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Quantum many-body systems divide into a variety of phases with very different physical properties. The
questions of what kinds of phases exist and how to identify them seem hard, especially for strongly interacting
systems. Here we make an attempt to answer these questions for gapped interacting quantum spin systems whose
ground states are short-range correlated. Based on the local unitary equivalence relation between short-range-
correlated states in the same phase, we classify possible quantum phases for one-dimensional (1D) matrix product
states, which represent well the class of 1D gapped ground states. We find that in the absence of any symmetry
all states are equivalent to trivial product states, which means that there is no topological order in 1D. However,
if a certain symmetry is required, many phases exist with different symmetry-protected topological orders. The
symmetric local unitary equivalence relation also allows us to obtain some simple results for quantum phases in
higher dimensions when some symmetries are present.

DOI: 10.1103/PhysRevB.83.035107 PACS number(s): 75.10.Pq, 64.70.Tg

I. INTRODUCTION

For a long time, we believed that Landau symmetry-
breaking theory1,2 describes all possible orders in materials,
and all possible (continuous) phase transitions. However,
in the last 20 years, it has become more and more clear
that Landau symmetry-breaking theory does not describe all
possible orders. For example, different fractional quantum
Hall (FQH) states3,4 all have the same symmetry. Thus it is
impossible to use symmetry breaking to characterize different
FQH states.

If Landau symmetry-breaking theory is not enough, then
what should we use to describe those new states of matter?
It turns out that we need to develop a totally new theory, to
described the new types of orders—topological or quantum
order5,6—that appear in the FQH states and the spin liquid
states.

In Ref. 7, a systematic understanding of a large class
of topological orders in strongly correlated bosonic systems
without symmetry has been developed based on string-net
condensations. In Ref. 8, the string-net classification of
topological orders was generalized, based on local unitary
transformations. In Refs. 6,9 and 10, topological orders with
symmetry are studied using projective symmetry group and
tensor network renormalization. But so far we still do not have
a complete classification of topological orders for interacting
systems.

Recently, for noninteracting gapped fermion systems with
certain symmetries, a complete classification of topological
phases has been developed based on K theory.11,12 A general-
ization of the free-fermion result to interacting cases has been
obtained for one-dimensional (1D) systems.13

For 1D bosonic systems, the authors of Ref. 14 studied
quantized Berry phases for spin-rotation-symmetric systems.
In Ref. 15 the entanglement spectrum and the symmetry
properties of matrix product states were studied. Using those
tools, the authors obtained some interesting results which are
special cases of the situation considered here.

In this paper, we will apply the approach used in Refs. 8 and
16 to 1D strongly correlated systems. Ground states of gapped
1D systems can be well described by finite-dimensional
matrix product states.17 We assume that matrix product states
capture all possible gapped phases in 1D systems. We will
combine the local unitary transformation with the symmetry
properties of matrix product states, and try to obtain a complete
classification of all gapped phases in 1D quantum spin systems
with certain simple symmetries. We find the following:

(a) If there is no symmetry (including translation symme-
try), all gapped 1D spin systems belong to the same phase.

(b) For 1D non-translation-invariant (NTI) spin systems
with only an on-site symmetry described by a group G, all the
phases of gapped systems that do not break the symmetry are
classified by the equivalence classes in the second cohomology
group H 2(G,C) of the group G, provided that the physical
states on each site form a linear representation of the group G.

[Note that the equivalence classes in H 2(G,C) classify the
types of projective representations of G over the field C of
complex numbers. Appendix C gives a brief introduction to
projective representation and the second cohomology group.]
In certain cases where G has infinitely many 1D represen-
tations, for example, when G = U (1), further classifications
according to different 1D representations exist. The relation
between projective representations and the symmetry of matrix
product states has been noted before.18,19

But quantum states are defined only up to global change
of phases; therefore the symmetry operations of group G only
need to be represented by operators u(g) that satisfy

u(g1)u(g2) = eiθ(g1,g2)u(g1g2) (1)

for any group elements g1 and g2. Such operators form a
projective representation of group G. When we consider this
general case, we find that the classification result remains the
same as with linear representations, that is,

(c) for 1D non-translation-invariant spin systems with only
an on-site symmetry described by a group G, all the phases of
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gapped systems that do not break the symmetry are classified
by the equivalence classes in the second cohomology group
H 2(G,C) of the group G, provided that the physical states on
each site form a projective representation of the group G.

