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Correlated Dirac fermions on the honeycomb lattice studied within cluster
dynamical mean field theory
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The role of nonlocal Coulomb correlations in the honeycomb lattice is investigated within cluster dynamical
mean field theory combined with finite-temperature exact diagonalization. The paramagnetic semimetal-to-
insulator transition is found to be in excellent agreement with finite-size determinantal quantum Monte Carlo
simulations and with cluster dynamical mean field calculations based on the continuous-time quantum Monte
Carlo approach. As expected, the critical Coulomb energy is much lower than within a local or single-site
formulation. Short-range correlations are shown to give rise to a pseudogap and concomitant non-Fermi-liquid
behavior within a narrow range below the Mott transition.
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I. INTRODUCTION

The recent discovery of graphene1 has greatly stimulated
the study of the electronic properties of the honeycomb
lattice.2 In view of the vanishing density of states at the
Fermi level, an issue of particular interest is the influence
of electron-electron interactions. González et al.3 performed
renormalization-group calculations and showed that the sup-
pression of screening of the long-range Coulomb interaction
gives rise to deviations from conventional Fermi-liquid be-
havior. Lattice field theory simulations4 indicated a Coulomb
driven second-order semimetal-to-insulator transition. Meng
et al.5 performed extensive variational quantum Monte Carlo
(QMC) simulations for the Hubbard model with varying
cluster sizes and identified a spin-liquid phase between the
semimetallic state characterized by massless Dirac fermions
and an antiferromagnetically ordered Mott insulator. The onset
of the long-range antiferromagnetic order was found to be
consistent with previous QMC calculations for finite-size
clusters.6,7 The Mott transition of the honeycomb lattice was
also investigated8,9 within single-site dynamical mean field
theory10 (DMFT). However, because of the small number
of nearest neighbors, the neglect of spatial correlations in
this system is questionable and gives rise to a significant
overestimate of the range of the semimetallic behavior up to
large values of the on-site Coulomb interaction. To account
for nonlocal correlations in the honeycomb lattice, Wu et al.11

recently applied a cluster extension12 of DMFT (CDMFT) by
using continuous-time QMC (Ref. 13) as an impurity solver.
The transition between the semimetallic and insulating phases
was found to occur at a considerably smaller critical Coulomb
energy than within the single-site DMFT, and to be in good
agreement with the variational QMC results by Meng et al.5

In the present work, we use finite-temperature exact
diagonalization14 (ED) in combination with cluster DMFT
to investigate the two-dimensional Hubbard model on the
honeycomb lattice for unit cells consisting of six sites. The
focus is on the dynamical properties of the nonlocal self-
energy, which have not been studied before. Moreover, in
view of the large size of this unit cell and the approximate
nature of quantum impurity solvers, CDMFT results obtained
within complementary schemes are clearly desirable. An

important advantage of ED is the accessibility of large
Coulomb energies and low temperatures, and the absence
of sign problems. Also, in contrast to finite-size variational
QMC, ED is applicable away from half-filling. On the other
hand, due to the exponential growth of the Hilbert space, the
number of levels representing the bath surrounding the cluster
is severely limited. Here, we use 12 levels in total, that is, six
impurity levels and six bath levels. Since these bath states are
coupled indirectly via the on-site Coulomb repulsion within
the six-atom cluster, the spacing between excitation energies is
very small. Finite-size errors are thereby greatly reduced, even
at low temperatures, so that self-energies and spectral functions
can be evaluated reliably at rather low real frequencies.

