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Electron correlation decides the stability of cubic versus hexagonal boron nitride
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Periodic local Møller-Plesset second-order perturbation theory (MP2) is applied to investigate the structural
and energetic properties of the cubic and hexagonal polymorphs of boron nitride. While the Hartree-Fock (HF)
solution significantly underbinds both systems and energetically favors h-BN, the post-HF correlation treatment
recovers the lacking amount of the interaction energy and reverts the sign of the relative stability between the
two compounds. It provides the physically correct picture and predicts cohesive energies, lattice constants, bulk
moduli, and the relative stability in good agreement with experiment. Density-functional theory (DFT) results,
on the other hand, are inconclusive and exhibit a strong dependence on the chosen functional. The results of
MP2 as well as DFT with an empirical dispersion correction indicate that the dispersion contribution to binding
is essential not only for the layered polymorph, but also (and even more so) for the cubic one.
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I. INTRODUCTION

The zinc-blende-like cubic phase of boron nitride (c-BN)
has attracted wide attention since its synthesis by Wentorf in
19571 due to its outstanding physical and chemical properties,
such as extreme hardness, high melting temperature and
thermal conductivity, wide band gap, low dielectric constant,2

chemical inertness3 (in contrast to diamond, it is stable
against oxidation and acid resistant), which make it very
attractive for applications in microelectronics, optoelectronics,
as a protective-coating material, etc.1,4 Another polymorph
of boron nitride, the graphite-like hexagonal phase (h-BN),
has recently gained new importance since it represents the
fundamental structure of BN nanotubes, the structural analog
of carbon nanotubes.5–7

These interesting properties have motivated a lot of theoret-
ical and experimental activity. One of the debated issues is the
relative stability of the two polymorphs. Until the late 1980s
h-BN was believed to be the thermodynamically stable phase
in standard conditions, the situation being reversed at high
pressure, in analogy with the graphite and diamond phases
of carbon8; this premise was supported by the fact that BN
synthesis usually results in the formation of h-BN. However,
recent updates and refinements of previous measurements by
Solozhenko9,10 have resulted in the opposite conclusion which
is now generally accepted, namely, that at zero pressure c-BN
is the thermodynamically stable phase up to relatively high
temperatures, even though the difference in stability has not
been reported.

This result is supported by most density-functional the-
ory (DFT) studies,11–16 which found differences of 3.6 to
6.6 mHa per formula unit in favor of c-BN. There are,
however, exceptions: Ahmed et al.17 recently estimated h-
BN to be more stable than c-BN by about 6 and 25 mHa
according to generalized gradient approximation (GGA) or
local-density approximation (LDA) calculations, respectively,
the same indication coming from a recent GGA study;18

according to Janotti,19 the relative stability depends on the
exchange-correlation functional employed, with LDA favoring
c-BN and GGA favoring h-BN, by 5.5 mHa; finally, according

to Xu’s orthogonal linear combination of atomic orbitals LDA
calculations, h-BN is favored by 26 mHa.20 Two nonstandard
DFT approaches have been applied recently to several layered
compounds, including h-BN. Rydberg et al.21 have added to
a standard LDA exchange-correlation functional a nonlocal
one based on first principles. Madsen et al.22 have used
instead a meta-GGA density functional which includes the
kinetic-energy density in its expression.23 The experimental
geometry of h-BN is well reproduced in both studies, but the
case of c-BN has not been considered.

The variety of these outcomes is not surprising if one
considers the profoundly different structure of the two phases
and the intrinsic limitations of DFT schemes. c-BN is a dense
phase with sp3 hybridized B-N bonds. On the other hand, h-BN
is a low-density phase which resembles graphite in that it has
a layered structure with strong sp2 hybridized bonds within
the sheets and weak van der Waals–like interactions between
them (unlike graphite, however, the layers are arranged in such
a way that N and B positions match each other in neighboring
sheets). The notorious inability of standard DFT to describe
the long-range correlation effects in fact hinders the possibility
to capture the correct physics in extended systems, especially
so when weak binding is involved. A serious warning about
the reliability of DFT techniques in predicting the relative
stability of crystalline allotropes comes from a recent study by
Demichelis et al.24 Within the same computational scheme,
the performance of 12 DFT functionals was there assessed as
concerns the equilibrium structure and the relative stability
of three aluminosilicates and four aluminum hydroxides.
Without entering into details, the results were shown to depend
strongly on the exchange-correlation functional used. Standard
LDA, GGA, and hybrid schemes were unable to reproduce
the correct order of stabilities, which was instead obtained
with new functionals like PBEsol,25 SOGGA,26 and WC,27