In certain cases where G has infinitely many 1D repre-
sentations, further classifications according to different 1D
representations exist.

Applying these general results to specific cases allows us
to reach the following conclusions: First, result (a) means that
there is no nontrivial topological order in 1D systems without
any symmetry. Using result (b), we find that NTI integer-spin
chains with only on-site SO(3) spin rotation symmetry can
have two and only two different phases that do not break the
SO(3) symmetry. Result (c) implies that NTI half-integer-
spin chains with only on-site SO(3) spin rotation symmetry
(which is represented projectively) also have two and only
two gapped phases that do not break the SO(3) symmetry.
We note that the cyclic Zn group has no nontrivial projective
representations; thus a NTI spin chain with only on-site Zn

symmetry can have one and only one gapped phase that does
not break the Zn symmetry. The U (1) symmetry group has no
nontrivial projective representation either; however, due to the
special structure of the group of 1D representations of U (1),
NTI spin chains with only on-site U (1) symmetry can have
three and only three gapped phases that do not break the U (1)
symmetry.

We also considered systems with translation invari-
ance (TI) and correspondingly many results have been
obtained.

(a) If there is no other symmetry, all gapped TI systems
belong to the same phase. (This has been discussed as the
generic case in Ref. 16.)

(b) For 1D spin systems with only translation symmetry and
an on-site symmetry described by a group G, all the phases
of gapped systems that do not break the two symmetries are
labeled by the equivalence classes in the second cohomology
group H 2(G,C) of the group G and different 1D representa-
tions α(G) of G, provided that the physical states on each site
form a linear representation of the group G.

As in the NTI case, we should consider projective repre-
sentations of G at each site. However, we find the following:

(c) There is no translation-invariant gapped ground
state symmetric under on-site symmetry of group G

that is represented projectively on the state space at
each site.

In particular, we can show that the SO(3) spin-rotation-
symmetric integer-spin chain has two different gapped TI
phases:20–22 the spin-0 trivial phase and the Haldane phase,23

while a translation-invariant SO(3)-symmetric half-integer
spin chain must either be gapless or have degeneracy in
the ground space due to broken discrete symmetries.18,19,24,25

On the other hand, the SU (2) symmetric spin chains where
on-site degrees of freedom contain both integer-spin and
half-integer-spin representations have only one gapped TI
phase. The crossover between two SO(3) symmetric phases
when SO(3) symmetry breaks down to SU (2) symmetry has
been noticed before.26 We also show that the spin chain with
only translation and parity symmetry (defined as exchange of
sites together with an on-site Z2 operation) has four different
gapped TI phases.20–22

For systems with time-reversal symmetry, we find that NTI
time-reversal-symmetric systems belong to two phases while
TI time-reversal-symmetric phases in integer-spin systems
have two phases and those in half-integer-spin systems are
either gapless or have degeneracy in the ground space.

The paper is organized as follows: Sec. II gives a detailed
definition of gapped quantum phases and explains how
that gives rise to an equivalence relation between gapped
ground states within the same phase. Section III shows
that short-range-correlated matrix product states represent
faithfully 1D gapped ground states and hence will be our
object of study. Section IV discusses the situation where
no symmetry is required and we found no topological
order in 1D. Section V gives a classification of phases for
1D systems with certain symmetries, for example on-site
symmetry and time-reversal symmetry. It classifies phases
in translational-invariant systems, and furthermore in systems
where translational invariance is present together with other
symmetries such as on-site symmetry, parity symmetry, and
time-reversal symmetry. Section VI generalizes some simple
1D results to higher dimensions. Finally in Sec. VII we
summarize our results and conclude this paper.