The ED/CDMFT results discussed later reveal a contin-
uous Mott transition in excellent correspondence with the
variational QMC simulations by Meng et al.5 and with the
QMC/CDMFT calculations by Wu et al.11 The critical on-site
Coulomb energy is considerably smaller than that found in
single-site DMFT calculations.8,9 Furthermore, short-range
correlations included within CDMFT are shown to give rise to
metallic and insulating contributions to the self-energy at the
Dirac points in the Brillouin zone, where the former dominate
at low Coulomb interactions and the latter increase essentially
quadratically with the nearest-neighbor nonlocal self-energy
component. These terms lead to the excitation gap above the
Mott transition. Below the transition, they yield a narrow
pseudogap. Thus, short-range correlations induced via on-site
Coulomb repulsion give rise to deviations from Fermi-liquid
behavior in some range below the critical interaction strength.
Also, the effective-mass enhancement does not diverge at the
Mott transition, but increases to a finite value. The opening
of the pseudogap below the transition, and the variation of
the effective mass with Coulomb energy, are qualitatively
similar to analogous results obtained within cluster DMFT
calculations for the square lattice.15–17

The outline of this paper is as follows: In the next section, we
briefly outline the application of ED/CDMFT to the Hubbard
model for the honeycomb lattice. Section III provides a
discussion of the results. The summary is presented in Sec. IV.
The focus in this work is on the paramagnetic semimetal-to-
insulator transition. Spin-liquid and antiferromagnetic phases
will be addressed in a subsequent publication.
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II. CLUSTER ED/DMFT FOR THE HONEYCOMB
LATTICE

In this section, we discuss the combination of cluster DMFT
with finite-temperature ED for the purpose of evaluating the
effect of nonlocal Coulomb interactions on the honeycomb
lattice. The Hubbard Hamiltonian is given by

H = −t
∑
〈ij〉σ

(c+
iσ cjσ + H.c.) + U

∑
i

ni↑ni↓, (1)

where the sum in the first term includes only nearest neighbors,
t is the hopping matrix element, and U is the on-site Coulomb
repulsion. The band dispersion for the honeycomb lattice
may be written as ε(k) = ±t |1 + eikx

√
3 + ei(kx

√
3+ky3)/2|. In

the following, we define t = 1 as an energy unit.
Let us divide the two-dimensional lattice into clusters

consisting of six sites. Within the unit cell, the positions
are specified as a1 = (0,0), a2 = (1,0), a3 = (

√
3/2,3/2),

a4 = (
√

3,1), a5 = (
√

3,0), and a6 = (
√

3/2, − 1/2). The
nearest-neighbor spacing is taken to be a = 1. The supercell
lattice vectors are then given by A1/2 = (3

√
3/2, ± 3/2).

Within CDMFT,12 the interacting lattice Green’s function in
the cluster site basis is given by

Gij (iωn) =
∑

k

[iωn + μ − t(k) − �(iωn)]−1
ij , (2)

where ωn = (2n + 1)πT are Matsubara frequencies and μ is
the chemical potential. The k sum extends over the reduced
Brillouin zone, t(k) denotes the hopping matrix for the
superlattice, and �ij (iωn) represents the cluster self-energy
matrix in the site representation. The diagonal elements of the
symmetric matrix Gij are identical and there are three inde-
pendent off-diagonal elements: G12 = G16, G13 = G15, and
G14. Because of these symmetry properties, it is convenient to
go over to a diagonal “molecular orbital basis,” in which the
elements Gm(iωn) are given by

G1/2 = (G11 + 2G13) ± (G14 + 2G12),
(3)

G3/4 = G5/6 = (G11 − G13) ± (G14 − G12).

The self-energy matrix satisfies the same symmetry prop-
erties as G and can therefore be diagonalized in the same
fashion. These elements will be denoted as �m(iωn). Later
we will focus on the special case of half-filling. Since the
density of states is then particle-hole symmetric with respect
to ω = 0, Gii(iωn) is purely imaginary. The same applies to
G13, whereas G12 and G14 are real, corresponding to odd
density-of-states components. Thus, the diagonal molecular
orbital components of G satisfy G2 = −G∗

1 and G4 = −G∗
3.

Figure 1 illustrates the uncorrelated density-of-states compo-
nents in the diagonal basis, where ρm(ω) = − 1

π
Im Gm(ω) for

� = 0. The even and odd on-site and intersite components
may be obtained by inverting Eq. (3).