specially devised for solids which, however, overstabilize the
denser phases. As concerns equilibrium geometries, both the
standard and the new potentials perform unsatisfactorily for
the hydroxides, mainly due to the poor description of H bonds,
while hybrid functionals give the best results in this respect.
The present case seems even more critical, since van der
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Waals interactions play a very important role in h-BN; in this
respect, hybrid-exchange schemes cannot be of much help,
since the Hartree-Fock (HF) approximation suffers from the
same inadequacy.

A more general approach is needed treating short- and
long-range correlation among electrons in crystals on the
same footing. This is precisely the case with the technique
here adopted, namely Møller-Plesset theory at second or-
der (MP2), which represents the lowest level of Rayleigh-
Schrödinger many-body perturbation theory. The zeroth-
order reference within the Møller-Plesset partitioning is the
Hartree-Fock solution, and the arbitrariness of the choice
of the effective Hamiltonian, inherent in DFT, is therefore
avoided. The MP2 correlation correction per unit cell is
evaluated by means of the CRYSCOR code28,29 which adopts
the periodic local-correlation technique.30,31 The fully periodic
treatment circumvents the difficult and nonunique modeling
of finite clusters and embedding, necessary, e.g., in the
context of the incremental scheme.32–35 MP2 is considered
to be an accurate method for nonconducting systems, as
has been recently demonstrated36,37 on a wide variety of
crystals. The random-phase approximation based on the DFT
reference38 has been reported to provide similar accuracy.
However, its sensitivity to the underlying functional and
the neglect of exchange-like39 terms still remain a matter
of debate.

For comparison, the standard DFT approach with three
functionals is considered here: two GGAs, i.e., PBE40 and
PBEsol25 (the latter specially designed for solid-state ap-
plications), and a hybrid-exchange PBE042 functional. In
addition, the dispersion-corrected version of PBE, employing
the empirical Grimme correction D,41 has been included in
this study.

The outline of this paper is as follows. In Sec. II the
computational techniques are described, with special attention
given to the choice of the basis sets (BSs) and to the evaluation
of the basis set superposition error (BSSE). In Sec. III A the
calculated structural and cohesive properties are summarized
and discussed. In Sec. III B the importance of the different
types of bi-excitations which contribute to the correlation
energy is analyzed. The main conclusions are finally drawn
in Sec. IV.

II. COMPUTATIONAL TECHNIQUES

A. One-electron calculations

As was mentioned in the Introduction, four variants of PBE-
based functionals are considered: PBE,40 PBEsol,25 PBE-D,41

which contains an empirical long-range dispersion correction
proposed by Grimme, and a hybrid-exchange PBE0.42 For
these DFT calculations, as well as for the computation of
the HF reference wave function, the CRYSTAL program was
employed. All the calculations use BSs of localized Gaussian-
type orbitals (GTOs) centered in the nuclei, to be referred
to below also as atomic orbitals (AOs). The delicate issue
of the calibration of the BSs is discussed in detail below
(Sec. II C). All other computational parameters in CRYSTAL,
which control the truncation of the infinite lattice sums,
the numerical integration required in DFT calculations for

the reconstruction of the exchange-correlation potential,
and the sampling in reciprocal space, have been set to very tight
values. As concerns the last point, shrinking factors of 12,12,12
for c-BN and 12,12,4 for h-BN were used, corresponding to
72 and 133 k points in the irreducible part of the Brillouin
zone, respectively. The TOLINTEG parameters which control
the truncation of the Coulomb and exchange lattice series in
CRYSTAL43 have been set to the tight 7,7,7,15,50 values.

From the HF solution expressed in terms of crystalline
orbitals, CRYSTAL constructs an equivalent representation of
the occupied manifold in terms of Wannier functions (WFs).
WFs form a set of orthonormal, translationally equivalent, very
localized, and site-symmetry adapted functions,44,45 which are
an essential ingredient for the local correlation scheme (see
Sec. II B). The shape and characteristics of the WFs in the
present application will be analyzed in Sec. III B 1 it is shown
there that for both phases they are centered on an N atom or
close to an N atom slightly shifted along the N-B bond.

