln T

�

(49)

is the running coupling parameter describing long-range
interaction. The perturbation theory of both terms is formally
controlled in the small parameter 1/N . However, there is a
big difference: while the first term in brackets is temperature-
independent, the second term scales to zero logarithmically
upon lowering temperature. This implies that asymptotically
in the very-low-temperature limit, the second term vanishes
and the first term determines the universal temperature-
independent quantum critical conductivity, in agreement with
the previous discussion. For higher temperatures, however,
the contribution due to the long-range Coulomb interaction
will win.

We can make a very crude order-of-magnitude estimate
for the temperature Tcr, where the crossover from universal
quantum critical conductivity to the regime in which conduc-
tivity is determined by the long-range Coulomb interaction
takes place. We know that in graphene the ultraviolet cutoff
is of the order of electron volts, which translates to � ≈
104 K. Furthermore, the bare long-range Coulomb interaction
is a dimensionless number of order one. We showed in Sec. III

that a ≈ 10−3, and Ref. 25 found b ≈ 1. We can estimate
the crossover temperature Tcr as the temperature at which
both contributions are comparable in size. This crossover
temperature can conservatively be estimated to be of the order
Tcr ≈ 10−50 K. This implies that for all practical purposes the
universal quantum critical conductivity will be masked by the
long-range Coulomb interaction.

Interestingly, this also implies that the quantum critical
conductivity at the semimetal-to-insulator critical point has
the same characteristic transport properties as the one in the
semimetal, that is, for a gas of hot Dirac fermions interacting
via the long-range Coulomb interaction. Furthermore, this
implies that the conclusions of the hydrodynamic transport
relations obtained in a series of papers25,28,29 also hold at the
quantum critical point.

We simply cite the result for the Coulomb-interaction-
limited minimal conductivity, which has been analyzed
elsewhere.25,28–30 There, a Boltzmann equation was solved
directly in two dimensions. This procedure has been presented
at length in Ref. 25, and we only highlight the final result for
the dc conductivity, which reads

σ = 0.76
e2

h

1

α(T )2
. (50)

Using Eq. (49) in Eq. (50), we observe that upon lowering
the temperature, the conductivity diverges as α scales to zero
logarithmically. In Eq. (49), α0 is a number of order 1 and �

constitutes the high-energy cutoff set by the lattice.
We end this discussion by saying that we expect this to

be the correct minimal conductivity in region II in Fig. 1 for
all physically relevant situations. This implies that within our
approach for realistic temperatures, we cannot distinguish the
minimal conductivity in region I from region II in Fig. 1.

V. DISCUSSION AND CONCLUSION

In this paper, we have investigated quantum critical trans-
port of electrons on the honeycomb lattice in the vicinity
of the semimetal-to-insulator transition. On a technical level,
we have used a combination of the semiclassical Boltzmann
transport equation with RG and large N to analyze two related
Gross-Neveu-type field theories. One of the central results of
this paper is given in Eq. (50), which is the conductivity in
the quantum critical region (region II in Fig. 1) for physically
realistic temperatures. The most important characteristic of
this minimal dc conductivity is that it is set by scattering off
the long-range Coulomb interaction, which is a marginally
irrelevant coupling at the semimetal-to-insulator transition.
The result is surprising since the critical conductivity weakly
but explicitly depends upon temperature through the flow
of the dimensionless Coulomb interaction parameter (49).
In general, for a Lorentz invariant quantum critical point in
two dimensions described by an interacting fixed point, one
would expect a conductivity independent of temperature. A
further remarkable consequence of our calculation is that to
leading order in temperature one cannot distinguish between
the conductivity in region I and that in region II in Fig. 1. We
furthermore showed that below a very low temperature scale
Tcr, a temperature-independent universal conductivity takes
over, in agreement with expectations.
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We finally go back to Fig. 1 and analyze possible crossover
scenarios. We know that the quantum phase transition is
microscopically driven by the interaction parameter U . Within
the two models we consider, this translates into different
quantities. Whereas in model I the quantum phase transition is
driven by the bosonic mass parameter t , in the case of model
II the phase transition is driven by the interaction parameter
g. The crossovers of the system are shown in Fig. 1 by dotted
lines with the associated crossover temperature T �(t), which
is set at T �(t) ∝ tνz = t1/2.

One conclusion of the preceding discussion is that the
universal conductivity as a function of temperature in regions
I and II is given by

σ (T )II,I ∝ e2

h

1

α2(T )
. (51)

Another more formal interesting result of our analysis
of model I is that it is possible to show that the so-called
“boson drag” in our setup is exactly zero, meaning that an
equilibrium treatment of the bosonic degrees of freedom within
the fermionic collision integral is justified to leading order in
the applied external field E. This statement is more general than
that and can be extended to systems with perfect particle-hole
symmetry, in which the collective bosonic modes do not break
the particle-hole symmetry.