A central feature of DMFT is that, to avoid double-counting
of Coulomb interactions in the quantum impurity calculation,
the self-energy must be removed from the small cluster in
which correlations are treated explicitly. This removal yields
the impurity Green’s function

G0(iωn) = [G(iωn)−1 + �(iωn)]−1. (4)

 0

 0.1

 0.2

 0.3

 0.4

-3 -2 -1  0  1  2  3

 D
en

si
ty

 o
f S

ta
te

s 

ω

1 23 4

FIG. 1. (Color online) Total density of states ρ(ω) (solid curve)
of the honeycomb lattice and cluster components ρm(ω) (dashed
curves) within a diagonal molecular orbital basis. For clarity, these
components are divided by nc = 6. Orbitals 3 and 4 are doubly
degenerate. ω = 0 defines the Fermi energy for half-filling.

For the purpose of performing the ED calculation, we now
project the diagonal components of G0(iωn) onto those of a
larger cluster consisting of six impurity levels and six bath
levels, that is, ns = 12 is the total number of levels. Thus,

G0,m(iωn) ≈ Gcl
0,m(iωn)

=
(

iωn + μ − εm −
12∑

k=7

|Vmk|2
iωn − εk

)−1

, (5)

where εm denotes impurity levels, εk denotes bath levels, and
Vmk denotes hybridization matrix elements. The incorporation
of the impurity level εm in the fitting procedure yields a more
accurate representation of G0,m(iωn) than by projecting only
onto bath levels.

Assuming independent baths for the diagonal cluster
molecular orbitals, each component G0,m(iωn) is fitted using
three parameters: one impurity level εm, a bath level εk , and
a hopping integral Vmk . To evaluate the finite-temperature
interacting Green’s function of the cluster, it is useful to
transform the impurity orbitals back to the site representation
in which the Coulomb interaction is diagonal. We denote
this transformation by T̄ , where the matrix elements are
given by

T̄im =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
6

1√
6

0 1√
3

1√
3

0

1√
6

− 1√
6

− 1
2

1
2
√

3
− 1

2
√

3
1
2

1√
6

1√
6

1
2 − 1

2
√

3
− 1

2
√

3
1
2

1√
6

− 1√
6

0 − 1√
3

1√
3

0

1√
6

1√
6

− 1
2 − 1

2
√

3
− 1

2
√

3
− 1

2

1√
6

− 1√
6

1
2

1
2
√

3
− 1

2
√

3
− 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Thus, the diagonal 6 × 6 subblock of the cluster Hamiltonian,
hb = (εkδkk′), representing the bath levels remains unchanged,
while the 6 × 6 impurity subblock becomes nondiagonal in
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the cluster site basis:

hc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε τ τ ′ τ ′′ τ ′ τ

τ ε τ τ ′ τ ′′ τ ′

τ ′ τ ε τ τ ′ τ ′′

τ ′′ τ ′ τ ε τ τ ′

τ ′ τ ′′ τ ′ τ ε τ

τ τ ′ τ ′′ τ ′ τ ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

with

ε = [(ε1 + ε2) + 2(ε3 + ε4)]/6,

τ = [(ε1 − ε2) − (ε3 − ε4)]/6,
(8)

τ ′ = [(ε1 + ε2) − (ε3 + ε4)]/6,

τ ′′ = [(ε1 − ε2) + 2(ε3 − ε4)]/6.

We point out that the hopping element t of the original lattice
Hamiltonian does not appear since it is absorbed into τ via the
molecular orbital cluster levels εm, which are adjusted to fit
G0,m(iωn). The preceding procedure, therefore, includes not
only hopping between cluster and bath. It also introduces four
new parameters within the six-site cluster: the on-site level ε,
and up to third-neighbor hopping parameters: τ , τ ′, and τ ′′. At
half-filling, ε2 = −ε1 and ε4 = −ε3 for symmetry reasons, so
that ε = τ ′ = 0. In this mixed site-molecular orbital basis, the
hybridization matrix elements Vmk between cluster and bath
molecular orbitals introduced in Eq. (5) are transformed to
new hybridization matrix elements between cluster sites i and
bath orbitals k. They are given by