B. Local periodic MP2 calculations

As just stated, CRYSCOR receives from CRYSTAL all infor-
mation about the WFs (to be labeled as i,j, . . .). Since the
correlation treatment is limited to valence electrons, there are
here only four WFs per cell, which span on the whole the same
manifold as the four HF valence bands. Following Pulay and
Saebø,30 another set of local functions is used in CRYSCOR to
describe the virtual HF space, obtained by projecting each
GTO of the BS onto the virtual manifold. The projected
AOs (PAOs) (labeled as a,b, . . .) constitute a translationally
invariant nonorthogonal (and even redundant) set. The MP2
energy E(2) can be written as a sum of all contributions
Eab

ij , each corresponding to a two-electron excitation from
a pair of WFs to a pair of PAOs, [(ij ) ↑↑ (ab)]. The excitation
amplitudes are calculated by solving the LMP2 equations.28

We will refer to “pair energy” as the quantity E
(2)
ij = ∑

ab Eab
ij ,

that is, the sum of all the contributions to the correlation energy
due to excitations from a given pair (i,j ) of WFs. Exploitation
of translational symmetry allows us to impose the first WF (i)
to belong to the reference zero cell. The local-correlation
Ansatz restricts the virtual space for a given (i,j ) pair to the
PAOs centered in the vicinity of either of the WFs. More
precisely, to any given WF (i) a domain Di is associated
consisting of a certain number of atoms close to it. In c-BN,
eight-atom domains are adopted: N3B*N*B3, the two starred
atoms identifying the bond along which the WF is located. In
h-BN, ten-atom domains are used: N*(N2B)3, all atoms lying
in the same layer and the starred nitrogen being the one closest
to the WF center. Two WFs then define a pair-domain D(ij )

which is simply the union of the corresponding domains. Only
those [(ij ) ↑↑ (ab)] excitations are retained for which, first,
both PAOs a and b belong to atoms in D(ij ), and second, the
distance dij between the centers of the two WFs is within a
certain value D. In the present application, D is set to 10 Å
for both phases.

Once the relevant WF-PAO pairs are selected, the two-
electron repulsion integrals (ERIs), (ia|jb), between the
respective product distributions are evaluated. Analytical
calculation of ERIs is expensive, therefore approximate tech-
niques are used: local-density fitting,46,47 for the integrals with
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inter-WF distance smaller than 8 Å, and multipole expansions
for the rest.

C. Basis set choice and BSSE estimate

In the present study we employ two GTO BSs, namely a
triple-ζ polarized set as proposed by Grüneich and Hess,48

and a modification thereof with the addition of high angular
momentum functions, to be referred to in the following as
BSA and BSB, respectively. The authors claim that the BSA,
which was specially designed for hexagonal BN, is close to
the HF limit, since it is able to describe the repulsive behavior
of the intersheet interaction energy versus distance without
any BSSE correction (poorer BSs provide instead a spurious
minimum). This basis contains only one d function per atom.
This is generally not sufficient for post-HF calculations, where
a number of diffuse high angular momentum functions are
required in order to describe accurately the Coulomb hole.
Therefore the BSB set contains two d and one f shell per
atom; the exponents are taken from the standard cc-pVTZ
set of Dunning,49 without alteration for nitrogen, while for
boron the exponents have been roughly optimized to achieve
convergence at the HF level (the values of 1.2, 0.6, and 1.0 a.u.
for the two d and the f polarization function exponents have
been so obtained).

Further improvement of the basis set is possible (using,
e.g., the dual basis set scheme50), but difficult, because of
intrinsic limitations (no AOs with � � 4 are possible with
CRYSTAL calculations presently), substantial increase of the
computational cost, and due to an onset of uncontrollable linear
dependencies among diffuse functions, which cause numerical
instabilities without actual improvement of the correlation
description.50,51 Nevertheless, as demonstrated below, the BSB
set allows for a sufficiently accurate description of the systems
studied here.

Even if the basis set superposition error is expected to
be small for the sets employed in this work (note that
local correlation approaches to a large extent avoid such
contamination52), all results provided below are corrected for
this error according to the standard counterpoise method.53

That is, cohesive energies are calculated by taking in each
case the energies of the individual atoms (B or N) surrounded
by ghosts up to second neighbors as the reference. The
corresponding restricted open-shell MP2 calculations have
been performed with the MOLPRO program package.54

III. RESULTS AND DISCUSSION

A. Structural and cohesive properties

Table I provides a summary of all calculated data vs
the available experimental ones, while Fig. 1 displays the
dependence of the cohesive energy E0 on geometry for the
two phases as resulting from the HF + MP2 (left panel) and
DFT calculations (right panel). Here and in the following, E0

is defined as the difference between the total energy of the
crystal per formula unit and that of the two isolated atoms
with their surrounding ghosts.

