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A very popular ab initio scheme to calculate electronic properties in solids is the use of hybrid functionals in
density functional theory (DFT) that mixes a portion of the Fock exchange with DFT functionals. In spite of its
success, a major problem still remains, related to the use of one single mixing parameter for all materials. Guided
by physical arguments that connect the mixing parameter to the dielectric properties of the solid, and ultimately
to its band gap, we propose a method to calculate this parameter from the electronic density alone. This approach
is able to cut significantly the error of traditional hybrid functionals for large and small gap materials, while
retaining a good description of the structural properties. Moreover, its implementation is simple and leads to a

negligible increase of the computational time.
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Density functional theory (DFT) is one of the major
achievements of theoretical physics in the last decades. It
is now routinely used to interpret experiments or to predict
properties of novel materials. The success of DFT relies
on the Kohn-Sham (KS) scheme and the existence of good
approximations for the unknown exchange and correlation (xc)
functional. In the standard KS formulation the xc potential is
local and static. Since the original suggestion of the local-
density approximation (LDA),! a swarm of functionals has
been proposed in the literature.” In the ab initio study of solids,
the Perdew, Burke, and Ernzerhof® (PBE) parametrization
of the xc functional has been, for many years, the default
choice for many applications. A good functional must yield
ground states properties (like structural parameters), while it
is expected that the KS gap and true quasiparticle gap differ
by the derivative discontinuity.* Indeed, for semiconductors
and insulators PBE yields good structural properties and KS
band-gap energies that are, at best, half of their experimental
value. To obtain both the ground state and quasiparticle
energies correctly within one and the same formalism, one can
resort to a many-body GW calculation.>® However, GW is, by
all measures, an expensive technique with a very unfavorable
scaling with the number of atoms in the unit cell. It is therefore
unpractical for the study of band structures of large systems
and clearly prohibitive regarding total energy calculations even
for simple realistic systems.

Much of the computational effort in GW comes from the
dynamically screened Coulomb interaction W. It has therefore
been crucial to explore to which extent dynamical effects are
mandatory, or whether nonlocality is the dominating charac-
teristic. The move from local KS potentials to nonlocal func-
tionals has first been pushed forward in quantum chemistry,
where today the so-called hybrid functionals are very popular.
These functionals mix a fraction « of the Fock exchange
with a combination of LDA and generalized gradient (GGA)
functionals. The application of hybrid functionals to the solid
state had a slower start.”® The situation changed recently,
helped by the wider availability of computer codes that support
hybrids® and the steady increase of computational power
covering the additional cost with respect to a local potential.
Besides yielding good structural properties'” hybrids have
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proved to correct, to a large extent, the band-gap problem.®!!

Another landmark came with the introduction of screened
hybrids.'? These functionals lead to faster calculations and
improved band gaps, especially for small band-gap systems.
Furthermore, by screening the Coulomb interaction at large
distances, they also give access to metals.

The intuition lying behind a hybrid functional is rather
clear. While LDA or GGA calculations strongly underestimate
the gap, Hartree-Fock calculations overestimate it typically
by more than a factor of 2. By changing the mixing « from
0 to 1, one has a continuous change between local KS and
Hartree-Fock and an essentially linear variation between the
respective gaps. Therefore, to obtain the experimental gap one
simply has to use the appropriate mixing parameter. This value
can be determined from a fit to a series of systems, and is often
set to around o ~ 0.2-0.3. This choice gives very good results
for a large class of systems, but it usually fails when the gap
is very large or very small. But what is the physical meaning
of the mixing parameter? To answer this question, it can be
instructive to move away from a generalized KS picture,'® and
consider the hybrid as an approximation to the self-energy .
In the GW approximation the latter can be written as

