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Boundary effects on the local density of states of one-dimensional Mott insulators and charge
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We determine the local density of states (LDOS) for spin-gapped one-dimensional charge density wave (CDW)
states and Mott insulators in the presence of a hard-wall boundary. We calculate the boundary contribution to
the single-particle Green function in the low-energy limit using field theory techniques and analyze it in terms
of its Fourier transform in both time and space. The boundary LDOS in the CDW case exhibits a singularity at
momentum 2kF, which is indicative of the pinning of the CDW order at the impurity. We further observe several
dispersing features at frequencies above the spin gap, which provide a characteristic signature of spin-charge
separation. This demonstrates that the boundary LDOS can be used to infer properties of the underlying bulk
system. In the presence of a boundary magnetic field, midgap states localized at the boundary emerge. We
investigate the signature of such bound states in the LDOS. We discuss the implications of our results for
scanning tunneling microscopy experiments on quasi-one-dimensional systems such as two-leg ladder materials
like Sr14Cu24O41. By exchanging the roles of charge and spin sectors, all our results directly carry over to the
case of one-dimensional Mott insulators.
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I. INTRODUCTION

Scanning tunneling microscopy (STM) and spectroscopy
(STS) methods have proved to be a useful tool for study-
ing strongly correlated electron systems such as carbon
nanotubes,1 high-temperature superconductors (HTSCs),2–5

and rare-earth compounds.6 STM experiments measure the
tunneling current I between the sample and the STM tip as
a function of its position x and the applied voltage V . This
current can be expressed in terms of the local densities of
states (LDOS) in the sample N (E,x) and the tip Ntip(E) as5

I (V,x) ∝
∫

dE [f (E − eV ) − f (E)] Ntip(E − eV ) N (E,x),

(1)

where f (E) denotes the Fermi function. Assuming a struc-
tureless density of states in the tip, Ntip = const, this gives the
following expression for the local tunneling conductance:

dI (V,x)

dV
∝
∫

dE f ′(E − eV ) N (E,x). (2)

Equation (2) shows that the tunneling conductance is pro-
portional to the thermally smeared N (E,x) of the sample
at the position of the tip. A nontrivial spatial dependence
of the LDOS arises in presence of impurities. These break
translational invariance and lead to a modification of the
LDOS in their vicinity, from which one can infer characteristic
properties of the bulk state of matter as well as the nature of its
electronic excitations. Spatial modulations of the LDOS can
be analyzed in terms the Fourier transform of the tunneling
conductance. It follows from Eq. (2) that this quantity is
directly proportional to the corresponding Fourier transform of
the LDOS, N (E,Q). This method of analyzing STM data was

used very successfully3 to study quasiparticle interference in
Bi2Sr2CaCu2O8+δ . The spin dependence of the LDOS has also
been investigated using magnetic tips.7 Theoretical studies of
STS have focused, in particular, on Luttinger liquids8,9 and
HTSCs.9–11 In the Luttinger liquid case an impurity has the
same effects at low energies as a physical boundary,12 which
motivated studies of the LDOS in the vicinity of a chain end.
The case of strongly correlated one-dimensional (1D) systems
with spin or charge gaps is of considerable interest as well and
pertains to quasi-1D charge density wave (CDW) systems13

and Mott insulators,14,15 carbon nanotubes,16 (doped) two-
leg ladder materials,17,18 and the stripe phases of HTSCs.19

Compared to the Luttinger liquid case, the presence of an
interaction-induced gap makes these problems much more
difficult to treat theoretically. In the following we determine
the LDOS for the low-energy limit of 1D CDW states and
Mott insulators in the presence of a single boundary. The latter
can be thought of as arising as the result of the presence of
a strong potential impurity. Alternatively, one can imagine
inducing a boundary in a two-tip STM setup, where the
first tip is used to induce a boundary by applying a high
voltage and the LDOS is then measured with the second tip.
A short summary of our results has appeared previously.20

The outline of this paper is as follows: in Sec. II we present
the field theory limit of 1D CDW states and Mott insulators in
the presence of a single boundary. In Sec. III we summarize our
results for the single-particle Green function. These are then
used to determine the Fourier transform Nσ (E,Q) of the local
density of states for hard-wall boundary conditions in Sec. IV.
Signatures of spin and charge excitations visible in Nσ (E,Q)
are discussed in some detail. The effects of more general
boundary conditions, including the formation of boundary
bound states, are described in Sec. V. Section VI deals with the
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effects of finite temperatures, and implications of our results
for STM experiments are discussed in Sec. VII. The technical
details of our calculations are presented in several appendixes.

II. THE MODEL

Our analysis of the LDOS is based on the continuum
description of certain 1D CDW states and Mott insulators.
The resulting quantum field theory for both cases is known
as the U(1) Thirring model21 (with two “flavors”). The latter
is known to arise as the effective low-energy description of a
number of lattice models of spin-1/2 electrons, as we discuss
next.

(1) Half-filled repulsive Hubbard model:22 This is the
standard model for single-band 1D Mott insulators. The
Hamiltonian is of the form

H = −t
∑
j,σ

[c†j,σ cj+1,σ + c
†
j+1,σ cj,σ ]

+U
∑

j

(
nj,↑ − 1

2

)(
nj,↓ − 1

2

)
, (3)

where nj,σ = c
†
j,σ cj,σ and nj = nj,↑ + nj,↓ are electron num-

ber operators and U > 0.
(2) One-dimensional Holstein model:23 The Holstein model

provides an example of an incommensurate CDW state and
describes a partially filled band of spin-1/2 electrons coupled

to dispersionless phonons of frequency ω0 =
√

k
M

:

H = −t
∑
j,σ

[c†j,σ cj+1,σ + c
†
j+1,σ cj,σ ]

+
∑

j

[
P 2

j

2M
+ k

2
Q2

j

]
− λ
∑
j,σ

Qjnj,σ . (4)

Integrating out the phonons induces a retarded attractive
electron-electron interaction. In the limit t � ω0 the retarda-
tion effects can be neglected, leading to an effective attractive
Hubbard model with U ∝ −λ2.

(3) Su-Schrieffer-Heeger model:24 A second example of an
incommensurate CDW state is provided by the Su-Schrieffer-
Heeger model, which describes a partially filled band of spin-
1/2 electrons coupled to dispersing phonons:

H = −
∑
j,σ

[t − λ(Qj+1 − Qj )][c†j,σ cj+1,σ + c
†
j+1,σ cj,σ ]

+
∑

j

[
P 2

j

2M
+ k

2
[Qj+1 − Qj ]2

]
. (5)

Taking the continuum limit of Eq. (5) (which describes the
behavior at low frequencies, ω � t), it was shown by Fradkin
and Hirsch25 that the regime of high phonon frequencies t �
ω0 =
√

k
M

is described by the U(1) Thirring model.21,26

In all three cases a continuum description of the low-energy
electronic degrees of freedom is obtained by considering only
the modes in the vicinity of the Fermi points ±kF. The lattice

electron annihilation operators are expressed in terms of slowly
varying right- and left-moving Fermi fields as

cj,σ√
a0

→ �σ (x) = eikFxRσ (x) + e−ikFxLσ (x), (6)

where a0 is the lattice spacing, x = ja0, and σ =↑ , ↓ labels
the spin. In the bulk the fields Rσ and Lσ are bosonized
according to

R†
σ (τ,x) = ησ√

2π
exp

(
i

2
φc(τ,x)

)
exp

(
i

2
fσφs(τ,x)

)
, (7)

L†
σ (τ,x) = ησ√

2π
exp

(
− i

2
φ̄c(τ,x)

)
exp

(
− i

2
fσ φ̄s(τ,x)

)
,

(8)

where the Klein factors ησ satisfy anticommutation rules
{ησ ,η′

σ } = 2δσσ ′ and f↑ = 1 = −f↓. Fields φa and φ̄a are the
chiral components of the canonical Bose fields �a and their
dual fields �a:

�a = φa + φ̄a, �a = φa − φ̄a, a = c,s. (9)

In the bulk the Hamiltonian density then can be cast in the
spin-charge separated form:

H(x) =
∑
a=c,s

Ha(x),

Ha = va

16π

[
1

K2
a

(∂x�a)2 + K2
a (∂x�a)2

]
− ga

(2π )2
cos �a.

(10)

The charge and spin velocities vc,s, Luttinger parameters Kc,s,
and coupling constants gc,s are functions of the hopping
integrals and interaction strengths defining the underlying
microscopic model. The cases just discussed correspond to
the following parameter regimes.

(1) Mott insulators: As a result of repulsive electron-
electron interactions, we have vc > vs and Kc < 1. The cos �c

perturbation in the charge sector is relevant and opens up a
gap. The cos �s interaction in the spin sector is marginally
irrelevant and flows to 0 under the renormalization group. We
therefore neglect it in the following.

(2) Electron-phonon systems: At low energies electron-
phonon coupling induces an attractive electron-electron inter-
action, which results in vs > vc and Kc > 1 > Ks. The cos �c

term is irrelevant, while the cos �sterm is relevant [marginally
relevant in the spin-SU(2) symmetric case Ks = 1] and opens
up a gap in the spin sector.

In both cases we end up with a spin-charge separated theory
of a gapless Luttinger liquid and a sine-Gordon model.

We now imagine a strong, local potential to be present. It
is well known from the work of Kane and Fisher12 that the
coupling to the impurity is relevant, leading to a crossover
at a characteristic dynamical energy (and temperature) scale
called “TK,” below which the system is effectively cut into two
disconnected parts, and to a pinning of the CDW. This potential
could be due to a strong potential impurity or an STM tip. We
model the strong impurity potential by a boundary condition
on the continuum electron field:

�σ (x = 0) = 0. (11)
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An important physical consequence of the pinning of the CDW
at the impurity (or boundary) is the development of an induced
static CDW order in this (effectively) quantum critical system.
This induced static CDW order, often referred to27 as a “Friedel
oscillation,” leads to nondispersive features in the LDOS9 that
can be detected in STM and STS experiments.

Our effective low-energy Hamiltonian in the CDW case (in
the case of a Mott insulator the roles of spin and charge sectors
are interchanged) then becomes

H =
∑
a=c,s

Ha, (12)

Hc = vc

16π

∫ 0

−∞
dx

[
1

K2
c

(∂x�c)2 + K2
c (∂x�c)2

]
, (13)

Hs = vs

16π

∫ 0

−∞
dx

[
1

K2
s

(∂x�s)
2 + K2

s (∂x�s)
2

]

− gs

(2π )2

∫ 0

−∞
dx cos �s, (14)

where the Bose fields are subject to the hard-wall boundary
conditions (we consider more general boundary conditions in
Sec. V),

�c,s(x = 0) = 0. (15)

In Appendix A we argue that a weak potential impurity
renormalizes to strong coupling even for moderate attractive
interactions, suggesting that this situation too can be modeled
in terms of the boundary conditions, Eq. (15). We note that
our starting point, Eqs. (12)–(15), differs from the model
considered in Ref. 28, where the impurity couples only to
the gapless charge sector.

The charge sector, Eq. (13), describes gapless collective
charge excitations propagating with velocity vc, which carry
charge ∓e and are commonly referred to as holons and
antiholons, respectively. On the other hand, the spin excitations
or spinons are described by the sine-Gordon model on the
half-line, Eq. (14), which is known to be integrable for quite
general boundary conditions.29,30 In the regime Ks > 1/

√
2

the elementary bulk excitations are gapped solitons and
antisolitons, which correspond to up- and down-spin spinons,
respectively. For Ks < 1/

√
2, propagating breather (soliton-

antisoliton) bound states occur as well. At the Luther-Emery
point (LEP) Ks = 1/

√
2, the spin sector is equivalent to a free

massive Dirac fermion.31 The exact bulk scattering matrix
was first derived by Zamolodchikov;32 the boundary reflection
matrices of solitons and antisolitons29 and breathers33 were
derived by Ghoshal and Zamolodchikov. We restrict ourselves
to the regime Ks � 1/

√
2 throughout, which implies that no

breathers exist.
The lattice models already discussed give rise to the sim-

plest kind of 1D CDW state/Mott insulator. More complicated
versions arise in strongly correlated two- and three-leg ladder
systems.19,34 In these systems, even though electron interac-
tions are strongly repulsive, a Mott state with a finite (and
typically large) spin gap is found for a range of dopings close to
half-filling. While the precise description of the spin sector for

two-leg ladders is considerably more complicated,35 we expect
our calculation to capture important qualitative features.

III. GREEN FUNCTION

The central object of our study is the time-ordered Green
function in Euclidean space,

Gσσ ′(τ,x1,x2) = −〈0b| Tτ �σ (τ,x1) �
†
σ ′(0,x2) |0b〉 , (16)

where |0b〉 is the ground state of Eq. (12) in the presence of the
boundary and τ = it denotes imaginary time. The spin takes
the values ↑ and ↓. At low energies the linearization around
the Fermi points yields the decomposition

Gσσ ′ = eikF(x1−x2) GRR
σσ ′ + e−ikF(x1−x2) GLL

σσ ′

+ eikF(x1+x2) GRL
σσ ′ + e−ikF(x1+x2) GLR

σσ ′, (17)

where, for example, GRL
σσ ′ = − 〈0b| Tτ Rσ (τ,x1) L

†
σ ′(0,x2) |0b〉.

