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We calculate the Hubbard bands for the half-filled Hubbard model on a Bethe lattice with an infinite coordination
number up to and including third order in the inverse Hubbard interaction. We employ the Kato-Takahashi
perturbation theory to solve the self-consistency equation of the dynamical mean-field theory analytically for
the single-impurity Anderson model in multichain geometry. The weight of the secondary Hubbard sub-bands
is of fourth order so that the two-chain geometry is sufficient for our study. Our results for the Mott-Hubbard
gap and the density of states of the lower Hubbard band agree very well with those from numerical dynamical
density-matrix renormalization group calculations, apart from a resonance contribution at the upper band edge,
which cannot be reproduced in low-order perturbation theory.
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I. INTRODUCTION

The dynamical mean-field theory (DMFT) maps lattice
models for electrons with a Hubbard-type interaction onto
effective single-impurity models; for a review, see Ref. 1.
The parameters of the impurity model must be determined
in such a way that the self-energy and the Green function of
the impurity model agree with the local self-energy and the
local Green function of the lattice model. The solution of this
self-consistency problem equally solves the original lattice
problem in the limit of infinite dimensions.2 For example, the
Hubbard model on a Bethe lattice with an infinite coordination
number can be mapped onto the single-impurity Anderson
model (SIAM). Then, the self-consistency condition requires
that its hybridization function and its Green function agree for
all frequencies.

Unfortunately, we are far from an analytical solution
of the SIAM for a general hybridization function, and a
variety of methods have been employed to solve the DMFT
equations for the single-band Hubbard model. Examples for
numerical treatments are the numerical renormalization group
method,3 exact diagonalization,4–6 the random dispersion
approximation,6,7 the dynamical density-matrix renormaliza-
tion group (DDMRG) method,6,8,9 and, at finite temperatures,
quantum Monte Carlo (QMC).10–12 Approximate analytical
methods at zero temperature include the iterated perturbation
theory,13 the local-moment approach,14 and the self-energy
functional approach.15

All methods have their merits and limitations, and it is
desirable to compare their results with those from perturbation
theory. For the half-filled Hubbard model on a Bethe lattice
with an infinite coordination number, the self-energy16 and the
ground-state energy17 are known up to and including fourth
order in the Hubbard interaction U and up to second order in
1/U .6 However, these calculations are based on the Hubbard
model in infinite dimensions not on the DMFT description.

In this paper, we solve the DMFT equations for the
Hubbard model analytically on a Bethe lattice with an infinite
coordination number, Z → ∞, at half-band filling for strong
coupling where the model describes a paramagnetic Mott-
Hubbard insulator. Up to and including third order in 1/U ,

we determine the hybridization function of the SIAM, which
corresponds to the Hubbard model on the Z → ∞ Bethe
lattice. Essential to our approach are: (i) the mapping of the
SIAM from the star geometry onto the multichain geometry
where each chain represents one of the upper and lower
Hubbard (sub-)bands; (ii) the Kato-Takahashi perturbation
theory18,19 for degenerate ground states; (iii) the Lanczos
representation of the hybridization function and the Green
function, which permits an order-by-order solution of the
self-consistency equation for the moments of the density of
states; (iv) the locality of the Hubbard interaction and of the
Lanczos operators in finite-order perturbation theory.

Our paper is organized as follows. In Sec. II, we introduce
the Hubbard model, the SIAM, the DMFT equations, and
the two-chain mapping, which we use for our perturbative
calculations for third order in 1/U . In Sec. III, we adapt
the Kato-Takahashi perturbation theory and use the Lanczos
algorithm to express the density of states for the lower Hubbard
band (LHB) and for the hybridization function in terms of
their moments. Then, the self-consistency equation reduces to
the condition that the respective moments agree up to trivial
signs. In Sec. IV, we investigate the lowest nontrivial order
and show how the iterative solution of the DMFT equation
works in practice. Next, we summarize the results for third
order; all technical details can be found in Ref. 20. The
remaining problem is the calculation of the density of states
at the boundary of a semi-infinite chain for a single particle,
which can move between nearest neighbors and experiences
a local potential at and near the boundary. Its solution and a
favorable comparison with previous numerical work8,11 is the
subject of Sec. V. Conclusions, Sec. VI, close our presentation.

II. MOTT-HUBBARD INSULATOR IN DYNAMICAL
MEAN-FIELD THEORY

We start our presentation with the definition of the Hubbard
model and the SIAM. For a specific choice of the hybridization
function in the SIAM, its single-particle Green function is
identical to the local single-particle Green function of the
Hubbard model in infinite dimensions. The DMFT prescribes a
way to determine the hybridization function self-consistently.
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In general, the single-particle Green function for the
SIAM cannot be calculated analytically. For the Mott-Hubbard
insulator, we use a mapping of the model onto a multichain
geometry where the chains represent the energy levels in the
energetically separated upper and lower Hubbard (sub-)bands.

A. Hamilton operators and Green functions

1. Hubbard model

We consider the repulsive single-band Hubbard model
(U � 0),

Ĥ =
∑
i,j ;σ

tij ĉ
†
i,σ ĉj,σ + U

∑
i

n̂i,↑n̂i,↓ − μ
∑

i

(n̂i,↑ + n̂i,↓)

=: T̂ + UD̂ − μN̂. (1)

Here, T̂ denotes the operator for electron transfer between
the lattice sites, the fermion operator ĉ

†
i,σ (ĉi,σ ) creates

(annihilates) an electron with spin σ (=↑,↓) on lattice site i,
the operator n̂i,σ = ĉ

†
i,σ ĉi,σ counts the number of σ electrons on

site i, and the operator D̂ = ∑
i n̂i,↑n̂i,↓ counts the number of

doubly occupied sites. For the description of the Mott-Hubbard
insulator, we consider a half-filled system where there is, on
average, one electron per lattice site, n = N/L = 1. Moreover,
we treat the paramagnetic situation, n↑ = n↓ = 1/2, without
any symmetry breaking. The thermodynamic limit N,L → ∞
is implicit in our following calculations.

As a major simplification, we assume that the electrons
move between nearest neighbors on a Bethe lattice with
coordination number Z,

tij =
{

−t/
√

Z, if i,j are nearest neighbors,

0, else.
(2)

Later, we will let go of Z → ∞ and will choose t = 1 as our
unit of energy. The Bethe lattice with coordination number Z is
an infinite Z-Cayley tree. A Z-Cayley tree is constructed from
a first site by connecting it to Z new sites, which constitute
the first shell. One creates further shells by adding Z − 1 new
sites to every site in shell s. The Cayley tree has no loops,
and all closed paths are self-retracing.21 The Bethe lattice
contains s → ∞ shells. Since the Bethe lattice is bipartite,
the chemical potential μ = U/2 guarantees half-band filling
at all temperatures.