From the results reported in Table I it appears that at the
HF level of approximation the hexagonal phase turns out
to be more stable than the cubic one, at variance with the
experiment; the cohesive energy is underestimated by more
than 0.1 Ha. It is also clear that basis set effects are here almost
negligible, both as concerns the absolute cohesive energy
and the relative stability of the two phases. While the HF
approximation accurately reproduces the geometry of c-BN
and of the individual layers of the hexagonal phase, it cannot
account for the interlayer binding in the latter system; in fact,
it predicts that h-BN would exfoliate, and correspondingly the
bulk modulus cannot be estimated. Adding the MP2 correction
has dramatic effects, as shown also in the left panel of Fig. 1.

TABLE I. Structural, cohesive, and elastic properties of c-BN and h-BN. Energy data are per formula unit; data in parentheses give the
calculated stability of c-BN with respect to h-BN. Except when indicated, the calculated data were obtained with BSB. Experimental values
are taken from Ref. 14, except for the very recent experimental estimate of the bulk modulus of h-BN (B = 20 ± 2 GPa, Ref. 55). For the
experimental cohesive energy of c-BN, the zero-point-corrected value is also given (after the slash).

Phase Technique V (Å3) a (Å) c (Å) E0 (�E0) (mHa) B (GPa)

c-BN PBE0 46.43 3.594 −503.7(1.9) 408
PBE 47.53 3.622 −511.6(4.5) 374
PBEsol 46.79 3.603 −545.5(−3.1) 389
PBE-D 47.04 3.610 −534.2(−9.6) 385
HF 46.53 3.597 −353.4(16.7) 434
MP2 + HF (BSA) 47.22 3.614 −473.8(−2.6) 392
MP2 + HF (BSB) 46.46 3.595 −499.6(−6.6) 411
Expt. 47.43 3.620 −485.0/−492.2 (<0) 369–400

h-BN PBE0 77.76 2.494 7.218 −505.5 8
PBE 80.24 2.511 7.347 −516.0 9
PBEsol 74.03 2.503 6.822 −542.4 10
PBE-D 66.28 2.497 6.137 −524.6 34
HF 2.490 > 8. −370.2
MP2 + HF (BSA) 74.15 2.505 6.822 −471.3 12
MP2 + HF (BSB) 70.12 2.497 6.493 −493.1 24
Expt. 72.15 2.501 6.66 20–37
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FIG. 1. Calculated energy vs volume data for c-BN (on the left of each plot) and h-BN (on the right of each plot). The left panel
refers to HF + MP2 calculations performed with BSA (dashed line) or BSB (continuous line), the right panel refers to DFT calculations
with four functionals as indicated. For h-BN two curves are drawn in each case: the shallower one corresponds to changing c with a fixed
at its experimental minimum (which in any case appears to be the minimum for all the methods applied, within ± 0.01 Å), the other
one vice versa. The cross marks the best experimental estimate available for c-BN. For h-BN, the vertical segment marks the position of
the experimental volume and a rough estimate of the cohesive energy. The dotted symbols indicate the zero-point energy (ZPE)-corrected
values. For other explanations see text.

The basis set effect is seen to be much more important here than
in the HF case: the additional d and f polarization functions in
BSB clearly improve the quality of the correlation treatment.
Nevertheless, for both sets the correct order of stabilities is
restored, which is surprising, in a sense, since it could have
been expected that electron correlation primarily would further
stabilize h-BN due to the inclusion of van der Waals interlayer
interactions, which are missing in the HF description. Yet the
opposite happens: The energy gain due to the strengthening of
the binding in c-BN by electron correlation is even larger. The
cohesive energy is reproduced almost correctly at the MP2
level in the bigger basis, provided that also zero-point energy
corrections are included (vide infra). Even more importantly,
the MP2 correction provides a satisfactory description of the
interlayer binding in h-BN. The equilibrium c parameter is
accurately evaluated, and the interlayer interaction energy,
calculated as the difference per formula unit between h-
BN at equilibrium and the isolated layer, turns out to be
2.4 mHa with both sets, in reasonable agreement with the
estimate of 2 mHa obtained by Rydberg et al.21 using
the nonlocal DFT approach, specially devised for layered
systems.