II. DEFINITION OF QUANTUM PHASES

To obtain the above-stated results, we need to first briefly
discuss the definition of quantum phases. A more detailed
discussion can be found in Ref. 8. A quantum phase de-
scribes an equivalence relation between quantum systems. The
systems we consider exist on an n-dimensional lattice and
interactions are local (with finite range). A gapped quantum
phase is usually defined as a class of gapped Hamiltonians
which can smoothly deform into each other without closing the
gap and hence without any singularity in the local properties
of the ground state. Such an equivalence relation between
Hamiltonians can be reinterpreted as an equivalence relation
between ground states, as discussed in Refs. 8 and 16: Two
gapped ground states belong to the same phase if and only
if they are related by a local unitary (LU) transformation.
(It might seem insufficient to discuss equivalence between
Hamiltonians completely in terms of equivalence between
ground states, as a local unitary transformation mapping
|φ1〉 to |φ2〉 might not map the corresponding Hamiltonian
H1 to H2, but instead to some H ′

2. However, as H2 and
H ′

2 are both gapped and have the same ground states, their
equivalence is obvious.) As LU transformations can change
local entanglement structure but not the global one, states in
the same phase have the same long-range entanglement (LRE)
and hence the same topological order.5,27 States equivalent to
product states have only short-range entanglement (SRE) and
hence trivial topological order. All the states with short-range
entanglement belong to the same phase while states with
long-range entanglement can belong to different phases. These
considerations lead to the phase diagram as illustrated in
Fig. 1(a), for the class of systems without any symmetry
requirement.

A LU transformation U can take the form of finite time
evolution with a local Hamiltonian

U = T
[
e−i

∫ 1
0 dg H̃ (g)

]
(2)
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FIG. 1. (Color online) (a) The possible phases for the class of
Hamiltonians H (g1,g2) without any symmetry restriction. (b) The
possible phases for the class of Hamiltonians Hsym(g1,g2) with some
symmetries. The shaded regions in (a) and (b) represent the phases
with short-range entanglement.

where T denotes a time-ordered integral and H̃ (g) is a sum of
local Hermitian terms. Alternatively, U can take the form of a
constant-depth quantum circuit,

U =
∏
i1

U
(1)
i1

· · ·
∏
iR

U
(R)
iR

, (3)

which is composed of R layers of unitaries and the U
(k)
ik

’s
within each layer k are local and commute with each other.8

These two forms of LU transformation are equivalent to
each other and we will mainly take the quantum circuit
form for the discussion in this paper (the time evolution
form is used for discussion of translation-invariant systems).
More generally, we will consider the equivalence relation
between states defined on different Hilbert spaces and hence
we allow a broader notion of unitarity [which is called a
generalized LU transformation in Ref. 8 and corresponds to
the disentanglers and isometries in multiscale entanglement
renormalization ansatz (MERA) (Ref. 28)]. Each LU operation
U

(k)
ik

we consider in the quantum circuit will act unitarily
on the support space of the reduced density matrix of the
region with (U (k)

ik
)†U (k)

ik
= I of the original Hilbert space and

U
(k)
ik

(U (k)
ik

)† = I of the support space of the reduced density
matrix. While the total Hilbert space might change under such
an operation, the entanglement structure of the state remains
intact and hence the state remains in the same phase with the
same topological order.

If the class of systems under consideration has further
symmetry constraints, two Hamiltonians are in the same phase
if they can be connected by a smooth path that stays within this
symmetric region. Correspondingly, the equivalence relation
between gapped ground states of the same phase needs to be
modified: 8 If the class of systems has a certain symmetry, two
gapped ground states belong to the same phase if and only if
they are related by a LU transformation which does not break
the symmetry. Such a restricted equivalence relation leads to a
phase diagram with more structure, as shown in Fig. 1(b). First,
not all short-range-entangled states belong to the same phase.
short-range-entangled states with different symmetry breaking
will belong to different phases. Those symmetry-breaking
phases with short-range entanglement (SB-SRE phases) are
well described by Landau’s symmetry-breaking theory.1,29

Can all phases with short-range entanglement be described
by symmetry breaking? Landau’s symmetry-breaking theory
suggests that states with the same symmetry always belong to

the same phase, which implies that all phases with short-range
entanglement are described by symmetry breaking. However,
this result turns out to be not quite correct. States that do
not break any symmetry can still belong to different phases
as well.6 We will refer to the order in symmetric short-
range-entanglement (SY-SRE) states as symmetry-protected
topological order.21 For example, in the presence of parity
symmetry, the Haldane phase and the Sz = 0 phase of a spin-1
chain belong to two different phases even though both phases
have short-range entanglement and do not break the parity
symmetry. Also, in the presence of time-reversal symmetry,
the topological insulators and the band insulators belong to
two different phases. Again both phases have short-range
entanglement.