As we are interested in the LDOS, we ultimately want to
set x1 = x2. Here we calculate the spatial Fourier transform
of the LDOS, as physical properties can be more easily
identified. In momentum space the RL and LR contributions
occur in a different region (Q ≈ ±2kF) compared to the RR

and LL parts (Q ≈ 0). In the absence of a boundary we
have GRL

σσ ′ = GLR
σσ ′ = 0 as the charge parts of these Green

functions vanish. In the presence of a boundary, left and
right sectors are coupled and the Fourier transform of the
Green function, Eq. (17), concomitantly acquires a nonzero
component at Q ≈ ±2kF, which provides a particularly clean
way of investigating boundary effects. For this reason we first
focus on the 2kF part of the Green function and then study the
low-momentum regime.

The Green function GRL
σσ ′ factorizes into a product of

correlation functions in the spin and charge sectors. The
charge part can be determined by standard methods36–38 (see
Appendix B). On the other hand, the integrability of the
sine-Gordon model on the half-line, Eq. (14), enables us
to calculate correlation functions in the spin sector using
the boundary-state formalism introduced by Ghoshal and
Zamolodchikov29 together with a form-factor expansion.39–44

As we show in Appendix C the leading terms in this expansion
yield (τ > 0, x1 < x2)

GRL
σσ ′(τ,x1,x2) = gc(τ,x1,x2) gs(τ,x1,x2), (18)

gc(τ,x1,x2) = −δσσ ′

2π

1

(vcτ − 2iR)a
1

(vcτ + 2iR)b

×
[

4x1x2

(vcτ − ir)(vcτ + ir)

]c

, (19)

gs(τ,x1,x2) = Z1 ei π
4

[
1

π
K0
(
�

√
τ 2 + r2/v2

s

)
+
∫ ∞

−∞

dθ

2π
K
(
θ + i

π

2

)

× eθ/2 e
2i

�
vs

R sinh θ
e−�τ cosh θ + · · ·

]
, (20)

035111-3



SCHURICHT, ESSLER, JAEFARI, AND FRADKIN PHYSICAL REVIEW B 83, 035111 (2011)

where gc,s are the contributions of the charge and spin sectors,
respectively. Here K0 is a modified Bessel function and
the center-of-mass coordinates are R = (x1 + x2)/2 < 0 and
r = x1 − x2 < 0. The normalization constant Z1 was obtained
in Ref. 42. At the LEP45 and the SU(2) invariant point the
boundary reflection amplitude K(θ ) is given by

K(θ ) = i tanh
θ

2
for Ks = 1√

2
,

K(θ ) = − θ

π3/2

�
(

iθ
π

)
�
(

3
4 − iθ

2π

)
�
(

5
4 + iθ

2π

) 2− i
π

θ (21)

× sinh
θ

2
for Ks = 1.

The expressions for general values of Ks can be found in
Refs. 29, 46, and 47. The exponents in the charge sector are
related to the Luttinger parameter by

a = 1

8

(
Kc + 1

Kc

)2

, b = 1

8

(
Kc − 1

Kc

)2

,

(22)

c = 1

8

(
1

K2
c

− K2
c

)
.

We stress that Eq. (20) is independent of σ and that the depen-
dence on Ks is through the overall normalization constant Z1

and the boundary reflection amplitude only. The one-particle
contributions of the form-factor expansion are given by the
first two terms in Eq. (20), while the dots represent corrections
involving a higher number of particles in the intermediate
state as well as higher-order corrections due to the boundary.
We have determined the subleading terms in the spin part of
the Green function at the LEP and found their contribution to
the LDOS calculated later to be negligible (see Sec. IV C).

After analytic continuation to real times τ → it , the Green
function, Eq. (18), exhibits a light cone effect. The first term
in Eq. (20) shows oscillating behavior for r2 < (vst)2 but is
damped otherwise. Similarly, the second term is oscillating for
4R2 < (vst)2. These oscillations are due to the propagation of
spinons from x2 to x1 either directly or via the boundary. In
particular, at late enough times both terms will oscillate. A
similar light cone effect was observed48 in the Ising model
with a boundary. On the other hand, the charge part, Eq. (19),
possesses singularities at vct = ±r and vct = ±2R due to the
propagation of antiholons.

The low-momentum regime of the Fourier transform of the
LDOS is obtained from (τ > 0, x1 < x2)

GRR
σσ ′(τ,x1,x2) = −δσσ ′

2π

1

(vcτ − ir)a
1

(vcτ + ir)b

[
4x1x2

(vcτ − 2iR)(vcτ + 2iR)

]c

× Z1

[
1

π

√
iτ − r/vs

iτ + r/vs
K1/2
(
�

√
τ 2 + r2/v2

s

)+ ∫ ∞

−∞

dθ

2π
K

(
θ + i

π

2

)
e

2i
�
vs

R sinh θ
e−�τ cosh θ + · · ·

]

= GLL
σσ ′(τ,x2,x1). (23)

Compared to GRL, the singularity at vct = 2R is much softer,
whereas the one at vct = r is more pronounced.

IV. LOCAL DENSITY OF STATES

The knowledge of the Green function, Eq. (16), enables us
to calculate the LDOS, which is directly related to the tunneling
current measured in STM experiments. As noted in Ref. 9 it is
useful to consider the Fourier transform of the LDOS, as phys-
ical properties can be more easily identified. For example, this
technique was used to study quasiparticle interference in high-
temperature superconductors3,4 and rare-earth compounds.6

We first consider the boundary condition �σ (0) = 0, which
results in the Green function, Eq. (18), and hence yields a
spin-independent LDOS. More general boundary conditions
may lead to a spin-dependent LDOS or even the formation of a
boundary bound state. We discuss this case in the next section.

The Fourier transform of the LDOS is given by Nσ (E,Q) =
N>

σ (E,Q) + N<
σ (E,Q), where

N>
σ (E,Q) = − 1

2π

∫ 0

−∞
dx

∫ ∞

−∞
dt ei(Et−Qx)

×Gσσ (τ > 0,x,x)
∣∣∣
τ→it+δ

(24)

N<
σ (E,Q) = 1

2π

∫ 0

−∞
dx

∫ ∞

−∞
dt ei(Et−Qx)

×Gσσ (τ < 0,x,x)
∣∣∣
τ→it−δ

(25)

Here the Green function has been analytically continued to
real times and we have take the limit x1 → x2 ≡ x. We focus
on the LDOS for positive energies in what follows but note that
the LDOS for negative energies can be analyzed analogously.
As already mentioned, we are mainly concerned with the
2kF component, as it vanishes in the absence of the boundary
and hence offers a particularly clean way of investigating
boundary effects. For Q ≈ 2kF, only GRL

σσ contributes, and
starting from Eq. (18) we arrive at the following expression
(see Appendix D):

N>
σ (E,2kF + q) =

2∑
i=1

N>
i (E,2kF + q) + · · · , (26)

N>
i (E,2kF + q) = −�(E − �)

Z1 e−i π
4 (4c+1) �(2c + 1)

8π2 va+b−1
c �(a + b + 2c)

×
∫ A

−A

dθ
hi(θ ) u2c+1

i

(E−� cosh θ )2−a−b

×F1(2c + 1,a,b,a + b + 2c; u∗
i , − ui).

(27)
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Here |q| � 2kF, A = arcosh( E
�

), F1 denotes Appell’s hy-
pergeometric function49 (see Appendix E), h1(θ ) = 1, h2(θ ) =
K(θ + iπ

2 ) eθ/2, and

u1 = 2

vcq
(E − � cosh θ ) + i sgn

(
vsq

�

)
δ,

(28)

u2 = 2vs

vc

E − � cosh θ

vsq − 2� sinh θ
+ i sgn

(
vsq

�
− 2 sinh θ

)
δ,

where δ → 0+. The result, Eq. (27), is valid for a + b < 2 and
−1/2 < c. Here we plot N>

σ (E,2kF + q) for two parameter
regimes. We smear out singularities by taking δ small but
finite (δ = 0.01 unless stated), which mimics broadening by
instrumental resolution and temperature in experiments. The
results presented here apply to the regime T � E,�,vc/a0 (a0

is the lattice spacing), where temperature effects are negligible.

A. Repulsive case

We first consider the case vs < vc, Kc < 1. This can be
thought of as providing a simplified model for the LDOS of
a two-leg ladder with repulsive electron-electron interactions.
The low-energy theory for the ladder is similar in that there is
a gapless charge sector and a gapped spin sector, but the full
description of the latter is considerably more complicated.35

In Figs. 1 and 2 we plot N>
σ (E,2kF + q) for the case of

unbroken spin rotational symmetry (Ks = 1). The Fourier
transform of the LDOS is dominated by a singularity at
momentum 2kF (q = 0), which arises from the contribution
N>

1 . For fixed energy and close to singularity, this term behaves
as (see Appendix F)

N>
1 (E,2kF + q) ∼

(
1

vcq

)α

, α = 1 − K2
c

2
, (29)

which implies a phase jump of πα as q → 0±. This peak is
indicative of the CDW order being pinned at the boundary. We

1 2 3 4
E/Δ

-2

0

2

v
c
q/Δ=5

4

3

1

-1

|N
σ> (E

,2
k F

+
q)

|

FIG. 1. |N>
σ (E,2kF + q)| (in arbitrary units) for Kc = 0.8, Ks =

1, and vc = 2vs. Curves are constant q scans that have been offset
along the y axis by a constant with respect to one another. The
LDOS is dominated by a strong peak at q = 0, i.e., Q = 2kF.
We further observe dispersing features at Ec = vc|q|/2 + � and
Es = √(vsq/2)2 + �2. For q < 0 the dispersing features are strongly
suppressed.

-4 -2 0 2 4
v

s
q/Δ

|N
σ> (E

,2
k F

+
q)

|

0

π

2π

A
rg

 N
σ> (E

,2
k F

+
q)|Nσ

>|

Arg Nσ
>

FIG. 2. Constant energy scan for E = 2�: |N>
σ (E,2kF + q)| (in

arbitrary units) and ArgN>
σ (E,2kF + q) for Kc = 0.8, Ks = 1, and

vc = 2vs. We observe a peak at q = 0 (related to the pinning of the
CDW at the boundary) and dispersing features at q = ±2(E − �)/vc

as well as q = ±2
√

E2 − �2/vs. For q < 0 the dispersing features
are strongly suppressed. Furthermore, we observe characteristic
jumps in the argument at the positions of the peaks.

note, however, that the peak occurs at finite energies and hence
the underlying process is not static. A similar feature can be
seen in the Luttinger liquid case,9 where the singularity as a
function of q is softer [αLL = (1 − K2

c )/2].
At low energies above the spin gap � we further observe

two dispersing features, associated with the collective spin and
charge degrees of freedom, respectively. These are broadly
similar to the bulk single-particle spectral function50,51 and
feature (1) a “charge peak” that follows

Ec(q) = vc|q|
2

+ � (30)

and (2) a “spin peak” at position

Es(q) =
√(vsq

2

)2
+ �2. (31)

We note that neither peak is sharp (i.e., they are not δ-functions)
and hence have to be thought of as arising from excitations
involving at least two “elementary” constituents. In this way
of thinking, the charge peak arises from two-particle excita-
tions composed of a “zero-momentum” spinon contributing
an energy � and a gapless antiholon of “momentum” q.
On the other hand, the spin peak can be thought of arising from
two-particle excitations composed of a “zero-momentum”
antiholon and a spinon of “momentum” q. The appearance
of vc/2 and vs/2 in Eqs. (30) and (31), respectively, is due to
the fact that the particles have to propagate to the boundary and
back, thus covering the distance 2x in time t . We note that on
a technical level the charge peak arises from the contribution
N>

1 to the Fourier transform of the LDOS, whereas the spin
peak has its origin in N>

2 , which encodes the effects of the
boundary on the spin degrees of freedom. In the q < 0 region
the dispersing features are strongly suppressed, and for Kc = 1
the charge feature is found to vanish entirely.

It is instructive to plot N>
σ (E,2kF + q) as a function of q

for fixed energy; see Fig. 2. We observe characteristic jumps
in the phase Arg N>

σ at the peak positions. This is similar to
the Luttinger liquid case.9

B. Attractive case

We now turn to the case of a CDW state arising in a system
with (effective) attractive electron-electron interactions. As
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FIG. 3. |N>
σ (E,2kF + q)| (in arbitrary units) for Kc = 1.2,

Ks = 1, and vs = 2vc. Curves are constant q scans that have been
offset along the y axis by a constant with respect to one another.
The peak at q = 0 is much less pronounced then in the repulsive
case (see Fig. 1). We observe dispersing features at Ec, Es, and
Ecs = vc|q|/2 + �

√
1 − (vc/vs)2 (for |q| > q0 only).

discussed in Sec. II, this case arises in electron-phonon
systems. The effective parameters are given by vs > vc and
Kc > 1 > Ks.