The data just presented can be compared to the correspond-
ing DFT results collected in Table I and on the right panel of
Fig. 1. In some respects the latter are similar to the HF ones:
The basis set effects are almost negligible, and the interlayer
interaction in h-BN is incorrectly reproduced, resulting in
too large c values. Two of them also wrongly predict h-BN
to be slightly more stable than c-BN, while PBEsol favors
as usual the denser phase, so providing the right indication.
The calculated cohesive energy itself depends severely on
the chosen DFT functional, such that the PBE result is not
very far from experiment, while the PBEsol overestimation is
substantial.

An important piece of information is delivered by the empir-
ically corrected PBE-D method, especially when compared to
the underlying PBE. Although the evaluated cohesive energy
is not as close to the experiment, PBE-D reverts the order of
the stability of the phases, predicted by PBE. This is quite
a surprising outcome, since the dispersion contribution is
anticipated to be crucial for the layered hexagonal structure,
and not so much for the three-dimensional-covalent cubic
phase. In fact, this is not true, and taking into account the MP2
results, one can conclude that dispersion is essential not only
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in the weakly bound systems, but also in the dense covalent (or
ionic) solids. Moreover, it can become decisive for the relative
stability of the competing phases.

Yet, the general predictive power of the empirical DFT-D
method remains questionable. For example, in our calculations
it severely underestimates the c-lattice parameter of the
hexagonal polymorph, altering considerably the bare PBE
treatment. We believe that this originates from the empirical
nature of the added D potential, more precisely from the
ambiguity of the damping function, which switches off the
D-correction at close interatomic distances. The damping
function is assumed to be spherical depending on the van
der Waals radii of the atoms, which might be quite a crude
approximation for the system it is applied to and can thus
cause unphysical contamination of the potential surface at
short range.

The following further comments can be put forward. The
relative stability and, to a lesser extent, the cohesive energy
are critically dependent on the adopted theoretical scheme. In
this respect also the value of −471.2 mHa for the cohesive
energy of c-BN as obtained from the Monte Carlo study by
Malatesta et al.56 should be mentioned. The bulk modulus
of c-BN, on the one hand, is rather well described by all
calculations (but note a certain overestimation by HF, which
is known to exaggerate the rigidity of chemical bonds). On
the other hand, for h-BN this quantity is much more difficult
to calculate, since it is essentially determined by interlayer
interactions. Hence only the MP2 method in the bigger basis
and to a certain extent PBE-D can provide a reasonably
accurate value.

All the discussion and the results provided so far have
not taken into account the zero-point energy correction, the
treatment of which becomes mandatory when looking for
relative stabilities. We have estimated this quantity in the
harmonic approximation by calculating the �-point phonons
with the CRYSTAL code and using the PBEsol DFT functional.
Values of 7.223 and 8.182 mHa per formula unit are so
obtained for the ZPE of c-BN and h-BN, respectively. The
difference is less than 1 mHa, and practically coincides with
that obtained in previous theoretical studies.14,15 Inclusion of
the zero-point correction virtually does not affect the relative
stability. However, the ZPE corrected experimental energies
are now quite close to the MP2 BSB cohesive energies.

1. Basis set incompleteness

The MP2 correlation treatment with the bigger basis set
BSB provides a reliable description of the electronic structure.
The excellent agreement with the experimental cohesive
energy in this case is to be taken cautiously, since at the basis
set limit the discrepancy may be larger. However, since BSB
is already a rather extended set, the basis set limit results
should not substantially differ from the BSB ones, which
very well fit into the general picture of the MP2 performance.
Indeed, for a low-order perturbative correlation method a slight
overestimation of the interaction energy at the basis set limit
is common. Besides, despite the noticeable improvement of
the cohesive energies achieved by using the BSB, the form of
the potential surface and the relative stability are substantially
less affected by the choice of the basis.

As mentioned in Sec. II C, a further expansion of the basis
set in order to approach that limit or to make an extrapolation
to it is presently unfeasible. The main difficulties come from
the relatively diffuse functions present in the balanced high
quality molecular basis sets, which cause numerical problems
in the periodic case.