S(r,r'yw) = Tx(r,r') + Zea(r,r’; o), (1)

with X (r,r’) being the statically screened-exchange (sX)
term and X, (r,r’; @) containing the static Coulomb hole and
dynamical contributions. If the screening in the sX term is
replaced by an effective static dielectric constant €5, = 1/«
and Xy is modeled by the static and local parts of the hybrid
functional,'* the quasiparticle equation has the same form as
the generalized KS equation solved for hybrid functionals.'
From these arguments we can conclude that the physical value
for the mixing parameter « is related to the inverse of the
dielectric constant of the material at hand.'®!” Such a link has
also been suggested to explain variations of band gaps with
respect to small structural changes.'®

In Fig. 1 we show that, for a large range of materials,
the value of 1/e, ,—obtained with ABINIT!® using linear
response within the PBE approximation—is approximately
proportional to the optimal mixing parameter . The latter,
calculated with the computer code vasP,’ is defined as the
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FIG. 1. (Color online) Inverse of the dielectric constant calculated
with the PBE functional as a function of the optimal mixing parameter.
The line ooy = 1/€PE is a guide to the eye.

fraction o of Fock exchange of a PBEO’ hybrid functional
that reproduces the experimental band gap of the material.
The correlation is evident, despite the fact that the DFT-
PBE calculations systematically overestimate the dielectric
constants with respect to the experiment.

In Fig. 2 we display the band gaps calculated using
o = 1/€BE as the mixing parameter of a modified PBEO
hybrid functional (empty squares labeled PBEO¢,), compared
to the experimental data and other theoretical results. In
Table I we summarize the calculated band gaps for a series
of semiconductors and insulators. We first emphasize that the
comparison to the experiment is far from trivial. First, in the
calculations we completely ignore the zero point vibrations
of the nuclei. This is usually a small correction, but for some
cases, like diamond, this can lead to a correction to the band gap
of a few tenths of an eV.2° Of course, the zero point vibrations
are routinely subtracted in quantum chemistry benchmarks,
but this practice has still to arrive for solids. Second, several of
the experiments are optical, including therefore the excitonic
binding energy. This quantity usually amounts to a few tens of
meV, but excitonic binding energies of 0.5 eV are not unheard
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of ! Finally, strong polaronic effects can also be expected for
some ionic materials. For example, for LiF these effects lead
to a shrinkage of the electronic gap that can be as large as
2 eV.? In conclusion, we do not believe that, in general, it is
scientifically meaningful to compare our calculated values to
the experiment to better than 5-10%.

In Table I we can see that the hybrid PBEO (a = 1/4)7
already improves dramatically the results with respect to a local
PBE functional (average error of 47%), bringing the calculated
gaps toward the experimental values with an average error of
less than 30%. However, this number alone hides the fact that
PBEO gives excellent results for some intermediate band-gap
materials, like diamond, BN, AIN, and so on, whereas it
fails both for small band-gap materials (like Si or Ge),
overestimating their gaps, and for large band-gap materials
(like the rare gases) where the gaps are underestimated. This
is not surprising: In materials like Si, electrons are delocalized
and easily polarizable, leading to a strong screening and small
mixing (the optimal mixing is actually o,y = 0.12). For Ne,
electrons are localized and screening is basically nonexistent
(aopt = 0.70). This effect is captured by the dependence on the
dielectric constant of the mixing « = 1/€4,. Such a calculation
decreases overall the error by almost a factor of 2. The
remaining error is dominated by the large underestimation
of the gap for materials like Si, Ge, or GaAs. This points to
the fact that, to predict good gaps approaching the metallic
limit, one needs a finite amount of the Fock exchange that is
not accounted for by the simple 1/€,, model for the mixing,
as can be seen in Fig. 1.