In Fig. 3 we plot N>
σ (E,2kF + q) as a function of energy

for several values of q (in units of the spin gap). We again
observe a singularity at 2kF, which arises from Eq. (29). The
singularity is much less pronounced than in the repulsive case
and disappears for Kc �

√
2. As in the repulsive case there are

several dispersing features:
(1) A charge peak at E = Ec(q), where Ec is given by

Eq. (30).
(2) A spin peak at E = Es(q), where Es is defined in

Eq. (31).
(3) When |q| exceeds a critical value q0, a third dispersing

low-energy peak that appears (see Fig. 4) at

Ecs(q) = vc|q|
2

+ �

√
1 −
(

vc

vs

)2

= Es(q0) + vc

2
(|q| − q0), (32)

q0 = 2�vc

vs

√
v2

s − v2
c

.

This feature can be thought of as arising from a “momentum”
q0 spinon and an antiholon carrying “momentum” q − q0. We
note that in this case the spin and charge excitations have the
same group velocity:

∂Ec

∂q
= ∂Es

∂q

∣∣∣∣
q=q0

= vc

2
. (33)

This behavior is reminiscent of what is found for the single-
particle spectral function in the bulk.50,51 The peak splitting,
and hence the qualitative difference between the repulsive and
the attractive regime, is a consequence of the curvature of the
(anti-)soliton dispersion relation and hence of the spin gap. In
the Luttinger liquid case9 (where both sectors are massless),
there are only two dispersing features in both regimes.

1 1.2 1.4 1.6 1.8 2
E/Δ

1.0
1.2
1.4
1.6

v
c
q/Δ=1.8

|N
σ> (E

,2
k F

+
q)

|

FIG. 4. |N>
σ (E,2kF + q)| (in arbitrary units) for Kc = 1, Ks =

1/
√

2, vs = 1.5 vc, δ = 0.001, and vcq/� = 1.0, . . . ,1.8. Curves
have been offset along the y axis by a constant with respect to one
another. We observe the splitting of the spin peak at Es at the critical
momentum vcq0/� ≈ 1.19.

C. Higher-order corrections

As we have indicated in Eq. (20) there are contributions to
the LDOS beyond those already discussed. They arise from
our calculation of the spin part of the Green function and
are expected to be small.48 To verify that they can indeed
be neglected, we have analyzed them in some detail at the
LEP Ks = 1/

√
2, where the necessary matrix elements take a

particularly simple form, which makes the actual calculations
much easier.

Our purpose is then to determine further terms in the the
expansion, Eq. (26), of N>

σ (E,2kF + q). We denote by Nnm the
contribution to Eq. (26) that arises from processes in which n

gapped spinons (which correspond to solitons or antisolitons in
the sine-Gordon model describing the spin sector) propagate
between (0,x2) and (τ,x1), and that involves the mth power
of the boundary reflection matrix K . The foregoing terms
correspond to N10 = N>

1 and N01 = N>
2 . In Appendix C4

we present some details of the calculation of the terms in
the form-factor expansion of gs(τ,x1,x2) that give rise to Nnm

with m + n � 3. The number of θ integrations in Nnm equals
m + n [cf. Eq. (27)]. We find that their contributions to the
Fourier transform of the LDOS are small. In particular, all
qualitative features of the LDOS such as dispersing peaks
are already encoded in N10 and N01. In Fig. 5 we show
the leading terms N10 and N01 as well as the subleading
terms for Kc = 1 and vc > vs for a fixed value of q as a
function of energy. We see that the two leading terms in
Eq. (26) indeed capture all qualitative features of the LDOS
and carry the main part of the spectral weight at low energies
E � 5�. The higher-order terms are small compared to N10

and N01. In particular, N30 vanishes for E < 3�, since this
term originates from a three-particle process. In general, all
terms Nnm originating from n-particle processes vanish for
E < n�. Most importantly, however, the higher-order terms
do not possess any singularities. The suppression of subleading
terms in the form-factor expansion for bulk two-point functions
is a well-known feature of massive theories,44,52,53 whereas the
smallness of terms involving higher powers of the boundary
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FIG. 5. (Color online) Left: Comparison of the absolute values of N10 = N>
1 (E,2kF + q) and N01 = N>

2 (E,2kF + q) to the subleading
terms N11 and N02 (N20 = 0). We stress that the scale for the higher-order terms has been magnified. Right: Absolute values of the terms N30,
N21, N12, and N03. We stress the different scales on the y axis. Parameters are Kc = 1, Ks = 1/

√
2, vc = 2vs, and vsq/� = 3. The three-particle

contributions N30 and N21 vanish for E < 3�. Furthermore, the higher-order terms possess no peaks.

reflection amplitude K has recently been demonstrated for the
Ising model with a boundary magnetic field.48

D. Low-momentum regime

The low-momentum regime Q ≈ 0 of the Fourier transform
of the LDOS can be analyzed in the same way as in the Q ≈
2kF case already discussed. We note that the LDOS for Q ≈ 0
is nonvanishing even in the absence of a boundary.50,51 In the
presence of a boundary the Fourier transform of the LDOS for
Q ≈ 0 is obtained from Eq. (23). The leading terms are given
by N>

σ (E,Q) =∑2
i=1 N>

i (E,Q) + . . . , where

N>
i (E,Q) = −�(E − �)

Z1 e−i π
2 (2c+1) �(a + b + 1)

4π2 va+b−1
c �(2a + 2b)

×
∫ A

−A

dθ
hi(θ ) u2c+1

i

(E−� cosh θ )2−a−b

×F1(a + b + 1,c,c,2a + 2b; u∗
i , − ui). (34)

Here we have |Q| � kF, A = arcosh( E
�

), h1(θ ) = eθ/2, and
h2(θ ) = K(θ + iπ

2 ), and u1,2 are defined in Eq. (28), with q

replaced by Q. The main difference from Eq. (26) is in the
dependence of Appell’s hypergeometric function on Kc.

In Figs. 6 and 7 we plot N>
σ (E,Q) for the case of repulsive

electron interactions and unbroken spin rotational symmetry.
It is dominated by a singularity at Q = 0, which has its
origin in N>

1 and behaves as ∼1/Q independently of Kc.
This singularity is more pronounced than its counterpart at
2kF. We further observe dispersing features at positions Ec(Q)
and Es(Q), respectively. Both of these are symmetric under
Q → −Q. The peak at Ec(Q) is strongly suppressed, vanishes
for Kc = 1, and becomes a dip in the attractive regime. The
suppression is due to the softness of the singularities of GRR

at vct = 2R. In contrast, the charge part of Eq. (23) has
its strongest singularity at vct = r = 0, which results in a
background of spectral weight in N>

σ (E,Q) for all energies
above the spin gap.

In the attractive case (vs > vc) we observe a peak splitting
similar to that in the 2kF component, but all peaks are very
weak.

V. GENERAL BOUNDARY CONDITIONS AND BOUNDARY
BOUND STATES

So far we have considered the simplest possible boundary
conditions corresponding to a spin-independent phase shift of
π . Both ways of realizing a boundary in a (quasi-) 1D system
that we have discussed (i.e. as a result of an impurity or in a
“two-tip” STS experiment) are expected to give rise to a local
potential or magnetic field. These correspond to more general
phase shifts for reflection of particles at the boundary. As is
well known, such more general boundary conditions can give
rise to boundary bound states (see, e.g., Ref. 54). These are
expected to be visible in the Fourier transform of the LDOS as

1 2 3 4
E/Δ

-4

-2

0

2

v
c
Q/Δ=5

4
3

1

-1

-3

-5

|N
σ> (E

,Q
)|

FIG. 6. |N>
σ (E,Q)| (in arbitrary units) for Kc = 0.8, Ks = 1, and

vc = 2vs. Curves are constant Q scans that have been offset along
the y axis by a constant with respect to one another. We observe
dispersing features at Ec(Q) and Es(Q). Charge features are very
weak for all momenta. We further observe a constant background at
energies higher than the spin gap.
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FIG. 7. Constant energy scan for E = 2�: |N>
σ (E,Q)| (in arbi-

trary units) and ArgN>
σ (E,Q) for Kc = 0.8, Ks = 1, and vc = 2vs.

We observe a strong peak at Q = 0 and dispersing features at
Q = ±2(E − �)/vc as well as Q = ±2

√
E2 − �2/vs. Note that

|N>
σ (E,Q)| is symmetric under Q → −Q.

“resonances” inside the single-particle gap. This is most easily
seen by considering a Lehmann representation of N>

σ (E,Q)
in terms of the eigenstates |nb〉 on the half-line:

N>
σ (E,Q) =

∫ 0

−∞
dx e−iQx

∑
nb

|〈0b|�σ (0,x)|nb〉|2δ(E − Enb ).

(35)

For boundary bound states |bbs,α〉 we have 0 < Ebbs,α < �,
which leads to features in N>

σ (E,Q) below the single-particle
gap. Because we are dealing with a spin-charge separated
system, these features will generally not be sharp, as the bound
state occurs only in the gapped sector of the theory. We now
turn to calculating the LDOS in cases where boundary bound
states exist. We first consider boundary conditions of the form

Rσ (τ,0) = −e−ifσ �0
s /2 Lσ (τ,0), (36)

where f↑ = 1 = −f↓. In terms of the Bose fields these
boundary conditions read

�c(τ,0) = 0, �s(τ,0) = �0
s , 0 � �0

s < π. (37)

We note that these boundary conditions break spin rotational
symmetry. However, if we go over to the case of a 1D Mott
insulator by exchanging spin and charge degrees of freedom,
the spin rotational symmetry remains intact and the boundary
conditions correspond to a local potential.

As before, we focus on the 2kF component of the Fourier
transform of the LDOS. As we have changed the boundary
conditions only in the spin sector, the charge part, Eq. (19), of
the chiral Green function remains unchanged.

The two leading terms of the form-factor expansion in the
spin sector are still of the form, Eq. (20), but now the boundary
reflection amplitude K is different and, in particular, is spin
dependent. At the LEP it is given by45

Kσσ̄ (θ ) = sin
(
i θ

2 − fσ
�0

s
2

)
cos
(
i θ

2 + fσ
�0

s
2

) ,
(38)

Kσσ (θ ) = Kσ̄σ̄ (θ ) = 0.

Here we have introduced the notations ↑= + and ↓=
− as well as σ̄ = − for σ = + and vice versa. We
note that as a result of the different choice of phase

for the asymptotic states, Eq. (38) differs by a mi-
nus sign from Ref. 45 (see also Appendix C). The ex-
pressions for general Ks are given in Refs. 29, 46,
and 47.

In the spin rotationally symmetric case Ks = 1 we have
K+−(θ ) = K−+(θ ) = K(θ ), where K(θ ) is given in Eq. (21).
We stress that the Green function remains diagonal in spin
space, GRL

σσ ′ ∝ δσσ ′ , and that the spin dependence is entirely
due to the boundary reflection matrix Kσσ̄ . Before presenting
the resulting LDOS we discuss the emergence of a boundary
bound state in the spin sector.29,46,55 If we choose the phase
shift �0

s in the spin sector such that

K2
s π < �0

s , (39)

the boundary reflection amplitude K−+(θ ) has a pole in the
physical strip 0 � Im θ � π/2. This pole corresponds to a
boundary bound state with energy

Ebbs = � sin γ, γ = π − �0
s

2 − 2K2
s

. (40)

The physical nature of the bound state has been discussed
by Ghoshal and Zamolodchikov.29 The classical ground state
of the sine-Gordon model on the half-line, Eq. (14), in the
entire range 0 � �0

s < π is characterized by the asymptotic
behavior �s → 0 as x → −∞. In contrast, there exists a
second classically stable state satisfying �s → 2π as x →
−∞. When �0

s is sufficiently large this state is expected to be
stable in the quantum theory as well.

We note that for �0
s = π both states are degenerate and

Eq. (40) vanishes. In the attractive regime of the sine-Gordon
model Ks < 1/

√
2 additional boundary bound states occur,

while in the spin rotationally invariant case Ks → 1 the
condition K2

s π < �0
s < π is never satisfied and hence no

boundary bound states exist.
When calculating dynamical response functions in the

boundary-state formalism, additional contributions in the
form-factor expansions occur upon analytical continuation in
the rapidity variables. In particular, the pole of the boundary
reflection amplitude in the physical strip gives rise to an
additional term linear in K in the form-factor expansion,
Eq. (20). In the case τ > 0 and x1 < x2 it takes the form
(see Appendix C 5)

�
(
�0

s − K2
s π
)
δσ↓ Z1 B e

i
2 γ e2 �

vs
R cos γ e−�τ sin γ , (41)

where the constant B � 0 is related to the residue of K∓±(θ )
[see Eq. (C47)]. At the LEP B = −2 cos �0

s . We stress that
this additional term appears in the down-spin channel only,
since we have assumed 0 � �0

s < π . If we were to consider
−π < �0

s � 0, we would find a term similar to Eq. (41) in the
up-spin channel only.