We are interested in the local Green function of the Hubbard
model in its exact ground state |�〉. We use the abbreviation,

〈Â〉 = 〈�|Â|�〉
〈�|�〉 (3)

for ground-state expectation values and define the local causal
Green function in the time domain,

Gσ (i; t) = −i〈T̂sĉi,σ (t)ĉ†i,σ (0)〉, (4)

where the Heisenberg operators,

ĉi,σ (t) = eiĤ t ĉi,σ e−iĤ t (5)

are time ordered with the help of the time-ordering operator
T̂t,

T̂tĉi,σ (t)ĉ†j,σ ′(t ′) =
{

ĉi,σ (t)ĉ†j,σ ′(t ′) for t > t ′,

−ĉ
†
j,σ ′ (t ′)ĉi,σ (t) for t < t ′.

(6)

The time-frequency Fourier transformation of the local Green
function is defined as

Gi,σ (ω) =
∫ ∞

−∞
dt eiωtGσ (i; t) (7)

= 〈ĉi,σ (ω − [Ĥ − E0(N )] + iη)−1ĉ
†
i,σ 〉

+ 〈ĉ†i,σ (ω + [Ĥ − E0(N )] − iη)−1ĉi,σ 〉. (8)

Henceforth, the limit η → 0+ is implicitly understood. In
Eq. (8), E0(N ) denotes the energy of the N -particle ground
state |�〉 of the Hubbard model. The (local) density of states is
obtained from the imaginary part of the Green function [sgn(x)
is the sign function],

Dσ (ω) = − 1

π
sgn(ω) Im[Gi,σ (ω)]. (9)

The density of states is positive semidefinite, and its integral
over all frequencies is unity.22

The Green function for noninteracting electrons on a Bethe
lattice (U = 0) can be calculated in various ways.23 In the limit
Z → ∞, it approaches the Hubbard semiellipse,

ρ(ω) = 4

πW

√
1 −

(
2ω

W

)2

for |ω| � W/2, (10)

with W = 4 as the bare bandwidth. In the presence of interac-
tions (U > 0), the local Green function can be expressed with
the help of the (proper) self-energy �σ (ω),

Gi,σ (ω) =
∫ ∞

−∞
dω′ ρ(ω′)

ω − ω′ − �σ (ω)
= G

(0)
i,σ [ω − �σ (ω)].

(11)
Note that, in the limit Z → ∞, the self-energy depends only
on frequency.2 In principle, the self-energy can be calculated
in diagrammatic perturbation theory.22

2. SIAM

In order to set up the DMFT for the half-filled paramagnetic
Hubbard model, we consider the discrete symmetric SIAM in
star geometry,

ĤSIAM =
L−2∑
m=0

∑
σ

ξmâ†
m,σ âm,σ − U

2

∑
σ

n̂d,σ + Un̂d,↑n̂d,↓

+
L−2∑
m=0

∑
σ

Vm(â†
m,σ d̂σ + d̂†

σ âm,σ ). (12)

Here, â
†
m,σ (âm,σ ) creates (annihilates) a bath electron with

spin σ and bath energy ξm, d̂†
σ d̂σ ) creates (annihilates) an

electron with spin σ on the impurity level with energy Ed =
−U/2, and n̂d,σ = d̂†

σ d̂σ counts the number of σ electrons
on the impurity. The Hubbard interaction on the impurity is
the same as in the Hubbard model. The parameters Vm > 0
describe the hybridization between the bath levels and the
impurity site. The half-filled case corresponds to N = L
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electrons. Henceforth, the limits N,L → ∞ are implicitly
understood.

The SIAM is fully characterized by the hybridization
function,24


(ω) =
∑
m

V 2
m

ω − ξm + i sgn(ω)η
. (13)

The (causal) Green function of the impurity electrons is defined
by

GSIAM
σ (d; t) = −i〈T̂sd̂σ (t)d̂†

σ (0)〉, (14)

where the expectation value is to be taken in the exact ground
state of the SIAM. After Fourier transformation, the Green
function can be expressed with the help of the hybridization
function and the (proper) self-energy in the form24

GSIAM
σ (ω) =

∫ ∞

−∞
dt eiωtGSIAM

σ (d; t)

= 1

ω − 
(ω) − �SIAM
σ (ω)

. (15)

As in the case of the Hubbard model, the self-energy of
the single-impurity model can be calculated in diagrammatic
perturbation theory.

3. DMFT equations on a Bethe lattice

The skeleton diagrams for the SIAM and the Hubbard
model with an infinite coordination number are identical; for
a review, see Ref. 1. Therefore, if their local Green functions
agree,

Gi,σ (ω) = GSIAM
σ (ω), (16)

their self-energies agree as well,

�σ (ω) = �SIAM
σ (ω). (17)

The exact solution of the Hubbard model for an infinite
coordination number reduces to the calculation of the Green
function of the SIAM for a general hybridization function

(ω). The DMFT self-consistency equations (16) and (17)
single out the hybridization function, which describes the
Hubbard model in the limit of an infinite coordination number.

For the Hubbard model on a Bethe lattice, the semielliptic
bare density of states (10) results in the following form of the
local Green function (11):

Gi,σ (z) = 1
2 (z −

√
z2 − 4), z = ω − �σ (ω), (18)

so that

�σ (ω) = ω − Gi,σ (ω) − 1

Gi,σ (ω)
(19)

holds. Together with Eq. (15), the DMFT equations (16) and
(17) reduce to the single condition


(ω) = GSIAM
σ (ω), (20)

on the hybridization function. The remaining task is to
calculate the Green function GSIAM

σ (ω) for the SIAM for a
general hybridization function 
(ω). Equation (20) singles out

the hybridization function, which describes the Hubbard model
on a Bethe lattice with an infinite coordination number. From
now on, we will exclusively investigate the SIAM Therefore,
we drop the superscript SIAM on all quantities.

B. Two-chain mapping for the Mott-Hubbard insulator

1. Hubbard bands and charge gap

We are interested in the description of the Mott-Hubbard
insulator where the charge gap separates the upper Hubbard
band (UHB) and the LHB. Due to particle-hole and spin
symmetry (see, for example, Refs. 6 and 25), it is sufficient to
calculate the Green function of the LHB for a fixed spin, say,
σ = ↑,

GLHB(ω < 0) = 〈d̂†
↑(ω + Ĥ − E0 − iη)−1d̂↑〉. (21)

For positive frequencies, ω > 0, we have GUHB(ω) =
−GLHB(−ω). Moreover, for the density of states, we have
DUHB(ω) = DLHB(−ω), i.e., the density of states is symmetric
around ω = 0.

The upper edge of the LHB is the chemical potential μ− < 0
for adding the Lth electron. The minimal energy for adding
another electron to the system (N = L + 1), the chemical
potential μ+, is given by μ+ = −μ−.26 Therefore, the charge
gap obeys


c = μ+ − μ− = 2|μ−|, (22)

i.e., it can be obtained from the upper band edge of the LHB.