The €.,-dependent mixing is hence physically motivated
and can yield good band gaps. However, the procedure to
obtain it (i.e., the calculation of the dielectric constant) is
fairly cumbersome and therefore often unpractical. The best
option would be to find an estimator of the dielectric constant
from quantities readily available from the ground state. To
obtain such a relation, we first observe that there is a strong
correlation between the electronic dielectric constant of the
material and the energy gap.?® Of course, it is not desirable to
have a functional depending explicitly on the band gap of the
material, so the question is if one can find an estimator of this
quantity based solely on reduced densities.
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FIG. 2. (Color online) Electronic band gaps calculated as differences of generalized KS eigenvalues for a series of semiconductors and

insulators. All calculations were performed at the experimental lattice constant. The symbols labeled PBEO

PBEO,,ix, and HSEQ6,,;, are the

€002

results obtained with the hybrid functionals proposed in this article. TB09 results come from Ref. 28.
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TABLE 1. Electronic band gaps calculated as differences of generalized KS eigenvalues for a series of semiconductors and insulators. All
calculations were performed at the experimental lattice constant. The column labeled HF + ¢ denotes Hartree-Fock including PBE correlation.

The columns PBEQO,_,
TBO09 and Gy W, are from Ref. 28.

PBEO,,x, and HSE06,,;x present the results obtained with the hybrid functionals proposed in this article. The columns

exp. PBE HF +¢ PBEO PBEOe,, PBEOix HSEO06 HSEQ06,ix TB09 GoWy
Ne 21.70 11.57 26.14 15.14 22.95 21.88 14.39 22.29 22.72 19.59
Ar 14.20 8.65 18.45 11.06 14.35 12.98 10.31 12.11 13.91 13.28
Kr 11.60 7.27 16.04 9.41 11.75 10.48 8.67 9.78 10.83
Xe 9.80 6.25 13.79 8.10 9.53 8.48 7.39 7.99 8.52
C 5.48 4.17 12.05 6.06 5.48 5.92 5.33 5.71 4.93 5.50
Si 1.17 0.59 6.00 1.78 0.98 1.07 1.16 1.21 1.17 1.12
Ge 0.74 0.00 5.49 1.31 0.32 0.68 0.77 0.82 0.85 0.66
LiF 14.20 9.24 21.55 12.26 15.27 14.99 11.53 14.28 12.94 13.27
LiCl 9.40 6.41 14.94 8.50 9.28 8.69 7.80 8.41 8.64
MgO 7.83 4.77 15.24 7.27 8.06 7.67 6.53 7.41 7.17 7.25
SiC 2.40 1.34 8.18 2.95 2.28 2.33 2.24 2.36 2.28 2.27
BN 6.25 4.41 13.06 6.50 6.25 6.60 5.75 6.29 5.85 6.10
GaN 3.20 1.72 10.29 3.64 3.07 3.52 2.96 3.39 2.81 2.80
GaAs 1.52 0.63 6.81 2.09 1.04 1.56 1.47 1.61 1.64 1.30
AlP 2.45 1.58 7.40 2.93 2.24 2.23 2.27 2.32 2.32 2.44
ZnS 3.91 2.11 10.06 4.00 3.38 4.25 3.34 3.92 3.66 3.29
CdS 242 1.17 8.56 2.87 2.25 3.15 2.23 2.76 2.66 2.06
AIN 6.28 4.16 12.94 6.25 5.39 6.29 5.53 6.08 5.55 5.83
SiO, 10.30 6.02 16.75 8.63 9.10 10.53 7.89 9.79
MoS, 1.29 0.87 7.90 2.09 1.25 1.63 1.42 1.50
ZnO 3.44 0.90 11.21 3.26 2.74 4.90 2.57 4.26 2.68 2.51
A (%) - 47.32 250.23 29.42 16.53 14.37 16.92 10.36 9.85 11.25

In fact, several density-functional estimators of a “local
gap” have been proposed in the past years. For example,
Gutle et al.** proposed to use the quantity G = %|Vn|2/ n?
to define the gap locally. Their arguments for the use of
this quantity were based on the asymptotic expansion of the
function G for finite systems (G will reduce to the ionization
energy) and on the observed piecewise exponential behavior
of the density.>> More recently, the quantity |Vn|/n was used
to model a position-dependent screening function in the so-
called “local-hybrid” functionals.'>?® Also the von Weizsicker
kinetic energy density Tw = |Vn|?>/8n has been used to define
a “local band gap” and inserted into a “local-hybrid” functional
that turns off the exact-exchange term when this local gap has
metallic character.”’