The Fourier transform of the LDOS for the boundary
conditions, Eq. (37), can be expanded as before and is
expressed as

N>
σ (E,2kF + q) =

3∑
i=1

N>
σ,i(E,2kF + q) + · · · . (42)

Here the first two terms are again of the form, Eq. (27), where
in the second term, N>

σ,2, we need to replace the boundary

035111-8



BOUNDARY EFFECTS ON THE LOCAL DENSITY OF . . . PHYSICAL REVIEW B 83, 035111 (2011)

reflection amplitude K(θ + iπ
2 ) by its spin-dependent coun-

terpart Kσσ̄ (θ + iπ
2 ). The third term is obtained from Eq. (41)

and arises as a result of the presence of a boundary bound state.
Explicitly it reads

N>
σ,3(E,2kF + q) = �

(
�0

s − K2
s π
)
�(E − Ebbs) δσ↓

Z1B

4π

�(2c + 1)

�(a + b + 2c)

i e
i
2 γ e−iπc

va+b−1
c

×
(

2
vcq

(E − Ebbs) + i sgn
(

vsq

�

)
δ
)2c+1

(E − Ebbs)2−a−b
F

(3)
D (2c + 1,a,b,2c,a + b + 2c; u∗

3, − u3, − u′
3). (43)

Here F
(3)
D denotes Lauricella’s hypergeometric function of

three arguments56 (see Appendix E), and

u3 = 2

vcq
(E − Ebbs) + i

2�

vsq
cos γ, u′

3 = i
2�

vsq
cos γ, (44)

where the constant γ is defined in Eq. (40). The Fourier
transform of the LDOS, Eq. (42), has a nondispersing
singularity at its lower threshold:

N>
σ,3(E,2kF + q) ∝ δσ↓

(E − Ebbs)α
, α = 1 − 1

2K2
c

. (45)

The emergence of a nondispersing feature within the spin gap
signals the presence of a boundary bound state. In Fourier
space the LDOS is a convolution of contributions from the
spin and charge sectors. As we are dealing with a bound state
in the spin sector, the exponent of the singularity depends
only on the Luttinger parameter in the charge sector. We note
that the singularity occurs only in the down-spin channel and
disappears for K2

c � 1/2. In contrast, in N<
σ the additional

feature due to the boundary bound state appears only in the
up-spin channel.

In Fig. 8 we plot the down-spin component of Eq. (42)
for vc > vs as a function of energy for several values of q.
As before, at low energies above the spin gap � we observe
two dispersing features associated with the collective spin and
charge degrees of freedom that follow Es and Ec, respectively.
In addition, we observe the nondispersing singularity, Eq. (45),
at E = Ebbs.

In Fig. 9 we plot N>
↑ and N>

↓ as functions of energy for vc <

vs. We see that the singularity arising due to the presence of a
boundary bound state appears only in the down-spin channel.
For either spin polarization we observe three dispersing
features, at Ec(q), Es(q), and Ecs(q), respectively. Their
interpretations are completely analogous to the discussion in
Sec. IV B. In addition to these sharp peaks, we observe a broad
maximum in the down-spin channel at energies E ≈ Ebbs +
vcq/2. This feature is suppressed for vc > vs; see Fig. 8. Its
physical origin is the simultaneous excitation of the boundary
bound state and a finite-energy excitation in the charge sector.
We note that the asymmetry in N>

↑ (E,Q) − N>
↓ (E,Q) could,

in principle, be detected in experiments using a magnetic
STM tip. So far we have considered only hard-wall boundary
conditions in the charge sector, that is, �c(x = 0) = 0. Our
analysis can be straightforwardly extended to the case �c(x =
0) = �0

c , which, in terms of the original electrons, corresponds
to a local potential close to the boundary.

VI. FINITE-TEMPERATURE LDOS

Another interesting issue concerns the effects of a finite
temperature on the LDOS. The regime T � �/2 can, in
principle, be analyzed by generalizing the methods recently
developed in Refs. 57 to the boundary state formalism. How-
ever, to keep matters simple we restrict ourselves to the regime
of very low temperatures T � �. Here the main effects arise
from a modification of the dynamical response in the gapless
charge sector and correlation functions in the spin sector can
be approximated by their T = 0 expressions. This is the case
because we consider only response functions that involve both
sectors. The charge part of the Green function GRL

σσ ′ (τ,x1,x2) =
gc(τ,x1,x2) gs(τ,x1,x2) can be evaluated using conformal field
theory methods38,58 and is found to be

gc(τ,x1,x2) = −δσσ ′

2π

(
π

vcβ

)a+b 1

sina
(

π
vcβ

(vcτ − 2iR)
)

× 1

sinb
(

π
vcβ

(vcτ + 2iR)
)

×
[

sinh
(

2π
vcβ

x1
)

sinh
(

2π
vcβ

x2
)

sin
(

π
vcβ

(vcτ − ir)
)

sin
(

π
vcβ

(vcτ + ir)
)
]c

.

(46)
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FIG. 8. |N>
↓ (E,2kF + q)| (in arbitrary units) for Kc = 1, Ks =

1/
√

2, vc = 2vs, and �0
s = 0.9π . Curves are constant q scans that

have been offset along the y axis by a constant with respect to one
another. We observe dispersing features at Es(q) and Ec(q) (for q > 0
only) as well as a nondispersing singularity at E = Ebbs, which is due
to the formation of a boundary bound state in the spin sector.
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FIG. 9. |N>
↑ (E,2kF + q)| (solid line) and |N>

↓ (E,2kF + q)|
(dashed line) for vsq/� = 6, Kc = 1, Ks = 1/

√
2, vs = 2vc, and

�0
s = 0.9 π . The broad maximum at E ≈ 1.8 is caused by the exci-

tation of the boundary bound state and additional charge excitations.

Here β = 1/kBT and the exponents in the charge sector are
defined in Eq. (22). As we have already discussed, the spin
part gs(τ,x1,x2) is given by Eq. (20).

The particle contribution to the Fourier transform of the
LDOS is still given by Eq. (24). The form-factor expansion
in the spin sector results in the series expansion N>

σ (E,2kF +
q) =∑i N

>
i (E,2kF + q), where the first two terms can be cast

in the form

N>
i (E,2kF + q) = Z1 πa+b

32π5vc

ei π
4 e−i π

2 (a+b+2c)

(vcβ)a+b−2

×
∫ ∞

−∞
dθ hi(θ )

∫ ∞

−∞
dx

∫ x

−∞
dy

× e
iβ
2π (Ei+ vcqi

2 )x

sinha(x − iδ)

e
iβ
2π (Ei− vcqi

2 )y

sinhb(y − iδ)

×
(

sinh
(

1
2 (y − x)

)
sinh
(

1
2 (x + y − iδ)

)
)2c

, (47)

h1(θ ) = 1, h2(θ ) = Kσσ̄
(
θ + iπ

2

)
eθ/2,

E1 = E2 = E − � cosh θ,

q1 = q, q2 = q − 2�

vs
sinh θ.

We have plotted N>
σ (E,2kF + q) for different temperatures

in Figs. 10–12. As expected a finite temperature leads to a
softening of the spectral gap �, a suppression of the peak
related to the pinned CDW, and a broadening of the dispersing
peaks. We observe that the effect of an increasing temperature
on the spin peak is much stronger than the effect on the
charge peak. The physical reason for this is as follows: in the
CDW state, only the spin sector is protected by the gap. Thus
for T � � there exists a significant number of antiholons
in the thermal ground state. They will participate in the
distribution of the external momentum q after the creation of
an additional antiholon-spinon pair, thus leading to a decreased
probability for the spinon to take the momentum q and thus to
a suppression of the spin peak following Es(q). In contrast, the
charge peak is not affected, as the antiholons possess a linear
dispersion. This behavior is reminiscent of what is found for
the bulk spectral functions.51

0 1 2 3 4 5
E/Δ

|N
σ> (E

,2
k F

+
q)

|
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FIG. 10. |N>
σ (E,2kF + q)| (in arbitrary units) for vsq/� = 2,

Kc = Ks = 1, and vc = 2vs. We observe spectral weight within the
spin gap and a broadening of the propagating peaks, which is much

stronger for the spin peak at Es =
√

( vsq

2 )2 + �2.

VII. IMPLICATIONS FOR STM EXPERIMENTS

STM experiments measure the local tunneling current,
which is related to the LDOS by Eq. (1). In particular, the
voltage dependence of the tunneling conductance measures
the thermally smeared LDOS of the sample at the position
of the tip. A possible spin dependence in the LDOS can be
detected using a magnetic tip. As we have considered a 1D
model, our results apply to quasi-1D materials at energies
above the 1D-3D crossover scale, which is set by the strength
of the 3D couplings. Furthermore, the main feature of the
model we have studied is the existence of a spectral gap in
one of the sectors, while the excitations in the other sector
remain gapless. This situation is experimentally realized in
various materials, for example, in two-leg ladder materials,17

stripe phases of HTSCs,5,9 carbon nanotubes,1,16 Bechgaard
salts,14 and chain materials15 like SrCuO2 and Sr2CuO3. As our
results show, STM experiments can be used to extract rather
detailed information regarding bulk excitations by analyzing
the modification of the LDOS due to a boundary or impurity.

Perhaps the most interesting materials to which our findings
may be applied on a qualitative level are two-leg ladders like59

Sr14Cu24O41, which possesses a spin gap60 of � ≈ 550K . The
model we have studied captures the most basic features of
the low-energy description of (weakly doped) two-leg ladders,
namely, a gapless charge sector and a gapped spin sector.
While the description of the spin sector for weakly doped
two-leg ladders is considerably more involved, we expect the

-4 -2 0 2 4
v

s
q/Δ

|N
σ>

(E
,2

k F
+

q)
| T=0.1 Δ

T=0.2 Δ
T=0.3 Δ

FIG. 11. Constant energy scan of |N>
σ (E,2kF + q)| (in arbitrary

units) for E = 2�, Kc = Ks = 1, and vc = 2vs. We observe a
suppression of the peak at q = 0 related to the pinned CDW.
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0 1 2 3 4 5
E/Δ

|N
σ>

(E
,2

k F
+

q)
|

T=0.05 Δ
T=0.1 Δ
T=0.15 Δ

FIG. 12. |N>
σ (E,2kF + q)| (in arbitrary units) for vsq/� = 6,

Kc = Ks = 1, and vs = 2vc. We observe again that the broadening of
the propagating spin peak is stronger than that of the other peaks.

gross features to be similar. In particular, we expect peaks to
appear in Nσ (E,Q), which correspond to the pinned CDW
order, dispersing spin and charge degrees of freedom, and
possibly boundary bound states. We note that our results apply
to the regime T � E,�,vc/a0, where temperature effects are
negligible.

In Ref. 9 it was proposed that STM and STS experiments
in HTSC can be used to detect “fluctuating stripes” (i.e.,
incommensurate spin and charge fluctuations on energy scales
small compared to the superconducting gap) by rendering them
static by the effects of impurities with a potential comparable
to the (low) energy scales of these fluctuations. In that work
it was also argued that 1D Luttinger liquids are effectively
quantum critical systems and that a form of local (power law)
CDW order is effectively induced by impurities (and edges)
that pin the phase of the CDW, an effect that we have shown
here to take place in a 1D Luther-Emery liquid associated
with a CDW. STM and STS experiments in Bi2Sr2CaCu2O8+δ

have confirmed the existence of both nondispersive spectral
features in the LDOS associated with “fluctuating stripe
order” as well as dispersive features associated with the
propagating quasiparticles of the superconductor.2,4,9 Recent
STS experiments in Bi2Sr2CaCu2O8+δ have shown that the
dispersive features of the LDOS disappear above the Tc of the
superconductor, while the nondispersive features survive up to
the temperature T ∗ at which the pseudogap closes.61

VIII. CONCLUSIONS

In this work we have determined the spatial Fourier
transform of the LDOS of 1D CDW states and Mott insulators
in the presence of a boundary. The latter may either model
a strong potential impurity or be realized in a two-tip STM
experiment. We found that the Fourier transform of the LDOS
is dominated by a singularity at an energy equal to the
single-particle gap � and at momentum 2kF. This feature is
indicative of the pinning of the CDW order at the position of the
impurity. We observed clear signatures of dispersing spin and
charge excitations, which can be used to infer the nature of the
underlying electron-electron interactions. In the case of CDW
states with repulsive interactions we find a spin mode and a
linear dispersing charge mode, while for attractive interactions
a third dispersing mode appears, which can be thought of as
arising from a spin excitation with a fixed momentum q0 and
a charge excitation with momentum q − q0.