2. Two-chain SIAM

The self-consistency equation (20) demands that the imag-
inary part of the hybridization function is identical to the
density of states. For the Hubbard model at strong coupling,
U 
 W , we know that the density of states is centered in
the two Hubbard bands, |ω ± U/2| � O(W/2).27 For discrete
bath levels, the imaginary part of the hybridization function

(ω) in Eq. (13) consists of peaks at the bath energies ξm

with weights V 2
m. Therefore, the bath energies can be grouped

into those of the LHB, ξm = −O(U/2), and those of the
UHB, ξm = O(U/2). Consequently, we map the SIAM in star
geometry, Eq. (12), onto a two-chain geometry where the
impurity site hybridizes with two sites, which represent
the LHB and the UHB.28 Note that, in numerical treatments of
the SIAM, the star geometry is usually mapped onto a single
chain.1 Apparently, the two-chain mapping is more adequate
for the Mott-Hubbard insulator; a similar idea was proposed
earlier in Refs. 5 and 29. The concept is readily generalized as
a multichain mapping where each region with a finite density
of states is represented by its own chain; see the following.

The two-chain mapping can be carried out technically
along the lines of the single-chain mapping (Lanczos
tridiagonalization3). The transformed Hamiltonian reads

Ĥ = Ĥ0 + V̂ = Ĥ0 + V̂0 + V̂1 + V̂2, (23)

Ĥ0 = −U

2

(L−3)/2∑
l=0

∑
σ

(α̂†
l,σ α̂l,σ − β̂

†
l,σ β̂l,σ )

+U (n̂d,↑ − 1/2)(n̂d,↓ − 1/2), (24)
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V̂0 =
√

1

2

∑
σ

[(d̂†
σ α̂0,σ + d̂†

σ β̂0,σ ) + H.c.],

V̂1 =
(L−3)/2∑

l=0

∑
σ

tl[(α̂
†
l,σ α̂l+1,σ + β̂

†
l,σ β̂l+1,σ ) + H.c.], (25)

V̂2 =
(L−3)/2∑

l=0

∑
σ

εl(α̂
†
l,σ α̂l,σ − β̂

†
l,σ β̂l,σ ).

The α̂ operators describe the electrons in the lower chain
(LHB), and the β̂ operators describe those in the upper chain
(UHB). Due to particle-hole symmetry, the electron-transfer
amplitudes in the lower and upper chains are equal, t−l = t+l ,
and the on-site energies in the lower and upper chains
are opposite in sign, ε−

l = −ε+
l = εl − U/2. The mapping

is shown in Fig. 1. Later, we will investigate the model
in the strong-coupling limit. Therefore, we separated the
Hamiltonian into the starting Hamiltonian Ĥ0, Eq. (24), and the
perturbation V̂ , Eq. (25). Note that Ĥ0 describes the atomic
limit T̂ ≡ 0, where there is no transfer between sites in the
Hubbard model.

Our task is the calculation of the Green function on the
impurity site, Eq. (21), for general on-site energies εl and
electron-transfer parameters tl . In the two-chain geometry,
these parameters assume the role of the energies ξm and the
hybridizations Vm in the star geometry. Our approach relies on
the order-by-order expansion of all quantities in 1/U ,

εl =
∞∑

n=0

ε
(n)
l

(
1

U

)n

, tl =
∞∑

n=0

t
(n)
l

(
1

U

)n

(26)

for l � 0, whereby we implement the self-consistency equa-
tion (20).

I

O(U/2)

O(−U/2)

tridiagonalization

ε+
0 ε+

1 ε+
l

t+0

I

ε−0ε−1ε−l

t−0

t+l

t−l

1/
√

2

1/
√

2

FIG. 1. Mapping of the discretized SIAM onto two semi-infinite
chains, coupled via the impurity. The states, which have the energy
ξm = (U/2) and ξm = −(U/2) in the atomic limit are mapped onto
the upper and lower chains, respectively.

III. SELF-CONSISTENCY EQUATION

A. Results from Kato-Takahashi perturbation theory

In order to calculate the zero-temperature Green function
for the SIAM in strong coupling, we adapt the Kato-Takahashi
perturbation theory.18,19 The Kato-Takahashi perturbation
theory is particularly suitable for Hamiltonians Ĥ = Ĥ0 + V̂

where the ground state of the unperturbed Hamiltonian Ĥ0 is
degenerate. Details can be found in Ref. 20.

The Green function of the LHB (21) can be transformed
into

GLHB(ω) =
∞∑
i=0

〈�|d̃†
i,↑

[
(ω + U/2 + iU )�̂(0)

i,L−1

+ L̂i,L−1 − iη
]−1

d̃i,↑|�〉. (27)

Here, the index i labels the order of the Hubbard sub-bands,
where i = 0 corresponds to the primary Hubbard sub-band.
We will drop the index i = 0 whenever possible. We defined
the state,

|�〉 := 1√
2

(|φ↑〉 + |φ↓〉), (28)

which is a symmetric mixture of the two ground states of the
single-impurity model in the atomic limit at half band-filling,

|φ↑〉 = d̂
†
↑

(L−3)/2∏
l=0

α̂
†
l,↑α̂

†
l,↓|vac〉, (29)

|φ↓〉 = d̂
†
↓

(L−3)/2∏
l=0

α̂
†
l,↑α̂

†
l,↓|vac〉. (30)

Moreover, we need the reduced operators,

d̃i,σ = �̂
†
i,L−1d̂σ �̂0,L, d̃

†
i,σ = (d̃i,σ )†, (31)

h̃i,L−1 = �̂
†
i,L−1Ĥ �̂i,L−1. (32)

The reduced Hamilton operator h̃i,L−1 describes the dynamics
of a hole in the symmetric Anderson model. The operators
�̂i,N are the Kato-Takahashi projection operators.6,18–20 The
reduced Hamilton operators enter Eq. (27) in the combination,

L̂i,L−1 = h̃i,L−1 − (E0,L + U/2 + iU )�̂(0)
i,L−1, (33)

where E0,L is the ground-state energy of the symmetric
Anderson model.

B. Matrix representation of the self-consistency equation

The self-consistency equation (20) must be solved for all
frequencies in the respective sub-bands of the LHB. The
density of states of the individual sub-bands can be viewed
as probability distributions, which can be characterized by
their moments. The idea is to express the Green function
and the hybridization function by their moments so that the
self-consistency equation reduces to the condition that the two
sets of moments agree. In this way, only a countable set
of numbers must be compared. A suitable way to generate
moments from a Green function is provided by the Lanczos
iteration procedure.
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1. Lanczos iteration

For the starting vector |0〉 and the Hermitian operator Ô,
we use the following form of the Lanczos iteration:

|1〉 = −Ô|0〉 + a0|0〉,
(34)

|n + 1〉 = −Ô|n〉 + an|n〉 + bn−1|n − 1〉, n � 1,

where

an = 〈n|Ô|n〉
〈n|n〉 , n � 0, (35)

bn−1 = 〈n − 1|Ô|n〉
〈n − 1|n − 1〉 = − 〈n|n〉

〈n − 1|n − 1〉 , n � 1. (36)

The matrix representation O of Ô within the Lanczos basis
{|n〉} is tridiagonal and symmetric, and we have

On,n = 〈n|Ô|n〉
〈n|n〉 = an, (37)

On−1,n = 〈n − 1|Ô|n〉√〈n − 1|n − 1〉√〈n|n〉 = −
√

−bn. (38)

In the following, we use Fraktur letters for the matrix
representations of the corresponding operators in their Lanczos
basis.