V ′
ik = (T̄ V )ik =

∑
m

T̄imVmk . (9)

The single-particle part of the cluster Hamiltonian now reads

h0 =
(

hc V ′

V ′t hb

)
. (10)

Adding the on-site Coulomb interactions to this Hamiltonian,
the nondiagonal interacting cluster Green’s function at finite
T can be derived from the expression18,19

Gcl
ij (iωn) = 1

Z

∑
νμ

e−βEν

( 〈ν|ciσ |μ〉〈μ|c+
jσ |ν〉

Eν − Eμ + iωn

+ 〈ν|c+
iσ |μ〉〈μ|cjσ |ν〉

Eμ − Eν + iωn

)
, (11)

where Eν and |ν〉 denote the eigenvalues and eigenvectors of
the Hamiltonian, β = 1/T , and Z = ∑

ν exp(−βEν) is the
partition function. Further details concerning the evaluation of
the cluster Green’s function can be found in Ref. 20, where
the analogous procedure is discussed for the square lattice.
Since Gcl

ij satisfies the same symmetry properties as Gij , it is
diagonal within the molecular orbital basis, with elements Gcl

m.
The diagonal cluster self-energy components are then given by
an expression analogous to Eq. (4):

�cl
m(iωn) = 1/Gcl

0,m(iωn) − 1/Gcl
m(iωn). (12)

The important assumption in DMFT is now that this
impurity cluster self-energy is a physically reasonable rep-

resentation of the lattice self-energy. Thus,

�m(iωn) ≈ �cl
m(iωn), (13)

where, at real frequencies, �m(ω) is continuous whereas
�cl

m(ω) is discrete.
In the next iteration step, these diagonal self-energy

components are used as input in the lattice Green’s function
Eq. (2), which in the molecular orbital basis may be written as

Gm(iωn) =
∑

k

[
iωn + μ − T̄ t(k)T̄ −1 − �(iωn)

]−1

mm
, (14)

where T̄ is the transformation defined in Eq. (6). Note that
T̄ t(k)T̄ −1 is not diagonal at general k points. As a result,
all molecular orbital components of �(iωn) contribute to all
components Gm(iωn). We also point out that, to get adequate
resolution at low frequencies, because of the vanishing density
of states, a sufficiently large number of k values near the Dirac
points must be included in the Brillouin zone integration.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the low-energy region of the interacting
density of states for several Coulomb energies, at temperature
T = 0.005. These distributions are derived from an extrapo-
lation of the local lattice Green’s function G11(iωn) to real
frequencies. To illustrate the stability of this extrapolation,
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FIG. 2. (Color online) (a) Low-energy region of density of
states A11(ω) = − 1

π
Im G11(ω) of the honeycomb lattice for several

Coulomb energies at T = 0.005. The noninteracting density of states
is indicated by the black dotted curve. Between 50 and 200 Matsubara
points are used to extrapolate the lattice Green’s function to real
frequencies. (b) Density of states over a wider energy range for U = 5
and 7.
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at each value of U several curves are plotted for 50 to 200
Matsubara points, with an additional small energy broadening
of the order of 0.1ω2. (For |ω| > 1, the broadening is kept
constant at 0.1.) At U = 3, a tiny gap or pseudogap is seen,
which is near the limit of what can be resolved within
ED/DMFT. At U = 4, a full gap of width � ≈ 0.25 has
opened. Its width increases approximately to � ≈ 0.6 when
the Coulomb energy is increased to U = 5. This trend is
consistent with the one found in Refs. 5 and 11. The variation
of the gap over a wider range of U is indicated in Fig. 3(a).
The spectral distributions in Fig. 2 show that the van Hove
singularity at ω = ±1 is strongly broadened and its weight is
shifted to lower energies. Above the transition, the Hubbard
bands are difficult to resolve as long as U is less than the
bandwidth, but they become pronounced once U > W , as
shown in Fig. 2(b) for U = 7.