We have also investigated the modification of the LDOS
due to boundary bound states. These may arise in the presence
of boundary potentials or magnetic fields. We found that
boundary bound states give rise to nondispersing singularities
at energies below the single-particle gap. While the bound state
is formed in the gapped sector of the theory, the exponent of the
corresponding singularity depends only on the Luttinger liquid
parameter of the gapless sector. We have analyzed temperature
effects in regime T � � and discussed implications of our
results for STM measurements on quasi-1D materials such as
doped two-leg ladders.
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APPENDIX A: RENORMALIZATION GROUP ANALYSIS
OF AN IMPURITY POTENTIAL

Let us consider the low-energy theory of a 1D CDW state
on the infinite line H = Hc + Hs, where

Hc = vc

16π

∫ ∞

−∞
dx

[
1

K2
c

(∂x�c)2 + K2
c (∂x�c)2

]
, (A1)

Hs = vs

16π

∫ ∞

−∞
dx

[
1

K2
s

(∂x�s)
2 + K2

s (∂x�s)
2

]

− gs

(2π )2

∫ ∞

−∞
dx cos �s. (A2)

We want to study the effect of an impurity potential at position
x = 0, which, in bosonized form, reads

Vimp = λ

∫ ∞

−∞
dx δ(x) cos

(
�c

2

)
cos

(
�s

2

)
. (A3)

As the spin sector in the bulk is massive, we have
〈cos(�s/2)〉 �= 0, which implies that at low energies we
can approximate cos(�c/2) cos(�s/2) in Eq. (A3) by
〈cos(�c/2)〉 cos(�s/2) + cos(�c/2)〈cos(�s/2)〉. Thus in the
charge sector we get a boundary sine-Gordon model.62 For
K2

c < 2 the impurity scattering potential scales to strong
coupling. Hence as long as the interactions are not too
attractive, the field �c gets pinned at the boundary, �c(0) = 0.
This in turn induces an impurity contribution in the gapped
spin sector

Vimp,s = λ

〈
cos

(
�c(0)

2

)〉 ∫ ∞

−∞
dx δ(x) cos

(
�s

2

)
. (A4)

If one analyzes the bulk and boundary cosine terms in the
resulting impurity model, Eqs. (A2) and (A4), simultaneously,
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the leading order renormalization group equations are given
by the scaling dimensions of the perturbing operators:

dgs

dl
= 2
(
1 − K2

s

)
gs,

dλ

dl
=
(

1 − K2
s

2

)
λ. (A5)

As long as K2
s > 2/3 the boundary term grows more rapidly

than the bulk term. Assuming that it reaches the strong-
coupling regime first leads to the pinning of the spin field
�s(0) = 0. This cuts the chain in two half-lines and we obtain
the model, Eqs. (12)–(15).

APPENDIX B: CALCULATION OF THE GREEN
FUNCTION: CHARGE SECTOR

The Green function, Eq. (16), factorizes into a product
of correlation functions in the spin and charge sectors. For
example, using the bosonization identities, Eqs. (7) and (8),
the 2kF-component GRL

σσ ′ can be written as

GRL
σσ ′(τ,x1,x2) = − 1

2π

〈
e− i

2 φc(τ,x1) e− i
2 φ̄c(0,x2)
〉
c

× 〈e− i
2 fσ φs(τ,x1) e− i

2 fσ ′ φ̄s(0,x2)
〉
s. (B1)

Both correlation functions have to be determined in the
presence of the boundary at x = 0. The charge part is
calculated here using a standard mode expansion;36 the spin
part is calculated in Appendix C.

To obtain the correlation functions in the charge sector,
we first bring the Hamiltonian, Eq. (13), to standard form by
rescaling the fields as �c → Kc�c, �c → �c/Kc. The charge
parts of the operators, Eqs. (7) and (8), then become

exp

(
± i

2
φc(τ,x)

)

→ eiπsc/4 exp

(
± i

2
c φc(z)

)
exp

(
± i

2
s φ̄c(z̄)

)

= e−iπsc/4 exp
(
± i

2
s φ̄c(z̄)

)
exp

(
± i

2
c φc(z)

)
, (B2)

exp

(
± i

2
φ̄c(τ,x)

)

→ eiπsc/4 exp

(
± i

2
s φc(z)

)
exp

(
± i

2
c φ̄c(z̄)

)

= e−iπsc/4 exp

(
± i

2
c φ̄c(z̄)

)
exp

(
± i

2
s φc(z)

)
, (B3)

where we have already used Eq. (B7) and assumed −L <

x < 0. The constants are parameterized via s = sinh ξc and
c = cosh ξc, with Kc = eξc . The complex coordinates are
defined as z = vcτ − ix, z̄ = vcτ + ix. The charge part of the
Green function can hence be obtained from the four-point
function,

〈eiβ1φ̄c(z̄1) eiα1φc(z1) eiα2φc(z2) eiβ2φ̄c(z̄2)〉UHP, (B4)

where α1,2,β1,2 ∈ R, z1 = vcτ − ix1, and z2 = −ix2 lie in the
upper half-plane.

We calculate Eq. (B4) from the mode expansions for the
chiral fields φc and φ̄c. These are obtained by first noting
that the fields �c and �c have to satisfy the equations of

motion vc∂x�c = −i∂τ�c and ∂τ�c = ivc∂x�c as well as
the boundary conditions �c(x = 0) = �c(x = −L) = 0. The
semi-infinite system is obtained by taking L → ∞. This yields
the mode expansions

�c(τ,x) = − x

L
�̂0 + i

∞∑
n=1

sin nπx
L√

nπ
(bn e−nπvcτ/L − b†n enπvcτ/L),

(B5)

�c(τ,x) = �̂0 − i
vcτ

L
�̂0 +

∞∑
n=1

cos nπx
L√

nπ

× (bn e−nπvcτ/L + b†n enπvcτ/L), (B6)

where the zero-mode operator �̂0 has the discrete spectrum
2πm, m ∈ Z, and [�̂0,�̂0] = 8π i, [bm,b

†
n] = 8π δmn. The

mode expansions for the chiral fields are easily obtained via
φc = (�c + �c)/2 and φ̄c = (�c − �c)/2. Their commuta-
tion relations are

[φc(τ,x),φ̄c(τ,x ′)] =

⎧⎪⎨
⎪⎩

0, x = x ′ = 0,

4π i, x = x ′ = −L,

2π i, otherwise,

(B7)

as well as [φc(τ,x),φc(τ,x ′)] = −[φ̄c(τ,x),φ̄c(τ,x ′)] =
2π i sgn(x − x ′) , where sgn(0) = 0. Similar mode expansions
were obtained in Ref. 36. Given the mode expansion, it is
straightforward to calculate the four-point function, Eq. (B4).
We find

〈eiβ1φ̄c(z̄1) eiα1φc(z1) eiα2φc(z2) eiβ2φ̄c(z̄2)〉UHP

= Cδα1+α2,β1+β2 (z1 − z2)2α1α2 (z̄1 − z̄2)2β1β2

(z̄1 − z1)2α1β1 (z̄1 − z2)2α2β1 (z1 − z̄2)2α1β2 (z2 − z̄2)2α2β2
,

(B8)

where C ∈ R is a constant that we set to 1 throughout this
paper. This result implies Eq. (19). The finite-temperature
correlation functions are obtained38,58 by mapping Eq. (B8)
onto a cylinder of circumference vc/kBT .

APPENDIX C: CALCULATION OF THE GREEN
FUNCTION: SPIN SECTOR

The calculation of the correlation functions in the spin
sector relies on the integrability of the sine-Gordon model on
the half-line. We use the boundary-state formalism introduced
by Ghoshal and Zamolodchikov29 together with a form-factor
expansion based on form factors obtained by Lukyanov and
Zamolodchikov.42 The analogous expansion for the quantum
Ising model was analyzed in Ref. 48. We first discuss the
general formalism and then derive Eq. (20).

1. Boundary-state formalism and form-factor expansion

Let us consider the sine-Gordon model, Eq. (14), in the half-
plane (τ,x), τ ∈ R, −∞ < x � 0. The boundary is located
at x = 0 and τ denotes imaginary time (τ = it). The Hilbert
space of states associated with the semi-infinite line τ = const,
−∞ < x � 0, is denoted Hb. We obtain the Euclidean action
in its standard form by rescaling the fields according to
�s → �′

s = �s/Ks and �s → �′
s = Ks�s. The action of the
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sine-Gordon model with a boundary is then given by29 (we set
vs = 1)

SbsG = 1

16π

∫
dτ

∫ 0

−∞
dx

×
[

(∂τ�
′
s)

2 + (∂x�
′
s)

2 − 4gs

π
cos(Ks�

′
s)

]

− gb

∫
dτ cos

(
Ks

2
(�′

s|x=0 − �0
s

/
Ks)

)
, (C1)

where gs, gb, and �0
s are free parameters. (We use the

conventions 0 < Ks < 1; the action as given in Ref. 29 is
obtained by another rescaling of the fields by

√
8π .) The cases

gb = 0 and gb → ∞ correspond to free and fixed boundary
conditions, respectively. We stress that in the case of fixed
boundary conditions, �′

s(x = 0) = �0
s /Ks implies �s(x =

0) = �0
s in the original system, Eq. (14). As conjectured by

Ghoshal and Zamolodchikov29 and shown independently30 by
MacIntyre and Saleur et al., the classical sine-Gordon model
on the half-line, Eq. (C1), possesses infinitely many integrals
of motion and is hence integrable.

We start by summarizing some results for the bulk sine-
Gordon model, that is, the theory without boundary. In the
repulsive regime (Ks > 1/

√
2) a basis of the Hilbert space H

is given by scattering states of solitons and antisolitons

|θ1, . . . ,θn〉a1,...,an
= Z†

a1
(θ1) · · · Z†

an
(θn)|0〉,

(C2)
an,...,a1〈θn, . . . ,θ1| = 〈0|Zan

(θn) · · · Za1 (θ1),

where ai = ±1 and |0〉 is the ground state in the absence of a
boundary. Solitons and antisolitons are created by the operators
Z

†
−(θ ) and Z

†
+(θ ). They are characterized by a topological

U(1) charge of −1 and 1, respectively, while their energy and
momentum are parametrized in terms of the rapidity θ by
E = � cosh θ and P = � sinh θ . The dependence of the
soliton mass � on the bare parameters in the action was
obtained in Ref. 64. We note that in the attractive regime
(Ks < 1/

√
2), breather (soliton-antisoliton) bound states occur

as well. The operators Za and Z
†
a fulfill the Faddeev–

Zamolodchikov algebra65 (see Fig. 13):

Za1 (θ1)Za2 (θ2) = Sb1b2
a1a2

(θ1 − θ2)Zb2 (θ2)Zb1 (θ1),

Z†
a1

(θ1)Z†
a2

(θ2) = Sb1b2
a1a2

(θ1 − θ2)Z†
b2

(θ2)Z†
b1

(θ1), (C3)

Za1 (θ1)Z†
a2

(θ2) = 2πδ(θ1 − θ2)δa1a2

+ S
b2a1
a2b1

(θ1 − θ2)Z†
b2

(θ2)Zb1 (θ1).

Z†
a1(θ1)

Z†
b1

(θ1)

Z†
a2(θ2)

Z†
b2

(θ2)

Sb1b2
a1a2(θ1 − θ2)

Z†
a(θ)

Z†
b (−θ)

Rb
a(θ)

FIG. 13. Two-particle scattering and scattering off the boundary.

Here Sb1b2
a1a2

(θ ) is the two-particle scattering matrix, which was
derived in Refs. 32 and 66. The unitarity condition reads
Sc1c2

a1a2
(θ )Sb1b2

c1c2
(−θ ) = δb1

a1
δb2
a2

. Its nonvanishing elements are

S++
++ (θ ) = S−−

−− (θ ), S+−
+− (θ ) = S−+

−+ (θ ),
(C4)

S+−
−+ (θ ) = S−+

+− (θ ),

for which explicit expressions can be found, for example,
in Ref. 44. At the LEP (Ks = 1/

√
2) the scattering matrix

simplifies to Sb1b2
a1a2

(θ ) = −δb1
a1

δb2
a2

, while in the spin symmetric
case (Ks = 1), one has46

S++
++ (θ ) = S0(θ ) ≡ −�

(
1 + iθ

2π

)
�
(

1
2 − iθ

2π

)
�
(
1 − iθ

2π

)
�
(

1
2 + iθ

2π

) ,
(C5)

S+−
+− (θ ) = − θ

θ − iπ
S0(θ ), S+−

−+ (θ ) = − iπ

θ − iπ
S0(θ ).

We note that the Faddeev–Zamolodchikov algebra [Eq. (C3)] is
invariant under the unitary transformation Za(θ ) → eiϕZa(θ ),
which changes the basis of scattering states. In terms of the
basis states, Eq. (C2), the resolution of the identity reads

id = |0〉〈0| +
∞∑

n=1

1

n!