To obtain a global estimator of the band gap of the material,
and therefore of its static dielectric constant, one can average
the local estimator over the unit cell. We will follow the idea
contained in the meta-GGA of Tran and Blaha (TB09)*® and
define the quantity

_ 1 |Vn(r)|
= &sr | : 2
& Veell Kel] " n (I’) ( )

where the integral is over the unit cell of volume V.j;. We note
that the quantity g is very similar to the average involved
in the calculation of the crgge parameter of TB0O9 and is
quite stable regardless of which theory is used to evaluate
the density. In fact, we verified that using as input either a PBE
or a Hartree-Fock density leads to only minor differences in

its value. Our basic hypothesis is that the mixing parameter
can be written as a function of the parameter g. From the
theoretical argumentation one can only conclude that g can
be approximately written as a function of %. The relative

powers in the numerator and denominator of Wn'(’x)‘ should be
fixed in such a way that in the asymptotic limit g converges
to a finite number that can be related to the ionization energy
of the system. Within these constraints, there is still some
freedom to choose the functional dependence of g. We have
numerically tested different possible functional forms. The
form of Eq. (2) gave slightly better results than the one used
by Tran and Blaha®® and that is the reason why we preferred it.
Note that, in the end, the only difference between our mixing
coefficient and the one of the TB09 functional is that, in our
case, the square root is inside the integral while in TBO9 it is
outside.

To proceed we need to specify the local part of the hybrid.
We chose to use the PBEO form’ which is the basis for the
screened hybrid of Heyd, Scuseria, and Ernzerhof (HSE).'?
As we expected, there is a clear correlation between the value
of arop and g. It can be quite well fitted by the simple function
() (with g in atomic units)

a = —1.00778 + 1.10507 g. 3)

Analyzing the resulting gaps displayed in Fig. 2 and Table I
(labeled PBEO,,;x) we realize that fixing the mixing parameter
according to Eq. (3)* reduces the mean average error to
about 14%, much better than PBEO (29%) and slightly better
than the HSEO06 (17%).3° Furthermore, in contrast with PBEQ
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and HSEO06, our density-dependent mixing describes equally
well small, medium, and large gap systems. The largest
errors arise for d-electron materials like ZnO where our
recipe overestimates the mixing parameter and therefore the
electronic gap. This is due to the fact that localized d states
give too large contributions to the mixing through strong
density variations. A possible solution would be finding a more
pertinent density-estimator for those d states.

In view of the success of screened hybrids in improving
the accuracy of PBEO, we applied our construction also to the
HSEO06 functional.®° In this case, the physical interpretation of
the mixing parameter as an inverse screening is considerably
more complicated, as screening is already present to some
extent in the range separation. Following our protocol, we
arrived at the following fit for the mixing parameter

o =0.121983 4+ 0.130711 g*. 4)

We remark on the different power of g in the expression.
This is due to the fact that the screening already present in
HSEQ6 decreases considerably the strength of the Hartree-
Fock term, increasing the values of o required to reproduce
the experimental band gap of small-gap systems. This is
actually the cause of the success of HSE06: for example, for
Si agp s now 0.24, which is very close to the actual mixing
of HSEQ06 (¢ = 1/4). Results for band gaps using HSE06 and
our mixing scheme (labeled HSE06,,x) are shown in Fig. 2
and Table I. Our mixing scheme brings down the HSEO6 error
from around 17% to 10%, achieving an error of the same
order of magnitude as the one incurred by the GoWy (11%)
approximation and the TB09 meta-GGA (10%).28