2. Hybridization function

We introduce electron baths for every sub-band of the
LHB. Starting from the SIAM in star geometry, we write the
hybridization function in the form 
LHB(ω) = ∑∞

i=0 
i(ω),


i(ω) =
∑
m

V 2
i,m

(ω + U/2 + iU ) − ξi;m − iη
, (39)

where 
i(ω) denotes the contribution of the ith sub-band. We
cast each 
i(ω) into matrix form by applying the Lanczos
iteration with the starting vector,

|0〉i := 1√
gi

∑
m

Vi,mâ
†
i;m,σ |vac〉, (40)

where gi is the weight of the ith sub-band in the density of
states,

∑
i gi = 1/2. With the (discretized) Hamiltonian for

the bath electrons in star geometry,

Ĥ
,i =
∑
m,σ

ξi,mâ
†
i;m,σ âi;m,σ , (41)

we may write


i(ω) = i〈0|[(ω + U/2 + iU ) − Ĥ
,i − iη]−1 |0〉i
≡ {[(ω + U/2 + iU )1 − h
,i − iη]−1}00. (42)

This form can be verified by noting that [Ĥ
,i]n|0〉i =
1/

√
gi

∑
m,σ Vi,m(ξi,m)nâ†

i;m,σ |vac〉.
We note that the mapping of the single-impurity model from

the star geometry to the multichain geometry is based on the
Lanczos procedure.3 Therefore, the starting vector |0〉i is iden-
tical to an electron at the first site, |0〉i = (1/

√
2)α̂†

i;0,σ |vac〉,
of the ith lower chain in the multichain geometry. Thus, the
Hamiltonian Ĥ
,i for the bath electrons can also be written in

the form

Ĥ
,i :=
∑
l;σ

ti;l(α̂
†
i;l,σ α̂i;l+1,σ + H.c.) + εi;l α̂

†
i;l,σ α̂i;l,σ . (43)

Then, the matrix h
,i representing Ĥ
,i in the Lanczos basis
reads

h
,i =

⎛⎜⎜⎝
εi;0 ti;0
ti;0 εi;1 ti;1

ti;1 εi;2 ti;2
. . .

. . .
. . .

⎞⎟⎟⎠ , (44)

where the entries not shown are zero. The parameters εi;m and
ti;m define the SIAM in its multichain geometry.

3. Green function

For the Green function (27), we use

|�0〉 = d̃↑|�〉, (45)

as the starting vector, see Eq. (28), and

Ô = L̂i,L−1, (46)

as the operator in the Lanczos iteration. In this way, we obtain
the matrix representation,

GLHB(ω) =
∞∑
i=0

{[(ω + U/2 + iU )1 + Li − iη]−1}00, (47)

where the structure of Li is given by

Li =

⎛⎜⎜⎝
ei;0 τi;0

τi;0 ei;1 τi;1

τi;1 ei;2 τi;2

. . .
. . .

. . .

⎞⎟⎟⎠ . (48)

The parameters ei;m and τi;m must be calculated from Eqs. (37)
and (38).

4. Self-consistency equation

For t ≡ 1 as our unit of energy, the self-consistency
equation (20) reads (ω < 0)

∞∑
i=0

{[(ω + U/2 + iU )1 − h
,i − iη]−1}00

=
∞∑
i=0

{[(ω + U/2 + iU )1 + Li − iη]−1}00. (49)

In this paper, we are mainly interested in the primary LHB. As
shown in Ref. 20, it is the only LHB with nonvanishing spectral
weight up to and including third order in 1/U . Therefore, up
to this order, we may write

{[(ω + U/2)1 − h
 − iη]−1}00

= {[(ω + U/2)1 + L − iη]−1}00, (50)

where we have dropped the subscript i = 0. Reckoning with
Eq. (50), we realize that

h
 = −L (51)

is a sufficient condition to ensure the self-consistency. From
the continued fraction expansion of the hybridization function
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and the Green function, it can readily be shown that it also is a
necessary condition. Therefore, the self-consistency condition
reduces to

εn = −en and |tn| = |τn|. (52)

Note that Eq. (52) is a vast simplification over Eq. (20) because,
due to the matrix structure, we only have to equate numbers and
not functions. However, since all our calculations are implicitly
performed in the thermodynamic limit, there is a (countably)
infinite set of parameters to fix. As we will show explicitly up
to third order in 1/U , the locality of the Hubbard interaction
guarantees that there is an index lm in mth-order perturbation
theory such that the Lanczos parameters τn and en become
constant for n � lm.

IV. SOLUTION OF THE DMFT EQUATION

In Sec. IV A, we show how the DMFT equation is solved
for leading order in 1/U . In Sec. IV B, we summarize the
results for third order.

A. Calculations for leading order

First, we calculate the ground-state energy and set up the
starting vector for the Lanczos iteration. Next, we calculate the
action of the Lanczos operator on the states with a single hole
in the lower Hubbard chain. Then, we derive the parameters
ε

(0)
0 , ε

(0)
1 , t

(0)
0 , and t

(0)
1 from the first two Lanczos iterations.

Lastly, we prove the results ε
(0)
l = 0 and t

(0)
l = 1 for all l by

induction.

1. Ground-state energy and starting vector
for the Lanczos iteration

For leading order, the ground state at half band-filling is not
transformed to leading order |�(0)〉 = |�〉. The correction to
the ground-state energy for leading order reads

E
[0]
0,L = 〈φ↑|V̂ |φ↑〉 = 〈φ↑|V̂2|φ↑〉 = 2

(L−3)/2∑
l=0

εl. (53)

The operators V̂0 and V̂1 do not contribute because they modify
|φ↑〉. The contribution of V̂2 is readily calculated because the
sites of the lower chain are doubly occupied, see Eq. (25).

According to Eq. (45), the starting vector for the Lanczos
iteration is given by∣∣�(0)

0

〉 = �̂
(0)
L−1d̂↑�̂

(0)
L |�〉 ≡ |φ−1〉,

(54)

|φ−1〉 =
√

1

2
d̂↑|φ↑〉 =

√
1

2

(L−3)/2∏
l=0

α̂
†
l,↑α̂

†
l,↓|vac〉.

Note that, in general, the starting vector is not normalized for
unity.