∑
{ai }

∫ ∞

−∞

dθ1 · · · dθn

(2π )n

× |θn, . . . ,θ1〉an,...,a1
a1,...,an〈θ1, . . . ,θn|. (C6)

The boundary can be introduced29 as an infinitely heavy,
impenetrable particle B sitting at x = 0. The ground state in
the presence of the boundary can then be represented as |0b〉 =
B |0〉. Scattering of elementary excitations off the boundary is
encoded in the relations (see Fig. 13)

Z†
a(θ )B = Rb

a (θ )Z†
b(−θ )B, (C7)

where the functions Rb
a (θ ) are the single-particle reflection

amplitudes. To preserve integrability, the boundary reflection
matrix R(θ ) has to satisfy a number of conditions, which are
discussed in Ref. 29. At the LEP and for Dirichlet boundary
conditions �s(τ,x = 0) = �0

s , 0 � �0
s < π in the original

system, Eq. (14), it is given by45

R±
±(θ ) = −cosh

(
iπ

4 ± i�0
s

2 + θ
2

)
cosh
(
iπ

4 ± i�0
s

2 − θ
2

) , R∓
±(θ ) = 0. (C8)

For π/2 � �0
s the reflection amplitude R+

+ possesses a simple
pole in the physical strip 0 � Im θ � π/2, which indicates the
existence of a boundary bound state. The overall sign of the re-
flection matrix is fixed by the requirement −i Res[R±

±(θ ),θ =
±i (�0

s ∓ π/2)] = −2 cos �0
s > 0; see Sec. C 5. Explicit rep-

resentations of R for general Ks are given in Refs. 29, 46,
and 47. For Ks = 1 and �0

s = 0 one finds, in particular,

R±
±(θ ) = −�

(
1 + iθ

2π

)
�
(

1
2 − iθ

π

)
√

π �
(
1 − iθ

2π

) 2
i
π

θ

(
cosh

θ

2
+ i sinh

θ

2

)
,

(C9)
R∓

±(θ ) = 0.

The vanishing of the off-diagonal amplitudes R∓
±(θ ) = 0 is

a consequence of fixed boundary conditions and holds for
general Ks.
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Our aim is to calculate the time-ordered two-point function:

C(τ,x1,x2) = 〈0b| Tτ O1(τ,x1) O2(0,x2) |0b〉 . (C10)

Here the time dependence of the operators is given by
Oi(τ,x) = eτHb Oi(0,x) e−τHb , where Hb is the Hamiltonian
of the system in the presence of the boundary, Eq. (14). Given
that in the Euclidean formalism, τ and x are interchangeable,
one may equally well designate x to be the “Euclidean time.”
In this picture the equal-time section is the infinite line,
x = const, −∞ < τ < ∞, and the associated Hilbert space
H is that of the corresponding bulk theory. The boundary at
x = 0 now appears as an initial condition that is expressed in
terms of a “boundary state” |B〉. It was shown by Ghoshal and
Zamolodchikov29 that the correlation function, Eq. (C10), can
be expressed as

C(τ,x1,x2) = e
−i

π
2
∑

i s(Oi ) 〈0| Tx O1(τ,x1) O2(0,x2) |B〉
〈0| B〉 .

(C11)

Here s(Oi) denotes the Lorentz spin of the operator Oi , Tx is
the x-ordering operator, which orders the largest xi to the right,
and |0〉 ∈ H is the ground state of the model on the infinite
line. The spin-dependent phase factor is due to the rotation in
Euclidean space; it was, for example, observed in the Green
function of the Ising model with a boundary magnetic field.48

As we have interchanged space and time and x is running from
0 to −∞ in the new framework, the τ and x dependence of
operators Oi(τ,x) is now given by

Oi(τ,x) = e−xH e−iτP Oi(0,0) eiτP exH , (C12)

where H is the Hamiltonian of the system on the infinite line
−∞ < τ < ∞, and P is the total momentum.

The boundary state, which encodes all information on the
boundary condition, is given by

|B〉 = exp

(
1

2

∫ ∞

−∞

dξ

2π
Kab(ξ )Z†

a(−ξ )Z†
b(ξ )

)
|0〉 , (C13)

where Kab(ξ ) = Rb
ā (iπ/2 − ξ ). For example, the boundary

reflection amplitudes K stated in Eqs. (21) and (38) are
directly obtained from Eqs. (C8) and (C9). For general
Ks the amplitude Kab satisfies the boundary cross-unitarity
condition,29

Kab(ξ ) = Sab
cd (2ξ ) Kdc(−ξ ). (C14)

Furthermore, for fixed boundary conditions we have
K±±(ξ ) = 0.

Here we calculate the spin part of the Green function,
Eq. (B1), using the boundary formalism already presented.
Specifically we evaluate the correlation function, Eq. (C11),
where the operators O1,2 are the soliton-creating and
-annihilating operators e± i

2 φs and e± i
2 φ̄s , respectively. We

define the n-particle form factor of an arbitrary operator
O as

f O
a1,...,an

(θ1, . . . ,θn) = 〈0|O|θ1, . . . ,θn〉a1,...,an

= 〈0|O Z†
a1

(θ1) . . . Z†
an

(θn)|0〉. (C15)

The form factors have to satisfy a set of relations, the so-called
form-factor axioms,39,41,43 which we state for completeness

in Sec. C 2. As the operators e− i
2 φs and e

i
2 φ̄s create one

soliton, their respective form factors, Eq. (C15), vanish unless∑
i ai = −1. The form factors containing up to three particles

were derived by Lukyanov and Zamolodchikov.42 In our
conventions the single-particle form factors are given by

〈0| e− i
2 φs |θ〉− =

√
Z1 ei π

8 eθ/4,
(C16)

〈0| e i
2 φ̄s |θ〉− =

√
Z1 e−i π

8 e−θ/4,

where the normalization constant Z1 [not to be confused
with the Faddeev–Zamolodchikov operators Z±(θ ) and Z

†
±(θ )]

depends on Ks and is given in Ref. 42. Evaluation at the
LEP yields Z1 ≈ 3.320 52 �5/8, whereas at the SU(2) invariant
point, one finds Z1 ≈ 0.921 862 �1/2. The three-particle form
factors are known in terms of contour integrals, which can be
explicitly evaluated at the LEP:

〈0| e− i
2 φs |θ1,θ2,θ3〉−−+

〈0| e i
2 φ̄s |θ1,θ2,θ3〉−−+

}
= −i

√
Z1

2
e±i π

8 e±(θ1+θ2−θ3)/4

× sinh θ1−θ2
2

cosh θ1−θ3
2 cosh θ2−θ3

2

. (C17)

The three-particle form factors for other orderings of the U(1)
indices can be easily obtained using the scattering axiom stated
in Sec. C 2.

The correlation functions calculated here contain matrix
elements with incoming and outgoing particles,

a1,...,an〈θ1, . . . ,θn| O |ξm, . . . ,ξ1〉bm,...,b1
, (C18)

which possess kinematical poles whenever θi = ξj and ai =
bj . These matrix elements can be decomposed into “con-
nected” and “disconnected” contributions. The latter are
characterized by the appearance of terms like δ(θi − ξj ),
signaling that some of the particles do not encounter the
operator O in the process described by the matrix element. We
deal with these terms following ideas by Smirnov39 that allow
us to analytically continue form factors. Let

−→
A = {θ1, . . . ,θn}

with θ1 < θ2 < · · · < θn and
←−
B = {ξm, . . . ,ξ1} with ξm >

ξm−1 > · · · > ξ1 denote two sets of ordered rapidities and
introduce the notations

Z[
−→
A ]a1···an

≡ Za1 (θ1)Za2 (θ2), . . . ,Zan
(θn), (C19)

Z†[
←−
B ]bm,...,b1 ≡ Z

†
bm

(ξm)Z†
bm−1

(ξm−1) · · · Z†
b1

(ξ1). (C20)

Now let A1 and A2 be a partition of A, that is, A = A1 ∪ A2,
where A1 contains n(A1) = n − k rapidities. As a consequence
of the Faddeev–Zamolodchikov algebra, we have

Z[
−→
A ]a1···an

= S(
−→
A |−→A1)c1···cn

a1···an
Z[

−→
A2]c1···ck

Z[
−→
A1]ck+1···cn

,

(C21)

where S(
−→
A |−→A1) is the product of two-particle scatter-

ing matrixes needed to rearrange the order of Faddeev–
Zamolodchikov operators in Z[

−→
A ] to arrive at Z[

−→
A2]Z[

−→
A1].

For example, if
−→
A = {θ1, . . . ,θ4} and

−→
A1 = {θ2,θ3} it is

given by

S(
−→
A |−→A1)c1···c4

a1···a4
= δc4

a1
S

c2c4
a2b

(θ2 − θ4) Sc3b
a3a4

(θ3 − θ4). (C22)
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Similarly we have

Z†[
←−
B ]bm,...,b1 = Z†[

←−
B1]dm...dl+1Z

†[
←−
B 2]dl ···d1 S(

←−
B1|←−B )dm···d1

bm···b1
.

(C23)

Finally, we define

δ[
−→
A ,

←−
B ] a1 ···an

bm ···b1
= δnm

n∏
j=1

2πδaj bj
δ(θj − ξj ). (C24)

We are now in the position to analytically continue matrix
elements as

〈0|Z[
−→
A ]a1···an

O Z†[
←−
B ]bm···b1 |0〉

=
∑

A=A1∪A2
B=B1∪B2

S(
−→
A |−→A1)c1···cn

a1···an
S(

←−
B1|←−B )dm···d1

bm···b1
δ[

−→
A2,

←−
B2] c1 ···ck

dl ···d1

× 〈0|Z[
−→
A 1 + i0]ck+1···cn

O Z†[
←−
B 1]dm···dl+1 |0〉. (C25)

Here the sum is over all possible ways to break sets A and B

into subsets, and
−→
A 1 + i0 means that all rapidities in A1 are

slightly moved into the upper half-plane. Similarly, we could
choose to analytically continue to the lower half-plane,

〈0|Z[
−→
A ]a1...an

O Z†[
←−
B ]bm...b1 |0〉

=
∑

A=A1∪A2
B=B1∪B2

dA2 (O) S(
−→
A |−→A2)c1...cn

a1...an
S(

←−
B2|←−B )dm...d1

bm...b1
δ[

−→
A2,

←−
B2] c1 ...ck

dl ...d1

×〈0|Z[
−→
A 1 − i0]ck+1...cn

O Z†[
←−
B 1]dm...dl+1 |0〉. (C26)

The factor dA2 (O) is due to a possible semilocality of the
operator O with respect to the fundamental fields creating
the excitations.39,41,43,52 If we use the operators O±

0 defined
in Eq. (C29) as fundamental fields and denote the mutual
semilocality factor of O and O±

0 by l±(O), it is given by

dA(O) =
n(A)∏
i=1

lai
(O) ⇒ dA2

(
e− i

2 φs
) = k∏

i=1

e−i π
2 ai ,

(C27)

dA2

(
e

i
2 φ̄s
) = k∏

i=1

ei π
2 ai .

The remaining matrix elements in Eqs. (C25) and (C26) can
be evaluated using crossing

〈0|Z[
−→
A 1 ± i0]ck+1,...,cn

O Z†[
←−
B 1]dm,...,dl+1 |0〉

= ck+1,...,cn
〈
θik+1 ±i0, . . . ,θin ±i0

∣∣O ∣∣ξjm
, . . . ,ξjl+1

〉
dm,...,dl+1

= dA1 (O) Cck+1ek+1 · · · Ccnen

×f O
ek+1,...,en,dm,...,dl+1

(
θik+1 +iπ±iηik+1 , . . . ,

θin + iπ±iηin ,ξjm
, . . . ,ξjl+1

)
, (C28)

where Cab = δa+b,0 is the charge conjugation matrix and ηi →
0+. The analytic continuation of general matrix elements,
Eq. (C18), with arbitrary orders of the rapidities can be
obtained using the scattering axiom (see the following).

2. Form-factor axioms

For completeness we state here the used form-factor
axioms. We follow Delfino.43 The n-particle form factor of
an arbitrary operator O is defined in Eq. (C15). We use the

local bosonic fields,

O±
0 (τ,x) = exp

(
∓ 1

4Ks

∫ τ

−∞
dτ ∂x �′

s(τ,x)

)
, (C29)

as fundamental fields for the creation of solitons and antisoli-
tons. The corresponding creation and annihilation operators
are Z

†
±(θ ) and Z±(θ ), introduced in Eq. (C2). The form-factor

axioms read as follows.
(1) The form factors f O

a1,...,an
(θ1, . . . ,θn) are meromorphic

functions of θn in the physical strip 0 � Im θn � 2π . There
exist only simple poles in this strip.