Another problem one has to deal with when the basis set
is not close to completeness is the BSSE. With our basis sets,
the BSSE at the HF level and for all DFT calculations is
totally negligible (less than 0.5% of the cohesive energy value),
while at the MP2 level it becomes relatively important. It
amounts to 8% (11%) and 10% (13%) of the cohesive energy
for c-BN and h-BN, respectively, with BSB (BSA). This error
is basically due to the bad description of the B atom, which
indeed improves significantly when enriching the basis set,
while the N atom seems insensitive to it; the BS dependence
of the BSSE is similar for the two phases.

B. Analysis of the MP2 energy

1. Characteristics of Wannier functions

Figure 2 shows the shape of the WFs for the two phases,
while Table II reports some of their characteristic parameters;
the nomenclature adopted for identifying them is evident
from there. These data were obtained with BSB, but they are
practically coinciding with the BSA ones. It can be observed
that all WFs are rather well localized, their spread Ri being
comparable to the B-N bond length (1.472 and 1.443 Å for
c-BN and h-BN, respectively). Also note that, due to their
symmetry characteristics, none of c-BN WFs are localized on
the N atom, in contrast to the other phase.

For each WF, the value f i is also indicated, which measures
the minimum energy required, in the Koopmans theorem
sense, to remove an electron from this orbital (for the sake
of reference, we report the values of the HF band gaps, which
are almost the same with the two BSs: 0.506 Ha for c-BN,
0.502 Ha for h-BN). The different WFs lend themselves to
a rather simple chemical interpretation, which will simplify
the analysis of the different contributions to the correlation
energy to be performed in Sec. III B 2. The symmetry unique
WF of the cubic phase, wc, is essentially an sp3 hybrid of

TABLE II. Characteristic parameters of the symmetry-
independent WFs for the two phases. Ri = [

∫
drwi(r)2(r − Ci)2]1/2

is a measure of the spread of the ith WF about its centroid Ci ; δi

is the distance of Ci from the nearest N atom; f i = 〈wi |f̂ |wi〉 is
the expectation value of the Fock Hamiltonian with reference to the
bottom of the conduction bands. The symmetry subgroup and the irrep
are indicated, while neq gives the number of rotationally equivalent
functions in the reference cell.

Phase WF Ri (Å) δi (Å) f i (mHa) Symmetry (neq )

c-BN wc 1.50 0.526 −897 C3v/A1 (4)

wh
1 1.38 0. −1289 D3h/A

′
1 (1)

h-BN wh
2 1.71 0.126 −781 D3h/E

′ (2)

wh
3 1.43 0. −609 D3h/A

′′
1 (1)
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FIG. 2. (Color online) Plot of the symmetry-independent WFs for the two phases. For wc (top right panel) a section in the (110) plane is
shown, which includes the B-N bonds. For h-BN, two sections are provided, one in the basal layer (where wh

3 is zero), the other perpendicular to
it (bottom plots). The distance between iso-amplitude lines is 0.01 a.u.; continuous, dashed, and dot-dash lines correspond to positive, negative,
and zero values of the WFs, respectively.

the valence AOs of N, oriented along one of the B-N bonds,
with some contribution from the corresponding AOs of the
bonded B atom. Of the three WFs of h-BN, the most localized
one, wh

1 , is mainly composed of the deep-lying s-type valence
AOs on N; wh

2 is, on the contrary, the most diffuse, and forms
with its partner a “two-petal flower,”45 mainly resulting from a
combination of px,py AOs of N with important contributions
from the AOs of the neighboring B atoms; finally, wh

3 is
essentially characterized as a pz AO of N.

2. Analysis and discussion of the MP2 results

It is expedient to exploit the possibility offered by the
local-correlation approach here adopted of analyzing the
various contributions to the MP2 energy E(2), by quantifying
the importance of the different pair energies E

(2)
ij as defined in

Sec. II B. These depend on the “type” of the two WFs (wi,wj )
from which the two electrons are excited, and on the distance
between the respective centers, dij = |Ci − Cj |, the latter, in
turn, depending on the crystal cell where the second WF, wj ,
is located, since the first one is always centered in the zero
reference cell.

Figure 3 reports the values of E
(2)
ij versus dij for the two

phases in a log-log plot. With reference to the nomenclature
used in Sec. III B 1, in c-BN there is only one type of pairs,
while there are six in h-BN, identified by different symbols.
In fact, when one or both of the WFs involved belongs to
a “multipetal flower” (that is, it is classified according to a
multidimensional irrep),45 as it is the case of wh

2 , the average
of the energies involving all petals in the same flower is taken

and assigned to the average distance between the individual
pairs.