2. Lanczos operator

The operator for the Lanczos iteration (46) is given by

L̂(0)
L−1 = �̂

(0)
L−1

(
V̂ − E

[0]
0,L

)
�̂

(0)
L−1. (55)

In the course of the calculations, we will need the eigenbasis
of �̂

(0)
L−1, i.e., single-hole states in the half-filled ground states

of Ĥ0. Apart from |φ−1〉 in Eq. (54), we define, for n � 0 [see
Eqs. (29) and (30)],

|φn;u〉 :=
√

1

2
d̂
†
↓α̂n,↓

(L−3)/2∏
l=0

α̂
†
l,↑α̂

†
l,↓|vac〉,

|φn;d〉 := −
√

1

2
d̂
†
↑α̂n,↑

(L−3)/2∏
l=0

α̂
†
l,↑α̂

†
l,↓|vac〉, (56)

|χn〉 := −
√

1

2
d̂
†
↓α̂n,↑

(L−3)/2∏
l=0

α̂
†
l,↑α̂

†
l,↓|vac〉,

and their useful linear combinations,

|γn〉 := (−1)n
√

1

2
(|φn;u〉 − |φn;d〉),

|mn;u〉 := (−1)n
√

1

2
(|φn;u〉 + |χn〉), (57)

|mn;d〉 := (−1)n
√

1

2
(|φn;d〉 + |χn〉).

Note that the states are not normalized, but they are site
orthogonal in the sense that the overlap between states with
different site indices is zero.

The action of the Lanczos operator L̂(0)
L−1 on the states is

readily calculated. One finds for n = 0,

L̂(0)
L−1|φ−1〉 = |γ0〉,

L̂(0)
L−1|γ0〉 = |φ−1〉 − ε

(0)
0 |γ0〉 + t

(0)
0 |γ1〉,

(58)
L̂(0)

L−1|m0;u〉 = 1
2 |φ−1〉 − ε

(0)
0 |m0;u〉 + t

(0)
0 |m1;u〉,

L̂(0)
L−1|m0;d〉 = − 1

2 |φ−1〉 − ε
(0)
0 |m0;d〉 + t

(0)
0 |m1;d〉,

and, for n � 1 and xn = γn,mn;u,mn;d ,

L̂(0)
L−1|xn〉 = t

(0)
n−1|xn−1〉 − ε(0)

n |xn〉 + t (0)
n |xn+1〉. (59)

The application of the Lanczos operator results in the same
structure for all n � 1. Note that this holds true in mth-order
perturbation theory in 1/U for n � m + 1.

3. First and second Lanczos iterations

In the first Lanczos iteration, we must determine the state,∣∣�(0)
1

〉
:= −L̂(0)

L−1

∣∣�(0)
0

〉 + e
(0)
0

∣∣�(0)
0

〉
, (60)

with

e
(0)
0 =

〈
�

(0)
0

∣∣L̂(0)
L−1

∣∣�(0)
0

〉〈
�

(0)
0

∣∣�(0)
0

〉 . (61)

With the help of Eq. (58), we find∣∣�(0)
1

〉 = −|γ0〉, e
(0)
0 = 0, (62)

because e
(0)
0 = 2〈φ−1|γ0〉 = 0. The self-consistency equa-

tion (52) then gives ε
(0)
0 = 0. Furthermore, we have

τ
(0)
0 =

〈
�

(0)
0

∣∣L̂(0)
L−1

∣∣�(0)
1

〉〈
�

(0)
0

∣∣�(0)
0

〉 = −2〈γ0|γ0〉 = −1, (63)

so that t (0)
0 = 1 follows from the self-consistency equation (52).
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In the second iteration, we can use the results from the first
iteration. We calculate∣∣�(0)

2

〉
:= −L̂(0)

L−1

∣∣�(0)
1

〉 + e
(0)
1

∣∣�(0)
1

〉 + τ
(0)
0

∣∣�(0)
0

〉
, (64)

with

e
(0)
1 =

〈
�

(0)
1

∣∣L̂(0)
L−1

∣∣�(0)
1

〉〈
�

(0)
1

∣∣�(0)
1

〉 = 2(〈γ0|φ−1〉 + 〈γ0|γ1〉) = 0, (65)

where we used ε
(0)
0 = 0 and t

(0)
0 = 1 in Eq. (58). The self-

consistency equation (52) then gives ε
(0)
1 = 0.

The second state in the Lanczos iteration reduces to∣∣�(0)
2

〉 = |γ1〉, (66)

and we find

τ
(0)
1 = −2 (〈φ−1|γ1〉 + 〈γ1|γ1〉) = −1, (67)

so that t (0)
1 = 1 follows from the self-consistency equation (52).

4. Induction

Now, we are in the position to prove, by induction, that
ε(0)
n = e(0)

n = 0 and τ (0)
n = −1 = −t (0)

n . Let this assumption be
true for 1 � n � M − 2 (M � 3) and assume, for 1 � n �
M − 1 (M � 3), that∣∣�(0)

n

〉 = (−1)n|γn−1〉. (68)

Then, we calculate∣∣�(0)
M

〉
:= −L̂(0)

L−1

∣∣�(0)
M−1

〉 + e
(0)
M−1

∣∣�(0)
M−1

〉 + τ
(0)
M−2

∣∣�(0)
M−2

〉
,

(69)

with

e
(0)
M−1 =

〈
�

(0)
M−1

∣∣L̂(0)
L−1

∣∣�(0)
M−1

〉〈
�

(0)
M−1

∣∣�(0)
M−1

〉
= −2(〈γM−2|γM−3〉 + 〈γM−2|γM−1〉) = 0, (70)

where we used ε
(0)
M−2 = 0 and t

(0)
M−2 = t

(0)
M−3 = 1 in Eq. (59).

The self-consistency equation (52) then gives ε
(0)
M−1 = 0, which

proves the next step in the induction for ε(0)
n .

The next state in the Lanczos iteration reduces to∣∣�(0)
M

〉 = (−1)M (|γM−3〉 + |γM−1〉) − (−1)M−2|γM−3〉
= (−1)M |γM−1〉, (71)

which proves the next step in the induction for |�(0)
n 〉.

Finally, we find

τ
(0)
M−1 =

〈
�

(0)
M−1

∣∣L̂(0)
L−1

∣∣�(0)
M

〉〈
�

(0)
M−1

∣∣�(0)
M−1

〉
= −2(〈γM−3|γM−1〉 + 〈γM−1|γM−1〉) = −1, (72)

so that t
(0)
M−1 = 1 follows from the self-consistency equa-

tion (52). This proves the next step in the induction for t (0)
n .

We recall that our approach strongly relies on the simple
form of Eq. (20) of the self-consistency equation. For a general
form of the bare density of states ρ(ω), the calculation of the
density of states for the LHB for leading order is a demanding
task.30

B. Results up to third order

The calculations up to third order are straightforward
but tedious. Simplifications arise from the fact that we are
interested in the half-filled case (N = L) and the situation with
a single hole (N = L − 1). Moreover, the results for leading
order simplify the analysis considerably. Details are given in
Ref. 20.

Here, we summarize the results,

ε0 = 7

4U 3
, ε1 = 1

2U
+ 31

8U 3
,

εn = 1

2U
+ 35

8U 3
≡ ε̄ (n � 2), (73)

t0 = 1 + 1

8U 2
, tn = 1 + 3

8U 2
≡ t̄ (n � 1).

Note that only odd (even) orders appear in the 1/U expansion
of εl (tl).

V. HUBBARD BANDS IN THIRD ORDER

A. Density of states of the LHB

The hybridization function 
(ω), or equivalently, the
impurity Green function, can be obtained from an equivalent
scattering problem for a single particle on a semi-infinite chain.
We start this section by formulating this problem. Next, we
calculate the single-particle gap and the hybridization function
in closed form. Lastly, we expand this expression order by
order in 1/U , which defines the band-part Green function.