A. Crossover: Quantum-critical-to-CDW insulator

For the case of the CDW, we have an Ising-type transition.
This implies that due to the absence of Goldstone modes,
symmetry breaking is possible at finite temperatures and a
finite electronic gap is stabilized. For the sake of simplicity,
we concentrate on a crossover function, which captures the
essential physics deep in the quantum critical regime and in
the insulating regime. One such function is of the type

σ (T )CDW
II→III ∝ e2

h

1

α2(T ) + �IIIe
√

t

T

(52)

with �III being a number.
The activated form of the conductivity in the insulating

regime III accounts for the fact that we have a finite gap
separating the conduction band from a valence band, linked
in an ordinary semiconductor. A typical crossover curve is
shown in Fig. 4, where a comparison of the quantum critical
resistivity (inverse conductivity right at the critical coupling)
is compared with the crossover function for the crossover
from region II to region III. The full line in Fig. 4 shows the
quantum critical conductivity, whereas the dashed line shows
the crossover function.

B. Crossover: Quantum-critical-to-SDW insulator

In the case of a CDW instability, a discrete Ising degree of
freedom is spontaneously broken and long-range order at finite
temperature is possible. For the SDW, an additional breaking
of spin rotation symmetry is required, thus there can be no
true long-range order at finite temperature by virtue of the
Hohenberg-Mermin-Wagner theorem. This implies that the
fermionic quasiparticles are only truly gapped at zero temper-
ature. The question is whether the conductivity can still show

0.2 0.4 0.6 0.8 1.0

T

T0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ρ(T)
ρ(T0)

II−III(CDW)

II (QC)

FIG. 4. Resistivity for regions II (quantum critical region) and
crossover from quantum critical to CDW called II-III (CDW) as
a function of temperature in units of the resistivity at T = T0. The
curve for the crossover II-III stays mostly flat over a wide temperature
range and eventually takes off exponentially. In the quantum critical
region II, the resistivity approaches zero upon lowering temperature
in a logarithmic manner. The plotted curves are shown for numerical
values α0 = 1 [Eq. (49)], �III = 0.2, and t = 0.07.

signatures of a pseudogap in the conductivity, which diverges
as temperature is lowered. The role of a finite-temperature
pseudogap in scaling functions has been analyzed before in
the context of the Hertz-Millis theory in two-dimensional
systems.37 In our qualitative consideration, however, we go
along the lines of Lee et al.,38 who considered fluctuation
effects at the Peierls transition in one-dimensional systems.
It is most convenient to think of the problem at very low
temperatures in terms of a spin-fermion model like model I.
We concentrate in the following on the low-temperature region,
which is usually called the renormalized classical regime.39

There, the self-energy of the electrons is given by the zero-
frequency Matsubara mode of the bosonic propagator, that is,

D(q,νn) ≈ 1

q2 + ξ−2
, (53)

where ξ is the finite correlation length, which diverges upon
lowering temperature. In the framework of a Boltzmann
theory, this implies that the former inelastic scattering of
the electrons off the bosonic mode has become elastic and
corresponds to the scattering off long-range impurities of the
1
r

type, where r is the distance. In order for this to be true,

we assume ξ−1

T
= 0 here, which is a nonsingular limit in the

Boltzmann equation and corresponds to the “renormalized
classical” regime. The temperature behavior of this type of
impurities has been analyzed before,28 and it was found that
the associated transport scattering time behaved as

1

τ
∝ 1

T
. (54)

Again, we assume a crossover function that correctly captures
the transport characteristics in the quantum critical and the
renormalized classical regime of the form

σ (T )SDW
II→III ∝ e2

h

1

α2(T ) + �III
T 2

. (55)
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FIG. 5. Resistivity for regions II (quantum critical region) and
crossover from quantum critical to SDW called II-III (SDW) as a
function of temperature in units of the resistivity at T = T0. The
curve for the crossover II-III stays mostly flat over a wide temperature
range and eventually takes off as a power law. In the quantum critical
region II, the resistivity approaches zero upon lowering temperature
in a logarithmic manner. The plotted curves are shown for numerical
values α0 = 1 [Eq. (49)] and �III = 0.1.

The respective crossover function is plotted and compared to
the quantum critical resistivity with notation as above in Fig. 5.

C. Role of particle-hole symmetry breaking and disorder

One element we have not yet discussed is the role of
particle-hole symmetry breaking and, in relation to this,
disorder. If the system does not have perfect particle-hole
symmetry, some rigorous statements, such as the one about
vanishing boson drag and finite conductivity without disorder,
cease to be true. In practice, there are several ways to break
particle-hole symmetry. One is to allow for a finite chemical
potential, which, however, brings us away from half-filling.
Another way is to take into account second-neighbor hopping
t ′. If particle-hole symmetry is absent, there is no current
relaxation in the absence of impurities, since the momentum
mode is excited in that case. Also, in that case the boson drag
cannot be neglected any more. However, we still expect our
theory to be valid in some limit. The regime of validity of our
theory is identical to the one that has been worked out in great
detail Ref. 28. For a finite chemical potential, we need μ � T

for our theory to hold. For particle-hole symmetry breaking
due to next-nearest-neighbor hoppings, such as provided by
t ′,1 we have to require that for the temperature window we are
considering, we are still within energies where the spectrum
behaves linearly.