(2) The scattering axiom is

f O
a1,...,ai ,ai+1,...,an

(θ1, . . . ,θi,θi+1, . . . ,θn)

= Sbibi+1
aiai+1

(θi − θi+1) f O
a1,...,bi+1,bi ,...,an

(θ1, . . . ,θi+1,θi, . . . ,θn),

with the scattering matrix S
bibi+1
aiai+1 (θi − θi+1). At the free-

fermion point it is given by Sb1b2
a1a2

(θ ) = −δb1
a1

δb2
a2

.
(3) The periodicity axiom is

f O
a1,...,an

(θ1 + 2π i,θ2,. . .,θn) = la1 (O) f O
a2,...,an,a1

(θ2,. . .,θn,θ1),

where l±(O) is the mutual semilocality factor between the
operator O and the fundamental fields O±

0 . In particular, we
have l±(e− i

2 φs ) = ∓i and l±(e
i
2 φ̄s ) = ±i.

(4) The Lorentz transformations are

f O
a1,...,an

(θ1 + �, . . . ,θn + �) = es(O)� f O
a1,...,an

(θ1, . . . ,θn),

where s(O) denotes the Lorentz spin of O. Here we have
s(e± i

2 φs ) = 1/4 and s(e± i
2 φ̄s ) = −1/4.

(5) The annihilation pole axiom is

Res
[
f O

a,b,a1,...,an
(θ ′,θ,θ1, . . . ,θn),θ ′ = θ + iπ

]
= i Cac f O

b1,...,bn
(θ1, . . . ,θn)

× [δb1
a1

· · · δbn

an
δc
b − la(O)Sc b1

c1a1
(θ − θ1)

× Sc1b2
c2a2

(θ − θ2) · · · Scn−1bn

b an
(θ − θn)

]
,

with the charge conjugation matrix Cab = δa+b,0. If bound
states do not exist in the model, that is, for K2

s � 1/2, these
are the only poles of the form factors.

We note that the precise form of the axioms depends on
the basis of scattering states and thus changes under a unitary
transformation of the operators Za(θ ).

3. Correlation functions

In this section we derive Eq. (20) using the boundary-state
formalism. We start with the spin part of Eq. (B1). After
the rotation in Euclidean space, this is given by Eq. (C11).
We insert a resolution of the identity, Eq. (C6), and expand
the boundary state, Eq. (C13), in powers of K . This yields the
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double expansion (τ > 0, x1 < x2)〈
e− i

2 fσ φs(τ,x1) e− i
2 fσ ′ φ̄s(0,x2)

〉
s = 〈0| e− i

2 fσ φs(τ,x1) e− i
2 fσ ′ φ̄s(0,x2) |B〉

= δσσ ′

∞∑
n=0

∞∑
m=0

Cn 2m(τ,x1,x2),

(C30)

where we have used s(e± i
2 φs ) + s(e± i

2 φ̄s ) = 0. The operators
e± i

2 φs and e± i
2 φ̄s change the U(1) charge by ∓1 and ±1,

respectively. As the boundary state has vanishing U(1) charge
for Dirichlet boundary conditions [Kσσ (ξ ) = 0], the correla-
tion function is diagonal in spin space. Furthermore, we have
defined the auxiliary functions

Cn 2m(τ,x1,x2)

= 1

2m

1

m!

1

n!

∫ ∞

−∞

dξ1 · · · dξm

(2π )m

×
∫ ∞

−∞

dθ1 · · · dθn

(2π )n
Ka1b1 (ξ1) · · · Kambm (ξm)

×〈0|e− i
2 fσ φs(τ,x1)|θn, . . . ,θ1〉cn,...,c1

×c1,...,cn〈θ1, . . . ,θn|e− i
2 fσ φ̄s(0,x2)|

− ξ1,ξ1, . . . ,−ξm,ξm〉a1,b1,...,am,bm
. (C31)

We use the notations ↑= +, ↓= −, σ̄ = − for σ = +, and vice
versa. We label the various terms in the expansion, Eq. (C30),
by the numbers of particles in the intermediate state n and in
the boundary state 2m, respectively. The τ and x dependence
of the operators is given by Eq. (C12). We have already
assumed x1 < x2 to avoid additional phases due to the mutual
semilocality of the operators. For the calculation of the LDOS
we have to take x1 → x2−, finally. The second matrix element
possesses kinematical poles that we treat using Eq. (C25).
This introduces a third, finite summation in Eq. (C30), which
labels the “connectedness” of the corresponding terms. We
note, however, that Eqs. (C25) and (C26) yield the same results.

Let us start with the first nonvanishing term in the series,
Eq. (C30), which, using Eq. (C12), is given by [we recall
that the center-of-mass coordinates are defined by R = (x1 +
x2)/2 < 0 and r = x1 − x2 < 0]

C10 =
∫ ∞

−∞

dθ

2π
〈0| e− i

2 fσ φs |θ〉c

× c〈θ | e− i
2 fσ φ̄s |0〉 e

�
vs

r cosh θ ei�τ sinh θ

= Z1 ei π
4

∫ ∞

−∞

dθ

2π
e

�
vs

r cosh θ ei�τ sinh θ . (C32)

We can rewrite this by shifting the contour of integration as
θ → θ + iπ/2. The contributions of Re θ = ±∞ vanish due
to the exponential factors. As there are no poles in the strip
0 � Im θ � π/2, we find

C10 = Z1 ei π
4

∫ ∞

−∞

dθ

2π
ei �

vs
r sinh θ e−�τ cosh θ

= Z1

π
ei π

4 K0
(
�

√
τ 2 + r2/v2

s

)
, (C33)

where K0 denotes the modified Bessel function.63

The first term containing the boundary reflection amplitude
K is C12. For fσ = −1 it reads

C12 = 1

2

∫ ∞

−∞

dξ

2π

dθ

2π
Kab(ξ ) 〈0| e i

2 φs |θ〉c

× c〈θ | e i
2 φ̄s |−ξ,ξ 〉ab e

�
vs

r cosh θ e2 �
vs

x2 cosh ξ ei�τ sinh θ .

(C34)

The first form factor vanishes for c �= + and can be evaluated
using Eq. (C28):

〈0| e i
2 φs |θ〉+ = +〈θ | e− i

2 φs |0〉∗
= ei π

2 〈0| e− i
2 φs |θ + iπ〉∗− =

√
Z1 ei π

8 eθ/4.

(C35)

For the second matrix element we use Eq. (C25), which
explicitly yields
+〈θ | e i

2 φ̄s |−ξ,ξ 〉−+ =+〈θ + i0| e i
2 φ̄s |−ξ,ξ 〉−+

+ 2πδ(θ − ξ ) 〈0| e i
2 φ̄s |−ξ 〉−

+ 2πδ(θ + ξ )S+−
−+ (−2ξ ) 〈0| e i

2 φ̄s |ξ 〉− ,

+〈θ | e i
2 φ̄s |−ξ,ξ 〉+− =+〈θ + i0| e i

2 φ̄s |−ξ,ξ 〉+− + 2πδ(θ + ξ )

× S+−
+− (−2ξ ) 〈0| e i

2 φ̄s |ξ 〉− . (C36)

This leads to two contributions that we denote by C0
12 and C1

12,
respectively. The additional upper index denotes the number
of lines connecting the operators (the “connectedness”),
that is, the number of internal θ integrations left after using
Eq. (C25). The first terms on the right-hand side of Eq. (C36),
in each equation, together yield C1

12. We calculate this
term at the LEP in the next section. On the other hand, the
disconnected piece is given by

C0
12 = Z1

2

∫ ∞

−∞

dξ

2π
[K−+(ξ ) + K+−(−ξ ) S+−

+− (2ξ )

+K−+(−ξ ) S+−
−+ (2ξ )] eξ/2 e2 �

vs
R cosh ξ ei�τ sinh ξ . (C37)

Using the boundary cross-unitarity, Eq. (C14), the terms in
the brackets equal 2K−+(ξ ). With a similar calculation for
fσ = 1, we arrive at

C0
12 = Z1

∫ ∞

−∞

dξ

2π
Kσσ̄ (ξ ) eξ/2 e2 �

vs
R cosh ξ ei�τ sinh ξ . (C38)

The second term in Eq. (20) is now obtained by shifting the
contour of integration as ξ → ξ + iπ/2 while noting that,
for the boundary condition �s(x = 0) = 0, the reflection
amplitude does not depend on σ and is analytic in the
physical strip 0 � Im ξ � π/2. If �s(x = 0) �= 0, however,
the reflection amplitude may possess a pole in the physical
strip. We calculate the resulting term in Sec. C 5.

4. Higher-order terms

To estimate the truncation error in Eq. (20), we calculate
the leading corrections due to a higher number of particles in
the intermediate state as well as higher-order corrections due
to the boundary. The resulting corrections to the LDOS are
discussed in Sec. IV C. We restrict ourselves to the LEP, where
the form factors are given by Eq. (C17), Sb1b2

a1a2
(θ ) = −δb1

a1
δb2
a2

,
and Kab(ξ ) = −Kba(−ξ ).
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The leading correction due to a higher number of particles
in the intermediate state is given by C30:

C30 = Z1
ei π

4

4

∫ ∞

−∞

dθ1dθ2dθ3

(2π )3

sinh2 θ1−θ2
2

cosh2 θ1−θ3
2 cosh2 θ2−θ3

2

× ei �
vs

r
∑

i sinh θi e−�τ
∑

i cosh θi . (C39)

The resulting contribution to the LDOS, discussed in
Sec. IV C, is denoted N30. We note that C20 = 0.

The first subleading term due to the boundary is given by
C1

12, that is, the connected piece of C12 obtained from the first
term in Eq. (C36). For fσ = −1 this term reads, using (C35)
and (C17),

C1
12 = Z1

e−i π
4√

2

∫ ∞

−∞

dξ

2π

dθ

2π

K−+(ξ )

cosh ξ

sinh θ+ξ+iπ
2

cosh θ−ξ+iπ+iη
2

× eξ/2 e
�
vs

r cosh θ e2 �
vs

x2 cosh ξ ei�τ sinh θ , (C40)

where η → 0+. We can handle the singularity at θ = ξ − iη by
shifting θ → θ + iπ/2. Performing the same steps for fσ = 1,
we arrive at

C1
12 = Z1

e−i π
4√

2

∫ ∞

−∞

dξ

2π

dθ

2π

Kσσ̄ (ξ )

cosh ξ

eξ+θ − i

ieξ + eθ

× eξ/2 ei �
vs

r sinh θ e2 �
vs

x2 cosh ξ e−�τ cosh θ . (C41)

The next term in the series, Eq. (C30), is C32; its disconnected
piece is similar to C1

12 and reads explicitly

C1
32 = −Z1

e−i π
4√

2

∫ ∞

−∞

dξ

2π

dθ

2π

Kσσ̄ (ξ )

cosh ξ

ieξ + eθ

eξ+θ − i

× eξ/2 ei �
vs

r sinh θ e2 �
vs

x1 cosh ξ e−�τ cosh θ . (C42)

The terms C1
12 and C1

32 are of the same order and yield, together,
the contribution to the LDOS denoted N11.

The term resulting in N21 is

C2
32 = −Z1

2
ei π

4

∫ ∞

−∞

dξ

2π

dθ1dθ2

(2π )2
ei �

vs
r
∑

i sinh θi e2i �
vs

R sinh ξ e−�τ (
∑

i cosh θi+cosh ξ )

×
[

Kσσ̄
(
ξ + iπ

2

)
eξ/2

cosh2 θ1−θ2
2

sinh ξ−θ1

2 sinh ξ+θ1

2

cosh ξ−θ2

2 cosh ξ+θ2

2

− i

2

Kσ̄σ
(
ξ + iπ

2

)
e−ξ/2 sinh2 θ1−θ2

2∏
i cosh ξ−θi

2 cosh ξ+θi

2

]
. (C43)

We note that after analytic continuation τ → it + δ and
Fourier transformation t → E, the exponential factor
e−�τ (

∑
i cosh θi+cosh ξ ) results in a vanishing of N21 for energies

E < 3�.
The final term we wish to evaluate explicitly is the

disconnected piece of C14. Considering first fσ = −1 and
keeping in mind that we have restricted ourselves to the LEP,
we can start with

C14 = 1

2

∫ ∞

−∞

dξ1dξ2

(2π )2

dθ

2π
K−+(ξ1) K−+(ξ2) e

�
vs

r cosh θ

× e2 �
vs

x2
∑

i cosh ξi ei�τ sinh θ 〈0|e i
2 φs |θ〉+

× +〈θ |e i
2 φ̄s |−ξ1,ξ1,−ξ2,ξ2〉−+−+. (C44)

In the second matrix element we keep only the disconnected
piece:

+〈θ |e i
2 φ̄s |−ξ1,ξ1, − ξ2,ξ2〉−+−+

= 2πδ(θ − ξ1) 〈0|e i
2 φ̄s |−ξ1, − ξ2,ξ2〉−−+

+ 2πδ(θ−ξ2)〈0|e i
2 φ̄s |−ξ1,ξ1,−ξ2〉−+− + · · · (C45)

In the resulting term C0
14 we can shift the contour of integration,

ξ1 → ξ1 + iπ/2, to obtain

C0
14 = − Z1√

2
e−i π

4

∫ ∞

−∞

dξ1dξ2

(2π )2
Kσσ̄
(
ξ1 + iπ

2

)
× Kσσ̄ (ξ2)

e(ξ1+ξ2)/2

cosh ξ2

eξ1 + ieξ2

eξ1+ξ2 − i

× e2i �
vs

R sinh ξ1 e2 �
vs

x2 cosh ξ2 e−�τ cosh ξ1 . (C46)

In the last step we have assumed that no boundary bound
states exist (see the following). Finally, we mention that the
next term, C0

34, equals C0
14 with the coordinates x1 and x2

interchanged. These two terms together yield N02.
The remaining two terms, N12 and N03, discussed in

Sec. IV C, follow from C1
14 + C1

34 + C1
54 and C0

16 + C0
36 + C0

56,
respectively.