1. Scattering problem

The Lanczos algorithm provides the tridiagonal matrix
representation of the hybridization function,

h
 =

⎛⎜⎜⎝
ε0 t0
t0 ε1 t̄

t̄ ε̄ t̄

. . .
. . .

. . .

⎞⎟⎟⎠ , (74)

where the parameters are given in Eq. (73).
As shown in Sec. III, the hybridization function can be

obtained from


LHB(ω) = w{[(ω + U/2)1 − h
 − iη]−1}00. (75)

The matrix h
 (74) corresponds to a tight-binding Hamiltonian
K̂ , which describes the transfer of a single particle on a semi-
infinite chain; compare Eq. (25), plus a scattering potential Ŵ

at the boundary of the chain,

Ĥscat = K̂ + Ŵ ,

K̂ = t̄

∞∑
l=0

(|l〉〈l + 1| + |l + 1〉〈l|) + ε̄

∞∑
l=0

|l〉〈l|, (76)

Ŵ = ε∗
0 |0〉〈0| + ε∗

1 |1〉〈1| + t∗0 (|0〉〈1| + |1〉〈0|) ,

with ε∗
0 = ε0 − ε̄ = −1/(2U ) − 21/(8U 3), ε∗

1 = ε1 − ε̄ =
−1/(2U 3), and t∗0 = t0 − t̄ = −1/(4U 2). Note that the scat-
tering potential Ŵ is attractive, which results in a redshift of
the density of states; see the following.
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The hybridization function can equally be calculated from
the one-particle Hamiltonian Ĥscat,


LHB(ω) = {[(ω + U/2)1 − h
 − iη]−1}00

= 1
2 〈0|[(ω + U/2)1 − Ĥscat − iη]−1|0〉. (77)

In this way, the Green function for the LHB can be deduced
from a one-particle problem.

2. Single-particle gap

The attractive Ŵ is too weak to generate a bound state
below the lower band edge of the tight-binding operator K̂ .
Therefore, it does not change the support of the imaginary part
of the bare Green function defined by K̂ , which is given by
|ω − ε̄| � 2t̄ . In turn, this implies that the upper edge for the
LHB is given by μ− = −U/2 + ε̄ + 2t̄ so that the charge gap
in Eq. (22) is given by (bandwidth W = 4),


c = 2| − U/2 + ε̄ + 2t̄ |
= U − 4 − 1

U
− 3

2U 2
− 35

4U 3
+ O

(
1

U 4

)
. (78)

The result for second order was derived earlier by Eastwood
et al.6 Note that the coefficient for third order is larger than
anticipated in Ref. 6.

Let 
c(Uc) denote the critical value of the on-site interac-
tion U where the charge gap closes, i.e., 
c(Uc) = 0. Up to
third order, we find

U (0)
c = 4, U (1)

c = 4.236 [5.90%],
(79)

U (2)
c = 4.313 [1.82%], U (3)

c = 4.406 [2.16%],

where the number in square brackets gives the percentage
change to the result of the previous order. Apparently, the
changes in the estimated critical interaction strength from the
second to the third order are of the same order of magnitude,
and the critical interaction strength does not converge quickly
in these low orders.

3. Green function for the scattering problem

The calculation of the boundary Green function for a
semi-infinite chain with a local potential at the boundary
is readily accomplished.31,32 We define the general two-site
Green functions,

gl,m(ω) = 〈l|[(ω + U/2)1 − Ĥscat − iη]−1|m〉, (80)

g
(0)
l,m(ω) = 〈l|[(ω + U/2)1 − K̂ − iη]−1|m〉. (81)

The Green functions (81) for the tight-binding Hamiltonian K̂

are calculated explicitly in Ref. 20.
In Eq. (80), we use the operator identity (Â −

B̂)−1 = Â−1 + Â−1B̂(Â − B̂)−1 with Â = (ω + U/2)1 − K̂

and B̂ = Ŵ so that we can write

g0,0(ω) = g
(0)
0,0(ω) +

∞∑
l,m=0

g
(0)
0,l (ω)〈l|Ŵ |m〉gm,0(ω) (82)

= g
(0)
0,0(ω) + ε∗

0g
(0)
0,0(ω)g0,0(ω) + ε∗

1g
(0)
0,1(ω)g1,0(ω)

+ t∗0
[
g

(0)
0,0(ω)g1,0(ω) + g

(0)
0,1(ω)g0,0(ω)

]
,

where we used the locality of the scattering potential Ŵ (76)
in the second step. Likewise, we obtain

g1,0(ω) = g
(0)
1,0(ω) + ε∗

0g
(0)
1,0(ω)g0,0(ω) + ε∗

1g
(0)
1,1(ω)g1,0(ω)

+ t∗0
[
g

(0)
1,1(ω)g0,0(ω) + g

(0)
1,0(ω)g1,0(ω)

]
. (83)

We can solve the coupled equations (82) and (83) to give our
final result [g0,0(ω) = 2GLHB(ω)],

g0,0(ω) = g
(0)
0,0(ω) − ε∗

1

[
g

(0)
0,0(ω)g(0)

1,1(ω) − g
(0)
0,1(ω)g(0)

1,0(ω)
]

N (ω)
,

N (ω) = 1 − ε∗
0g

(0)
0,0(ω) − 2t∗0 g

(0)
1,0(ω) − ε∗

1g
(0)
1,1(ω)

+ [ε∗
0ε

∗
1 − (t∗0 )2]F (ω),

(84)

F (ω) = g
(0)
0,0(ω)g(0)

1,1(ω) − g
(0)
1,0(ω)g(0)

0,1(ω).

One can show that20

g
(0)
1,1(ω) = g

(0)
0,0(ω) + t̄2

[
g

(0)
0,0(ω)

]3
,

(85)
t̄2F (ω) = t̄g

(0)
1,0(ω) = [

t̄g
(0)
0,0(ω)

]2
,

so that we can cast our final third-order result into the form

g0,0(ω) = g
(0)
0,0(ω) − ε∗

1

[
g

(0)
0,0(ω)

]2

R(ω)
,

R(ω) = 1 − (ε∗
0 + ε∗

1)g(0)
0,0(ω) − ε∗

1 t̄
2
[
g

(0)
0,0(ω)

]3

+ (ε∗
0ε

∗
1 − (t∗0 )2 − 2t∗0 t̄)

[
g

(0)
0,0(ω)

]2
.

(86)

The density of states is the imaginary part of this expression,
2πDLHB(ω) = Im [g00(ω)]. The bare boundary Green function
is given by [x = (ω + U/2 − ε̄)/(2t̄)],

t̄g
(0)
0,0(ω) = �(x2 − 1)[x − sgn(x)

√
x2 − 1]

+�(1 − x2)[x + i
√

1 − x2], (87)

where �(x) is the Heaviside step function. For the density of
states, we only need the region |x| � 1.