D. Experimental relevance

Within this paper, we have analyzed the resistivity in
the vicinity of the semimetal-to-insulator transition on the
honeycomb lattice. More specifically, we have studied the
crossover from region II to region III in Figs. 4 and 5.

We now argue that our findings have some relevance for
the understanding of experiments carried out on suspended
graphene samples. Remarkably, the curves shown in Figs. 4

and 5 mimic the almost constant behavior of the resistivity
upon decreasing temperature over a large temperature window
followed by an upturn reminiscent of an insulator, as observed
by Bolotin et al.32 on suspended samples (see Ref. 32, Fig. 4
inset). The samples considered in those experiments exhibit
ultrahigh mobilities and enormous mean free paths with
respect to impurity scattering (concerning impurity scattering,
the samples are ballistic with an associated mean free path
longer than the sample length). These high mobilities and
long elastic mean free paths are obtained after repeated
annealing to remove impurities from the samples. This makes
the inelastic-scattering mechanism discussed in this paper a
viable candidate to set the limiting scattering process for the
conductivity. Most strikingly, Bolotin et al. find that upon
lowering temperature, the resistivity increases. It is tempting
to attribute this behavior to the existence of a quasiparticle
gap.

It is well known that increasing the interaction on the
honeycomb lattice, both short- or long-range, can lead to a
finite quasiparticle gap in the system. Samples on substrates
do not seem to show this tendency, but one has to keep in mind
that suspending the sample modifies the dielectric environment
and renders the system more strongly interacting. One can
thus imagine that suspending graphene samples modifies the
dielectric environment strongly enough to drive the system
toward strong interactions, rendering the charge gap finite.

At finite densities (μ �= 0), a qualitative explanation of the
experimental findings has been given in Ref. 40. However,
here we concentrate on the zero doping case, and to the best
of my knowledge, the data are not fully understood.

Recently, the data at charge neutrality were thoroughly re-
analyzed by Drut et al.,33 who speculated about an underlying,
possibly interaction-driven gap in the system. The authors
determined a couple of phenomenological parameters to fit
the data. More specifically, a phenomenological form of the
conductivity

σ = σq + σbg, (56)

where q denotes quasiparticle and bg denotes background,
was introduced. The background conductivity was set by an
unspecified scattering process. Thus we do not speculate about
the nature of this part but concentrate on the quasiparticle part.

For the interpretation and the fitting of σq , the authors
considered a gap as well as another unspecific scattering
process: concerning the unspecified scattering process, the
ratio of the inverse-scattering time to temperature, that is, 1

τT
,

was found to be independent of temperature. Up to logarithmic
accuracy, this is indeed the case in our scenario, due to the
inelastic scattering being given by 1

τ
∝ α2(T )T . Furthermore,

the authors find that within the relevant temperature range, the
mean free path associated with this scattering process is on
the order of a tenth of a micrometer. This is also in agreement
with our results. The mean free path corresponding to inelastic
scattering due to the long-range Coulomb interaction has been
estimated before in Ref. 28 and is given by lee ≈ 2.3μm

α(T )2T (K) .
In this sense, the long-range Coulomb interaction is a natural
candidate for one of the current relaxation mechanisms needed
to explain the measurements faithfully.
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Concerning the gap of the quasiparticle, the authors argued
that the data are not only compatible with a hard gap but also
with a power-law-type contribution. The hard gap naturally
emerges from the CDW scenario, whereas the pseudogap
behavior stems from the SDW scenario. Both mechanisms
result in a diverging resistivity at low temperatures.

Obviously, there are additional scattering sources that could
play a role. It turns out that phonons due to the high Fermi
velocity play a role at rather elevated temperatures (T > 150 K)
and thus are not a candidate to modify the above picture
of the transport characteristics.41 Another candidate would
be the corrugation or ripples that are observed in suspended
graphene. It turns out that on a formal level, ripples share
some characteristics with long-range Coulomb interaction. To
the best of my knowledge, no thorough study of the effect of
ripples on the conductivity in suspended graphene exists to
date, and a detailed analysis is called for.41

We thus conclude this discussion by stating that a proximity
of free-standing graphene to a quantum critical point for a
transition from the semimetal to an insulator described in this
paper could provide a natural explanation for the (temperature)
behavior of the resistivity observed in the experiment of
Bolotin et al.32 on ultraclean high-mobility samples. This,
however, would also imply that signatures of collective sym-
metry breaking of SDW or CDW type should be observable in
those samples, which to the best of my knowledge has not been
attempted. This provides a necessary independent check of the
scenario of graphene in vacuum being an excitonic insulator.
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9I. F. Herbut, V. Juricić, and B. Roy, Phys. Rev. B 79, 085116 (2009).
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