These results suggest that nonlocal correlations in the hon-
eycomb lattice induce a paramagnetic semimetal-to-insulator
Mott transition in the range U = 3–4. Because of the continu-
ous nature of the transition (see later), it is difficult to identify
the precise value of the critical interaction. Nevertheless, our
finding is consistent with the variational QMC simulations5

and the QMC/DMFT calculations,11 which yield Uc ≈ 3.6.
It is also in qualitative agreement with earlier finite-size
cluster QMC simulations, which gave Uc ≈ 4.5 (Ref. 6) and
Uc ≈ 4–5 (Ref. 7). On the other hand, all of these values
are significantly lower than those obtained within single-site
DMFT, which yields Uc ≈ 10–13.8,9 Moreover, in agreement
with Refs. 5–7 and 11, we do not find any hysteresis behavior
for increasing versus decreasing U , as shown in Fig. 3(b),
for the double occupancy, indicating that the transition is
continuous. In contrast, within local DMFT the transition was
shown to be of first order.9 Figure 3(c) shows the on-site and
intersite spin correlations, 〈S1zSiz〉, for i = 1–4. The on-site
and second-neighbor components are positive, while the first-
and third-neighbor components are negative, underlining the
antiferromagnetic nature of the spin correlations.

One of the interesting effects of Coulomb interactions in
multiorbital systems is the possibility of correlation-induced
charge transfer between orbitals. As shown in Fig. 1, the
six-site unit cell of the honeycomb lattice may be viewed
as consisting of six molecular orbitals, which are split
by an effective crystal field and therefore have different
orbital occupancies. Figure 3(d) shows the variation of these
occupancies with Coulomb energy. Evidently, there is little
orbital polarization, a result that was also observed in CDMFT
calculations for the square and triangular lattices.21 Moreover,
the double occupancy, the spin correlations, and the orbital
occupancies reveal no clear sign of a Mott transition in the
region where the spectral distribution exhibits the opening of
a gap.

To analyze the nature of the semimetal-to-insulator tran-
sition, it is therefore necessary to examine the nonlocal
contributions to the self-energy. Figure 4 shows the four
independent components of the cluster self-energy �(iωn)
within the site basis, for Coulomb energies in the region
of interest, U = 3–5. For symmetry reasons, �11(iωn) and
�13(iωn) are purely imaginary. They behave as ∼ iωn at low
frequencies. In contrast, �12(iωn) and �14(iωn) are real and
approach a finite value in the limit ωn = 0.
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FIG. 3. (Color online) (a) Excitation gap �, (b) average dou-
ble occupancy docc, (c) local and nonlocal spin correlations
〈S1zSiz〉, and (d) molecular orbital occupancies nm as functions
of Coulomb energy for T = 0.005. Orbitals 3 and 4 are doubly
degenerate. There is no indication of hysteresis behavior in the
critical region U = 3–4.

In a seminal paper long before the synthesis of graphene,
González et al.3 studied the influence of electron-electron
interactions on the quasiparticle lifetime in a single layer of
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FIG. 4. (Color online) Self-energy components �1i(iωn),
i = 1–4, for the honeycomb lattice in cluster site representation as
functions of Matsubara frequency for Coulomb energies U = 3–5 in
steps of 0.2; T = 0.005.

graphite. Taking into account the long-range nature of the
Coulomb interaction, their renormalization-group calculations
indicate that the suppression of electronic screening at low
frequencies yields deviations from conventional Fermi-liquid
behavior, with Im �(ω) approximately linear in ω for
ω = 0.4–3.0 eV (for t = 2.4 eV).