In Fig. 2, we show the results for the density of states of
the LHB for U = 5 (bandwidth W = 4) for first, second, and
third order in 1/U . The overall spectra display a redshift of
the Hubbard semiellipse (10), which describes the density of
states for leading order 2D

(0)
LHB(ω) = ρ(ω + U/2). The spectra

for higher orders differ from each other mostly by a shift in the

0

0.5

1.0

-5.5 -4.5 -3.5 -2.5 -1.5 -0.5

2π
D

L
H

B
(ω

)

ω

FIG. 2. (Color online) Density of states of the LHB, 2πD
[n]
LHB(ω),

for U = 5 (bandwidth W = 4) up to and including orders n = 1, 2, 3
(black, blue, and red colors).
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spectral support so that the deviations are best visible close to
the band edges.

4. Band part of the Green function

The full solution (84) contains higher-order corrections in
1/U due to the interaction dependence of the denominator
N (ω). We may expand it order by order to derive a Taylor
series in 1/U for the Green function. Such an order-by-order
expansion ignores the fact that the attractive potential Ŵ

generates resonance contributions at the band edges of the
Hubbard band; see the following. Therefore, we denote the
Green function from the order-by-order expansion as a band-
part Green function. It can be cast into the form

2t̄Gband
LHB(ω) =

3∑
n=0

λn [̃gn(x) + gn(x)],

2

(
1 + 3

8U 2

)
x = ω + U

2
− 1

2U
− 35

8U 3
,

(88)
g̃n(|x| � 1) = [Tn+1(x) − sgn(x)

√
x2 − 1Un(x)],

gn(|x| � 1) = [Tn+1(x) + i
√

1 − x2Un(x)],

with Tn(x) [Un(x)] as the Chebyshev polynomials of the first
[second] kind,33 and

λ0 = 1, λ1 = − 1

2U
− 39

16U 3
,

(89)

λ2 = − 1

4U 2
, λ3 = − 1

8U 3

are the expansion coefficients. The first-order result was de-
rived earlier in Ref. 28. Using an intuitive method, Eastwood6

derived the band-part Green function for second order in 1/U

for the Hubbard model in infinite dimensions. So far, their
method could not be extended systematically to higher orders.

In Fig. 3, we show the resonance contribution to the density
of states, Dres

LHB(ω) for U = 5.5. It is defined as the difference
among the band part (88), Dband

LHB(ω), and the full density of
states DLHB(ω) (86). The difference is seen to be fairly small,
which had to be expected because the potential Ŵ is rather
weak. In general, the resonance contributions slightly increase

0

0.5

1.0

1.5

2.0

2.5

3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2

Δ
c
(U

)

U

U
(0)
c = 4

U
(1)
c = 4.236

U
(2)
c = 4.313

U
(3)
c = 4.406

FIG. 4. Charge gap as a function of the interaction strength for
various orders in the 1/U expansion. The dots are DDMRG data
points.8

the density of states close to the band edges and decrease it in
the middle of the band.

B. Comparison with numerical results

Finally, we compare our analytical results with data from
advanced numerical methods for the DMFT for the Mott-
Hubbard insulator. The DDMRG method provides the gap
and the density of states at zero temperature.8 QMC gives
the Matsubara-Green function at low but finite temperatures.
Reference 6 contains a comparison with early methods in the
field.

1. Gap

In Fig. 4. we show the gap as a function of the interaction
strength for various orders in the 1/U expansion together with
the DDMRG data of Ref. 8. The third-order theory reproduces
the DDMRG data points very well.

Note, however, that in another DDMRG study,9 the gap
closes around U = 4.8. The differences in the two approaches
lie in the reconstruction of the density of states and the
extrapolation of the gap from the finite-size data. Apparently,
different reconstruction algorithms can result in substantially
different extrapolations close to the transition.
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FIG. 3. Resonance contribution to the density of states of the LHB, Dres
LHB(ω) = DLHB(ω) − Dband

LHB(ω), as a function of frequency in nth-order
perturbation theory for U = 5.5 (bandwidth W = 4) (a) n = 1, (b) n = 2, (c) n = 3.

035120-9



DANIEL RUHL AND FLORIAN GEBHARD PHYSICAL REVIEW B 83, 035120 (2011)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-5.5 -4.5 -3.5 -2.5 -1.5 -0.5

2π
D

L
H

B
(ω

)

ω
×
×

×

×

×
×

×
×××

×
×

×
×

××××××××××××××××××××
×

×
×

×
×

×

×

×

×

×

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-5.5 -4.5 -3.5 -2.5 -1.5 -0.5ω
×

×

×
×××

×
×

×
×

×
×

×
×

××××××××××××××××××××
×

×
×

×
×

×

×

×

×

(b)

FIG. 5. (Color online) Density of states of the LHB from third-order perturbation theory in 1/U (full line) in comparison with DDMRG
data points8 for (a) U = 5 and (b) U = 4.8.

2. LHB

In Fig. 5, we show the density of states for U = 4.8 at
third order in 1/U together with the DDMRG data of Ref. 8.
The overall agreement is very good. This has already been
observed from the results for second order.6

It is seen that a resonance develops at the upper band edge in
the DDMRG data, which is not seen in perturbation theory for
third order. For U = 4.5, the resonance is more pronounced8

and resembles the split quasiparticle peak of the metallic phase.
One may wonder whether such a resonance could be obtained
from higher-order perturbation theory. A model study32 shows
that the parameter set ε∗

0 = −0.2 and ε∗
1�m�9 = 0.1/m in the

scattering potential Ŵ can readily account for both the overall
redshift of the density of states and a resonance at the upper
band edge. Since the range of the repulsive potential is finite, an
expansion of the density of states to high but finite order could
possibly reproduce the resonance seen in the DDMRG data.

3. Matsubara-Green function

The Matsubara-Green function for the Hubbard model is
defined by

G(τ ) = − 1

L

∑
i

Tr [eβ(�−Ĥ )Tτ ĉi,σ (τ )ĉ†i,σ (0)], (90)

where β = 1/kBT is the inverse temperature, � is the
grand-canonical potential, and Tτ orders the operators in
imaginary time. The operators in imaginary-time Heisenberg
representation are defined by (−β � τ � β)

ĉi,σ (τ ) = eτĤ ĉi,σ e−τĤ , ĉ
†
i,σ (τ ) = eτĤ ĉ

†
i,σ e−τĤ . (91)

The Fourier transformation of the Matsubara-Green function
is defined on the points iωn = (2n + 1)π/β (n: integer) on the
imaginary axis.

The retarded Green function at finite temperature T is
obtained from the analytic continuation,

Gret(ω; β) = G(iωn → ω + iη). (92)

Therefore, we may express the Matsubara-Green function with
the help of the density of states at finite temperature in the form

G(τ ) =
∫ ∞

−∞
dω

[
Im [Gret(ω; β)]

π

]
e−ωτ

e−βω + 1
, (93)

with 0 � τ � β. Note that it is easy to evaluate Eq. (93) for a
given density of states, but it is very difficult to reconstruct the
density of states from numerical data for G(τ ).