The results for c-BN are similar to those obtained for the
isostructural case of cubic silicon carbide.57 All pair energies
cluster around the �6 line which in a log-log plot corresponds
to the London relationship (E = −C6d

−6) describing the
interaction between two electronic systems separated by a
(large) distance d. The spread is essentially associated to the
different relative orientations of the interacting WFs.
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FIG. 3. Pair energies E
(2)
ij vs distance dij in a log-log plot for

the two BN phases. The different types of pairs are identified with
different symbols, and the corresponding best-fit �6 lines are reported.
For other explanations see text.
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TABLE III. Values of the best-fit C6(ij ) coefficients (mHa Å6) for
the different WF pairs and for the two basis sets, as indicated.

h-BN c-BN

(ij) (11) (12) (13) (22) (23) (33) (11)

BSA 1.6 8.3 12.0 67.6 109.6 190.5 51.3
BSB 1.6 8.5 13.5 70.8 114.8 199.5 53.7

The case of h-BN is more interesting. Although on average
the contributions are similar to those in c-BN, the spread of
their importance is much wider. Excitations involving the
s-like WF wh

1 are more than one order of magnitude less
important than the other ones, which is clearly related to the
much higher energetic cost needed to excite an electron from
wh

1 (see Table II). For the same reason, the most effective
electron-electron correlation interactions are those involving
the pz-like WF wh

3 . Interestingly, all the E
(2)
33 energies fall

very close to the respective �6 line, independently of the fact
that the two WFs belong or not to the same layer. Though
individually less important, the px,py-like WFs wh

2 contribute
on the whole the most to the correlation energy because of
their double degeneracy.

The influence of the BS on long-range interactions can be
checked by looking at the associate change of the London
coefficient C6(ij ) for the different WF pairs (see Table III).
The increase is by about 4.5% for the most important pairs
of the two phases. This is much less than the increase of the
correlation energy by about 18% when passing from BSA
to BSB as resulting from the data of Table I. This means
that high-angular-momentum GTOs are especially important
for describing short-range correlations (the Coulomb hole),
whereas long-range correlation seems rather insensitive to
them, as we have already noted in recent work on N2 adsorbed
on hexagonal BN.58 As a matter of fact, the biggest effect is
observed for the pair energies E

(2)
ii , corresponding to excitation

of two electrons from the same localized orbital. Indeed, the
Coulomb hole, where a correct description demands extended
basis sets, is most pronounced for the opposite-spin close-by
electrons, for which the two same-orbital electrons is the
limiting case. In c-BN the gain in the correlation energy due
to the larger basis set amounts to about 20%.

IV. CONCLUSIONS

The MP2 results compared to HF as well as PBE-D
compared to PBE revert the order of the relative stability,
correctly favoring the cubic phase. This indicates that long-
range electron correlation is decisive for the relative stability
of the BN polymorphs, thus the physically correct description
of dispersion is crucial for evaluating this quantity. Moreover,
it suggests that dispersion is not only important (as expected)
for the layered h-BN, but even more so for the dense c-BN.

The MP2 method provides a reliable description of the
electronic structure of the two BN phases, particularly so
for the bigger basis set BSB. The virtually exact agreement
of the MP2 cohesive energy with the experimental one is
to some extent fortuitous, since at the basis set limit the
discrepancy may be somewhat larger. However, since BSB is
already a rather extended set, this discrepancy is not expected
to be substantial. Indeed, as is well known from molecular
calculations, MP2 is generally expected to provide rather
accurate results for intermediately polarizable systems. The
recent periodic applications,36,37,59 including also this work,
confirm this observation and support the usefulness of this
method for estimating the relative stabilities of crystalline
polymorphs. From the practical point of view, the density fitted
local MP2 method allows for routine MP2 calculations with
relatively big (triple-ζ ) basis sets for crystals with small and
moderate unit cells. Moreover, it can serve as a tool for analysis
and partitioning of the interaction in chemically relevant
terms.

For the DFT method, its intrinsic deficiencies become crit-
ical for the small energy differences involved here, rendering
it incapable of providing a fully consistent and conclusive
picture. The empirical D correction, on the other hand,
although not guaranteeing high accuracy, might be useful
for a qualitatively correct description, not only in the case
of weakly bonded crystals. However, the empirical nature of
this correction, especially the arbitrariness of the damping
function, remains an issue.
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