To determine possible non-Fermi-liquid contributions to the
self-energy derived within the present ED/CDMFT approach,

we have carefully searched for ωnln(ωn) behavior in the
imaginary components �11(iωn) and �13(iωn). Within the
accuracy of our results, these functions do not indicate any
such deviations and seem to be well proportional to iωn

in the entire range U = 0–5. Also, they do not indicate
a finite limiting value for ωn → 0, which would imply a
finite lifetime for states near the Fermi energy. Thus, the
non-Fermi-liquid properties obtained in Ref. 3 seem to be
associated with the long-range part of the Coulomb repulsion,
which is absent in the Hubbard model for purely on-site
interactions.22

We note, however, that to understand the spectral features of
the quasiparticle density of states, it is not sufficient to study
the self-energy components shown in Fig. 4. In particular,
these isolated components do not provide any evidence for
a Mott transition in the region U = 3–4, where the density
of states shown in Fig. 2 indicates the opening of a gap. To
illustrate the smoothness of the self-energy components in
this range of Coulomb energies, we show in Fig. 5(a) the
slopes of Im �11 and Im �13, and the values of Re �12 and
Re �14 in the low-frequency limit. Evidently, these individual
components do not reveal the existence of the Mott transition
seen in the density of states. This behavior differs qualitatively
from the Hubbard model for the square lattice at half-filling,
where at the metal-insulator transition the (π,0) component of
the self-energy changes from ∼ iωn to ∼ 1/iωn at small ωn,
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FIG. 5. (Color online) (a) Low-frequency limits of self-energy
components: slopes of Im �11(iωn), Im �13(iωn), and values of
Re �12(iωn), Re �14(iωn), as functions of U . (b) Amplitude
b2/(1 − a) of insulating contribution to �(K,iωn), Eq. (20), as a
function of U ; T = 0.005.
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and the real part of the (0,0) and (π,π ) components exhibits a
jump.16,17

The origin of this apparent discrepancy is the fact that,
as pointed out earlier, the local interacting density of states
depends in a highly nonlinear manner on all nonlocal
self-energy components �ij . This is evident from the
expression for the lattice Green’s function, Eq. (2), where the
hopping matrix t(k) and �(iωn) cannot be simultaneously
diagonalized, as indicated also in Eq. (14). To account for
this admixture of intersite self-energy elements, it is useful to
examine the 6 × 6 cumulant matrix

M(iωn) = [iωn − �(iωn)]−1. (15)

Since M has the same symmetry properties as �, its nonlocal
components are given by

M11 = [(M1 + M2) + 2(M3 + M4)]/6,

M12 = [(M1 − M2) − (M3 − M4)]/6,
(16)

M13 = [(M1 + M2) − (M3 + M4)]/6,

M14 = [(M1 − M2) + 2(M3 − M4)]/6,

where the diagonal molecular orbital elements are

Mm(iωn) = [iωn − �m(iωn)]−1. (17)

The opening of the Mott gap takes place at the six K points
of the Brillouin zone. To analyze the behavior of the cumulant
at these points, we make use of the periodization23

M(k,iωn) = 1

6

6∑
ij=1

eik·(ai−aj )Mij (iωn), (18)

where ai are the positions within the six-site cluster. At
K = 2π (2/3

√
3,0) and K ′ = 2π (1/3

√
3,1/3), this expres-

sion simplifies to

M(K,iωn) = M11(iωn) − M13(iωn)

= [M3(iωn) + M4(iωn)]/2. (19)

The self-energy at K is therefore given by

�(K,iωn) = iωn − M−1(K,iωn)

≈ iωna + b2

iωn(1 − a)
, ωn → 0, (20)

where a is the initial slope of Im [�11(iωn) − �13(iωn)] and
b is the low-frequency limit of Re [�12(iωn) − �14(iωn)].
This self-energy is shown in Fig. 6 for various Coulomb
energies. The preceding expression indicates that �(K,iωn) is
imaginary as expected for particle-hole symmetry at the Dirac
points. It consists of metallic (∼ iωn) and insulating (∼ 1/iωn)
contributions. The insulating term, which is responsible for
the opening of the Mott gap, increases quadratically with
b = Re (�12 − �14). Thus, the semimetal-to-insulator transi-
tion is driven primarily by the nearest-neighbor component of
the nonlocal self-energy, with a minor additional contribution
due to the third-neighbor self-energy, and a weak renormaliza-
tion related to the initial slope of Im [�11(iωn) − �13(iωn)].
The variation of the amplitude b2/(1 − a) of the insulating
term with Coulomb energy is depicted in Fig. 5(b). The
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FIG. 6. (Color online) (a) Imaginary part of self-energy at K ,
Eq. (20), as a function of Matsubara frequency, for U = 1–5 at
T = 0.005. (b) ωnIm �(K,iωn), demonstrating the range of the
insulating part of the self-energy at Dirac points K . Solid red curves
denote integer values of U , dashed blue curves denote intermediate
values.