5. Boundary bound states

As already discussed, the general Dirichlet boundary
conditions �s(0) = �0

s �= 0 can result in the appearance of
a boundary bound state. If K2

s π < �0
s < π , the boundary

reflection amplitude K−+(ξ ) has a pole in the physical strip
0 � Im ξ � π/2 located at46,55 ξ = i(π − �0

s )/(2 − 2K2
s ). In

contrast, K+−(ξ ) is analytic in the physical strip but has a pole
for −π/2 � Im ξ � 0. We write the respective residues as

i Res[K∓±(ξ ),ξ = ±i γ ] = B � 0, γ = π − �0
s

2 − 2K2
s

, (C47)

where B depends on Ks only. We have checked the sign
of B by performing an explicit mode expansion at the LEP
as well as studying the spectral function of the correlator
〈0b| e−ia�′

s(τ,R) eia�′
s(0,R) |0b〉 (for which the relevant form fac-

tors were obtained in Ref. 67).
In the presence of a boundary bound state the poles of

K∓±(ξ ) will contribute whenever we shift the contour of
integration ξ → ξ ± iπ/2 in a given term in the form-factor
expansion, Eq. (C30). The leading term of this type is obtained
from Eq. (C38), which yields Eq. (41) by a straightforward
calculation. The subleading term can be obtained similarly
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from C0
14 and C0

34. At the LEP it is given by (B = −2 cos �0
s ,

π/2 � �0
s � π )

�
(
�0

s − π

2

)
δσ↓ Z1

√
8 e− i

2 �0
s cos �0

s e−2 �
vs

R cos �0
s e−�τ sin �0

s

×
∫ ∞

−∞

dξ

2π

Kσσ̄ (ξ )

cosh ξ

cosh
(

ξ

2 + i
2�0

s

)
sinh
(

ξ

2 − i
2�0

s

) eξ/2 e2 �
vs

x2 cosh ξ .

(C48)

APPENDIX D: FOURIER TRANSFORMATION
OF THE LDOS

We calculate the auxiliary function

I (ω,k) =
∫ 0

−∞
dR

∫ ∞

−∞
dt

ei(ωt−kR)

(vcτ − 2iR)a

× 1

(vcτ + 2iR)b

(
2R

vcτ

)2c
∣∣∣∣∣
τ→it+δ

(D1)

=
∫ 0

−∞
dR

∫ ∞

−∞
dt

ei(ωt−kR)

(vct − 2R − iδ)a

× (−i)a+b+2c

(vct + 2R − iδ)b

(
2R

vct − iδ

)2c

, (D2)

where vc,a,b,c ∈ R, vc > 0, a + b < 2, and c > −1/2. We
substitute R → −R and t → −t , introduce s = vct/2R and
η → 0+, and perform the resulting R integral (3.381.4 in
Ref. 63), which yields

I (ω,k) = −eiπ(a+b−c) �(2 − a − b)

2a+b−1 vc

×
∫ ∞

−∞
ds

(
2ω
vc

s − k − iη
)a+b−2

(s − 1 + iδ)a (s + 1 + iδ)b (s + iδ)2c
.

(D3)

For ω < 0 the integrand has all its branch points in the lower
half-plane and the integral over s vanishes as long as c >

−1/2. Hence we find (s0 = vck/2ω)

I (ω,k) = −�(ω) �(2 − a − b)
eiπ(a+b−c) ωa+b−2

2 va+b−1
c

×
∫ ∞

−∞
ds

(s − s0 − iη)a+b−2

(s − 1 + iδ)a (s + 1 + iδ)b (s + iδ)2c
.

(D4)

First, consider the case k < 0. The numerator of the
integrand has a branch point at s = s0 + iη in the upper
half-plane. We place the cut running from −∞ + iη to s0 + iη
with constant imaginary part (see Fig. 14). Now we deform
the contour of integration and rewrite the integration above the
cut as integration below the cut using∫ ∞

−∞
ds (s − s0 − iη)a+b−2 g(s)

=
∫ s0

−∞
ds (s − s0 − iη)a+b−2 g(s) [1 − e2π i(a+b)]. (D5)

Assuming 1 < a + b and substituting s = s0/t , this yields, for
the integral in Eq. (D4),

−2i sin[π (a + b)] |s0|a+b−1

×
∫ 1

0
dt

t2c (1 − t)a+b−2

(s0 − t + iδ)a (s0 + t + iδ)b (s0 + iδ)2c
. (D6)

Finally, using (recall s0 < 0, δ = 0+)

(s0 − t + iδ)−a = {s0[1 − (1/s0 + iδ)t]}−a

= |s0|−a e−iπa [1 − (1/s0 + iδ)t]−a, (D7)
(s0 + t + iδ)−b = {s0[1 + (1/s0 − iδ)t]}−b

= |s0|−b e−iπb[1 + (1/s0 − iδ)t]−b, (D8)
(s0 + iδ)−2c = |s0|−2c e−2π ic, (D9)

as well as e−2π ic/|s0|2c+1 = −(1/s0 − iδ)2c+1 and
�(z)�(1 − z) = π/ sin(πz), we obtain

I (ω,k < 0) = π �(ω) e−i π
2 (2c−1)

�(a + b − 1)

ωa+b−2

va+b−1
c

(
1

s0
− iδ

)2c+1

×
∫ 1

0
dt

t2c(1 − t)a+b−2

[1 − (1/s0 + iδ)t]a[1 + (1/s0 − iδ)t]b
.

(D10)

For k > 0 we place the cut as shown in Fig. 14. Performing
the same steps as above we find

I (ω,k > 0)

= π �(ω) e−i π
2 (2c−1)

�(a + b − 1)

ωa+b−2

va+b−1
c

(
1

s0
+ iδ

)2c+1

×
∫ 1

0
dt

t2c (1 − t)a+b−2

[1 − (1/s0 − iδ)t]a [1 + (1/s0 + iδ)t]b
. (D11)

We can write Eqs. (D10) and (D11) together as

I (ω,k) = π �(ω) e−i π
2 (2c−1) �(2c + 1)

�(a + b + 2c)

ωa+b−2

va+b−1
c

u2c+1

×F1(2c + 1,a,b,a + b + 2c; u∗, − u), (D12)

u = 2ω

vck
+ i sgn(k) δ.

Here we have used the integral representation, Eq. (E2),
of Appell’s hypergeometric function,49 which is valid for
1 < a + b. Analytic continuation in the parameters a, b,
and c then yields I (ω,k) for a + b < 2 and c > −1/2.
At Kc = 1 one finds F1(2c + 1,a,b,a + b + 2c; u∗, − u) =
F1(1,1/2,0,1/2; u∗, − u) = 1/(1 − u∗).

In the same way one can show∫ 0

−∞
dR

∫ ∞

−∞
dt

ei(ωt−kR)

(vct − 2R − iδ)c

× (−i)a+b+2c

(vct + 2R − iδ)c
(2R)2c

(vct − iδ)a+b

= π �(ω) e−i π
2 (2c−1) ωa+b−2

va+b−1
c

�(a + b + 1)

�(2a + 2b)

× u2c+1 F1(a + b + 1,c,c,2a + 2b; u∗, − u),

u = 2ω

vck
+ i sgn(k) δ, (D13)
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s0

k< 0

s0

0k>

FIG. 14. Branch cut and deformation of the
contour of integration used for k < 0 and k > 0,
respectively.

as well as (A > 0)

∫ 0

−∞
dR

∫ ∞

−∞
dt

ei(ωt−kR)(
vct − 2R − iδ

)a (−i)a+b+2c eAR(
vct + 2R − iδ

)b
(

2R

vct − iδ

)2c

= π �(ω) e−i π
2 (2c−1)

ω2−a−b va+b−1
c

�(2c + 1)

�(a + b + 2c)

(
2ω

vck
+ i sgn(k) δ

)2c+1

×F
(3)
D

(
2c + 1,a,b,2c,a + b + 2c;

2ω

vck
− i

A

k
, − 2ω

vck
− i

A

k
, − i

A

k

)
, (D14)

where F
(3)
D denotes Lauricella’s hypergeometric function of

three variables (see Appendix E). For a = 1/2 and b = c = 0,
Eq. (D14) simplifies to 2i

√
πvc�(ω)/

√
ω/(vck − 2ω + ivcA).

APPENDIX E: HYPERGEOMETRIC FUNCTION OF
SEVERAL VARIABLES

Hypergeometric series of several variables were first stud-
ied by Lauricella.56 They are defined by

F
(n)
D (α,β1, . . . ,βn,γ ; z1, . . . ,zn)

=
∞∑

m1,...,mn=0

(α)m1+···+mn
(β1)m1 · · · (βn)mn

(γ )m1+···+mn

z
m1
1 · · · zmn

n

m1! · · · mn!
,

|zi | < 1. (E1)

The special cases49 n = 1 and n = 2 are Gauss hypergeometric
function, F

(1)
D = F (α,β; γ ; z), and Appell’s hypergeometric

function, F (2)
D = F1(α,β1,β2,γ ; z1,z2), respectively. The func-

tion F
(n)
D possesses the Euler-type integral representation,49,68

F
(n)
D (α,β1, . . . ,βn,γ ; z1, . . . ,zn)

= �(γ )

�(α) �(γ − α)

×
∫ 1

0
dt

tα−1 (1 − t)γ−α−1

(1 − z1t)β1 · · · (1 − znt)βn
,

Reα > 0, Re (γ − α) > 0. (E2)

Furthermore, the following relations hold:49,56

F
(n)
D (α,β1, . . . ,βn,γ ; z1, . . . ,zn)

= (1 − z1)−β1 · · · (1 − zn)−βn

×F
(n)
D

(
γ − α,β1, . . . ,βn,γ ;

z1

z1 − 1
, . . . ,

zn

zn − 1

)
,

(E3)

F1(α,β1,β2,γ ; 1,1) = �(γ ) �(γ − α − β1 − β2)

�(γ − α) �(γ − β1 − β2)

for γ �= 0, − 1, − 2, . . . and γ > α + β1 + β2. (E4)

APPENDIX F: PROPERTIES OF N>
σ (E,2kF + q)

To analyze the dispersing features and singularities
of Eq. (26), we first note that F1(2c + 1,a,b,a + b + 2c;
u∗,−u) possesses singularities at u = ±1.

Let us first study N>
1 . The integrand has singularities at

(i) E − � cosh θ = 0, (ii) 2(E − � cosh θ ) = ±vcq.

(F1)

Inserting (i) into (ii) immediately yields a feature at q = 0.
Using Eqs. (E3) and (E4), one can extract the q dependence
(vcq)a+b−2c−1 to obtain Eq. (29). On the other hand, (i) will be
stationary at θ ≈ 0. Inserting this into (ii) directly yields the
dispersion relation, Eq. (30). The suppression of the dispersing
peak for q < 0 follows from the relative strength of the
singularities at u = ±1.

In the same way the integrand in N>
2 has singularities at

(i) E − � cosh θ = 0,

(iii) 2vs(E − � cosh θ ) = ±vc(vsq − 2� sinh θ ). (F2)

Inserting (i) into (iii) directly yields the dispersion relation,
Eq. (31). Furthermore, we can rewrite (iii) as

(iv)
E

�
∓ vcq

2�
= cosh θ ∓ vc

vs
sinh θ. (F3)

If and only if vc < vs, the right-hand side of (iv) becomes
stationary at θ = θ̃ = ±arcosh(vs/

√
v2

s − v2
c ). In principle,

this leads to the relation, Eq. (32), for arbitrary q. However,
this dispersing feature exists only when −arcosh( E

�
) � θ̃ �

arcosh( E
�

). Together with Eq. (32), this yields the condition
q0 � |q|.

Finally, to prove Eq. (45) we use that
F

(3)
D (2c + 1,a,b,2c,a + b + 2c; u∗

3, − u3, − u′
3) is regular as

E → Ebbs+, which directly yields α = 1 − a − b − 2c =
1 − 1/(2K2

c ).
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16J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and
C. Dekker, Nature 391, 59 (1998); L. C. Venema, J. W. Janssen,
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