We want now to compare our approach to the the TB09
meta-GGA. The physical interpretation of our functional
implies that the mixing parameter should take values between
0 and 1, while in TB0O9 the corresponding parameter ctggg
is larger than 1. This difference stems from the fact that the
TBO09 functional is a purely local potential. Therefore, the
band gap defined in terms of total energy differences should
be equal to the difference of the KS eigenvalues plus the
derivative discontinuity of the xc potential. It is known that the
Becke-Johnson potential®' (upon which the TB09 functional
has been constructed) reproduces to a very good extent the
derivative discontinuity of the exact exchange for molecular
chains.?> Therefore it is reasonable to expect that the DFT
band gap with the TB09 functional, after adding the derivative
discontinuity, would actually become much larger than the
experiment, and possibly even larger than the Hartree-Fock
gap since ctpo is always larger than 1, in agreement with what
was proved by Griining et al.>* Of course, the aim of TB09 is to
obtain the gaps simply as eigenvalue differences and therefore
require ctpoo > 1 to compensate for the underestimation
of the eigenvalue gap in the Becke-Johnson functional.’*
In this sense, it is similar in spirit to the pragmatic Xo
approach.®

From Fig. 2 it is clear that the average error of TB(09
is comparable to ours. On the one hand, a meta-GGA is
clearly much lighter from the computational point of view than
any hybrid functional. However, TB09 is an approximation
for the xc potential and is thus incapable of yielding total
energies (in contrast to our approach). In fact, it can be proved
that TB09 is not the functional derivative of any energy
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functional and therefore violates serious constraints like the
zero-force theorem.’® As a consequence, such functionals do
not allow to calculate structural properties. Our approach,
instead, can also be used to calculate total energies and
structural properties. We tested our functionals and found that
they give relaxed geometries as good as the standard PBEO and
HSEOQ6 (with lattice constants better than 0.7% for the cubic
semiconductors considered here). Moreover, we mention that
the TB09 meta-GGA also inherited some of the problems of the
Becke-Johnson functional®! on which it is based (for example,
TBO09 is not gauge invariant).?’

It is clear that the averaging procedure in Eq. (2) is only
meaningful for bulk systems and will fail for finite systems,
slabs, interfaces, supercells with defects, and so on. This
issue can be fixed by converting the global g (and thus the
uniform screening) into a local function function g(r) (i.e.,
transforming the functional in a local hybrid). It is, however,
doubtful if strictly local or semilocal information, like the
density, its gradient, or even the kinetic energy density, is
sufficient to determine a useful g(r). In fact, according to the
previous discussion, g(r) is mimicking an energy gap or a
dielectric constant. These are not local quantities, but can be
estimated by taking averages over large enough volumes. We
therefore propose to define

_e=2 |Vn(r))|
202
n(r’)

1
r)= —— /d3r/e
§ V2w o?

where o should be large enough to allow for a proper
estimation of the dielectric properties, but small enough to
sample only the local environment. This length scale should
somehow be related to the screening parameter w that defines
the separation range in screened hybrids and that is related
to a characteristic distance 2/w at which the short-range
interactions become negligible. Assuming that this happens
at distances of 20, we find that o ~ 5 A. Note that Eq. (5) has
the form of a convolution and can therefore be trivially handled
by current DFT codes by using fast Fourier transforms. As all
the systems studied here have small unit cells, we expect that
using the local form (5) will not change the results obtained
with Eq. (2).

In conclusion, we proposed a scheme to calculate dynami-
cally the mixing parameter of hybrid functionals depending on
the density of the system. In this way, the average error on the
values of the energy gap are considerably reduced with respect
to the original hybrid functionals. The resulting band gaps are
roughly of the same quality as those obtained using a GW
approach or the meta-GGA of Tran and Blaha. Moreover, this
method assures also an excellent description of the structural
properties. These improvements are obtained with no increase
of computational time with respect to a fixed mixing parameter
hybrid functional calculation.
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