comparison with Fig. 3(a) demonstrates that the excitation
gap � roughly tracks the amplitude of this term.

According to the results shown in Fig. 4, a ≈ −0.2, . . . ,

−0.6 and b ≈ −0.05, . . . , − 0.6 in the range U = 3–5. Thus
at U = 3, the amplitude of the insulating term is about
102 times smaller than at U = 5. Nevertheless, this small
contribution is responsible for the pseudogap below the Mott
transition, indicating the breakdown of Fermi-liquid behavior
in the metallic phase. For U < 2, we find |b| < ω0, so that the
pseudogap can no longer be resolved within the accuracy of
ED. A similar pseudogap induced by short-range correlations
at half-filling was observed below the Mott transition in the
Hubbard model for the square lattice.15–17 Neglecting the
small insulating term of �(K,iωn) sufficiently far below
the transition, the effective-mass enhancement of the quasipar-
ticle bands near the Dirac points is given by m∗/m = 1 − a =
1.0, . . . ,1.2 for U = 0–3, that is, it does not diverge at the
Mott transition, in contrast to results derived within single-site
DMFT. This finding is also consistent with the behavior seen
on the square lattice.16

We close this section by commenting briefly on the rele-
vance of the results discussed earlier for graphene. There exists
at present considerable debate on the role of screening and on
the magnitude of the short-range Coulomb repulsion in this
material.2 In the case of a benzene molecule, the on-site Hub-
bard interaction was estimated to be U ≈ 17 eV.24 In contrast,
in polyacetylene this value is reduced to about U ≈ 10 eV, with
a hopping interaction t = 2.5 eV.25 The ratio U/t ≈ 4 would
then be slightly larger than the critical Coulomb interaction
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found here and in Refs. 5 and 11. On the other hand, first-
principles and mean field Hubbard model calculations26 yield
ratios U/t ≈ 1, . . . ,2, depending on the exchange-correlation
functional used in the density-functional calculation. There is
clearly a great need for further theoretical and experimental
work to investigate to what extent a purely on-site Hubbard in-
teraction is adequate for graphene, and to determine its realistic
magnitude.

IV. SUMMARY

The influence of on-site Coulomb interactions on the
electronic properties of the honeycomb lattice has been
investigated within cluster dynamical mean field theory
combined with exact diagonalization. The interacting density
of states exhibits the opening of a Mott gap in the region
U = 3–4, which is caused by a change of the self-energy
at the Dirac points of the Brillouin zone from metallic-
to-insulating behavior. This transition is in good agreement
with finite-size extrapolations of variational QMC simulations
and with continuous-time QMC calculations based on cluster

DMFT. As a result of short-range fluctuations, the critical
Coulomb energy is significantly smaller than in single-site
DMFT calculations. Also, a narrow pseudogap is found close
to the Mott transition. Finally, the effective mass shows a
moderate enhancement at finite U , but it does not diverge at
the transition.

The consistency between the ED and QMC calculations for
the honeycomb lattice, including the variation of the Mott gap
with on-site Coulomb repulsion, suggests that, as long as the
overall size of the Hilbert space is sufficiently large, yielding
small enough level spacing, the use of only one bath level per
impurity orbital can be adequate. This situation differs from
the one for fewer sites or orbitals, where more bath levels per
impurity level must be included to achieve sufficiently large
Hilbert spaces.

ACKNOWLEDGMENTS

I would like to thank Hiroshi Ishida for valuable discus-
sions. The ED/CDMFT calculations were carried out on the
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