For very low temperatures and for large interaction
strengths, we approximate the density of states by its zero-
temperature expression for third order,

G(τ ) ≈ −
∫ ∞

−∞
dω [DLHB(ω) + DLHB(−ω)]

e−ωτ

e−βω + 1
,

(94)
which we compare with QMC data of Blümer.34 The approx-
imation is not as drastic as it may seem because, deep in the
Mott-Hubbard insulator, thermal excitations are exponentially
suppressed due to the finite charge gap. Therefore, corrections
to Eq. (94) should be exponentially small in 
c(U )/kBT .

In Figs. 6 and 7, we compare our analytical results, Eq. (94),
to QMC data for β = 20 (T = 0.05) at U = 6 and U = 5.2,
where the gaps are 
c(U = 6) = 1.75 and 
c(U = 5.2) =
0.89, respectively. The results agree very well. Note, however,
that G(τ ) is rather featureless so that fine points, such as the
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FIG. 6. (Color online) Third-order result and QMC data for the
Matsubara-Green function for U = 6 (blue) and U = 5.2 (green).
The inverse temperature is β = 20 (T = 0.05), the gaps are 
c(U =
6) = 1.75 and 
c(U = 5.2) = 0.89, respectively. Note that the data
are shown on a logarithmic scale. The shading indicates the statistical
error in the QMC data.
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FIG. 7. (Color online) Difference between the third-order result
and QMC data for the Matsubara-Green function for U = 6 (blue) and
U = 5.2 (green). The inverse temperature is β = 20 (T = 0.05); the
gaps are 
c(U = 6) = 1.75 and 
c(U = 5.2) = 0.89, respectively.
Note that the difference is augmented by a factor of 103 to make it
visible. The shading indicates the statistical error in the QMC data.

width of the Hubbard bands or the density of states cannot be
reconstructed easily from QMC data for G(τ ).

VI. CONCLUSIONS

In this paper, we have studied the Mott-Hubbard insulating
phase of the Hubbard model on a Bethe lattice with an infinite
coordination number. We have adopted the Kato-Takahashi
perturbation theory to solve the self-consistency equation of
the DMFT analytically for the symmetric SIAM in pertur-
bation theory up to and including third order in the inverse
coupling strength U . To this end, it has been necessary to use
the mapping of the SIAM from the star geometry onto the two-
chain geometry, which represents the energetically separated
LHB and UHB. In higher orders, a multichain mapping is
required in order to resolve the various Hubbard sub-bands.
For the present paper, we could ignore the secondary Hubbard
bands whose weight is of fourth order in 1/U .

We confirm earlier analytical results6 for the Mott-Hubbard
gap at second order on a Bethe lattice with an infinite coordi-
nation number and extend them to third order systematically.
The agreement between the perturbation theory in 1/U and
the DDMRG data of Ref. 8 for the gap is very good. Note,
however, that the precise value of the critical interaction Uc,
where the gap closes, and the analytical behavior of the gap, as
a function of U close to the transition, are still under debate.9

The previous paper6 provides the Green function as a
Taylor expansion in 1/U , whereas the present paper includes

resonance corrections. The full density of states results
from the calculation of the boundary Green function for a
particle on a semi-infinite chain with nearest-neighbor electron
transfers and an attractive interaction near the boundary,
whose parameters we derived for third order in 1/U . For all
interaction strengths where perturbation theory is applicable,
U � 5 (bandwidth W = 4, 4.4 � Uc � 4.8), the resonance
contributions are small.

For U � 5, the agreement between the analytical results for
the density of states and the DDMRG data8 is very good for all
frequencies. In addition, our zero-temperature expressions for
the density of states provides a very good approximation for
the density of states at small but finite temperatures. This can
be seen from the excellent agreement between our approximate
Matsubara-Green function and QMC data.34

As in all kinds of perturbation theories, the number of
terms to be calculated rapidly increases with the index of
the order. In principle, the fourth-order terms could still
be calculated by hand. This requires a four-chain geometry
so that the secondary Hubbard sub-bands can be treated
properly. For fourth order, there are more than 30 terms in the
Kato-Takahashi operator and in the projected Hamiltonian.
According to our analysis, much higher orders are needed
to reproduce a resonance feature seen in the DDMRG
data8 at the upper band edge of the LHB. Such high-order
calculations for the density of states appear to be forbiddingly
costly within the DMFT.

The ground-state energy of the Hubbard model on a Bethe
lattice with an infinite coordination number was calculated
for high orders using a computer algorithm based on the
Kato-Takahashi expansion.35 In the future, we plan to de-
vise a similar algorithm for the calculation of the Mott-
Hubbard gap. With a high-order expansion for the Mott-
Hubbard gap, we should be able to locate Uc with much
better accuracy.

Our approach can be extended to multiband Hubbard
models on a Bethe lattice. Apparently, in the strong-coupling
limit, each band must be mapped onto two separate chains in
the SIAM in order to represent the UHB and LHB. It would be
desirable to provide analytical results in the strong-coupling
limit as tests for numerical approaches to the DMFT for
multiband Hubbard models.
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35N. Blümer and E. Kalinowski, Phys. Rev. B 71, 195102

(2005).

035120-12

http://dx.doi.org/10.1103/PhysRevB.72.113110
http://dx.doi.org/10.1103/PhysRevB.72.113110
http://dx.doi.org/10.1103/PhysRevLett.69.168
http://dx.doi.org/10.1103/PhysRevB.76.205120
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevB.49.10181
http://dx.doi.org/10.1103/PhysRevB.49.10181
http://dx.doi.org/10.1088/0953-8984/9/20/019
http://dx.doi.org/10.1088/0953-8984/9/20/019
http://dx.doi.org/10.1140/epjb/e2003-00352-7
http://dx.doi.org/10.1140/epjb/e2004-00005-5
http://dx.doi.org/10.1088/1742-5468/2006/03/P03015
http://dx.doi.org/10.1143/PTP.4.514
http://dx.doi.org/10.1088/0022-3719/10/8/031
http://archiv.ub.uni-marburg.de/diss/z2010/0377/pdf/ddfr.pdf
http://dx.doi.org/10.1103/PhysRevB.71.235119
http://dx.doi.org/10.1103/PhysRevB.71.235119
http://dx.doi.org/10.1088/0953-8984/10/12/009
http://dx.doi.org/10.1088/0953-8984/10/12/009
http://dx.doi.org/10.1140/epjb/e2008-00138-5
http://dx.doi.org/10.1140/epjb/e2008-00138-5
http://dx.doi.org/10.1103/PhysRevLett.20.1445
http://dx.doi.org/10.1103/PhysRevLett.20.1445
http://dx.doi.org/10.1142/S0217984994000571
http://dx.doi.org/10.1142/S0217984994000571
http://dx.doi.org/10.1103/PhysRevB.45.2237
http://dx.doi.org/10.1103/PhysRevB.45.2237
http://dx.doi.org/10.1103/PhysRevB.71.195102
http://dx.doi.org/10.1103/PhysRevB.71.195102