For systems with long-range entanglement, the phase dia-
gram similarly divides into symmetry-breaking (SB-LRE) and
symmetric (SY-LRE) phases. The charge-4e superconducting
states30 and the symmetric Z2 states6,31 are examples of the
SB-LRE phases and the SY-LRE phases, respectively.

III. 1D GAPPED SPIN SYSTEMS AND MATRIX
PRODUCT STATES

Having defined the universality classes of phases as the
equivalence classes of states under (symmetric) local unitary
transformations, we would then like to know which phases
exist, or in other words, to classify all possible phases
in strongly correlated systems. Some partial classifications
have been discussed for strongly correlated systems through
string-net states,7 and for free-fermion systems with certain
symmetries through K theory.11,12 In this paper, we would
like to consider 1D gapped strongly correlated spin systems
both with and without symmetry, and try to classify all such
systems whose ground states do not break any symmetry. (In
other words, the ground state has the same symmetry as the
Hamiltonian.)

Complete classification of strongly correlated spin systems
seems to be a hard task as in general strongly interacting
quantum many-body systems are very hard to solve. However,
the recent insight about describing 1D gapped ground states of
spin systems with matrix product state formalism32,33 provides
us with a handle to deal with this problem. A matrix product
state (MPS) is expressed as

|φ〉 =
∑

i1,i2,...,iN

Tr
(
A

[1]
i1

A
[2]
i2

· · · A[N]
iN

)
|i1i2 · · · iN 〉, (4)

where ik = 1, . . . ,d with d being the physical dimension of
a spin at each site, and the A

[k]
ik

’s are D × D matrices on site
k with D being the inner dimension of the MPS. It has been
shown that matrix product states capture the essential features
of 1D gapped ground states, for example an entanglement area
law34 and finite correlation length,35,36 and provide an efficient
description of such states.17 On the other hand, generic matrix
product states satisfying a condition called “injectivity” are all
gapped ground states of local Hamiltonians.32,33 Therefore,
studying this class of MPSs will enable us to give a full
classification of 1D gapped spin systems.

Now the question of what phases exist in 1D gapped spin
systems can be restated as what equivalence classes of matrix
product states exist under LU transformations. The authors of
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Ref. 16 gave a specific way to apply such LU transformations,
which realizes a renormalization group transformation on
MPSs that removes local entanglement and takes the states
to a simple fixed-point form. A partial classification of MPSs
is also given in Ref. 16. In the following we will use this
procedure to classify gapped phases of 1D spin systems, in
particular 1D systems with various symmetries. We see that
the possible phases in 1D strongly correlated systems depend
on the symmetry of the class of systems.

First we will briefly review how the renormalization group
(RG) transformation16 is done. For the identification and
optimal removal of local entanglement, a particularly useful
mathematical construction is the double tensor E[k]

αγ,βχ =∑
i A

[k]
i,αβ × (A[k]

i,γ χ )∗ of the MPS. E[k] uniquely determines
the state up to a local change of basis on each site,33,37

that is, if

E[k]
αγ,βχ =

∑
i

A
[k]
i,αβ × (

A
[k]
i,γ χ

)∗ =
∑

i

B
[k]
i,αβ × (

B
[k]
i,γ χ

)∗
(5)

then A
[k]
i,αβ and B

[k]
i,αβ are related by a unitary transformation

U [k]:

B
[k]
i,αβ =

∑
j

U
[k]
ij A

[k]
j,αβ . (6)

Therefore, states described by A
[k]
i and B

[k]
i have exactly the

same entanglement structure, which is faithfully captured in
E[k]. A proof of this fact can be found in Ref. 37. For clarity,
we present the proof in Appendix A following the notation of
this paper.

Local unitary operations on MPSs can be applied through
manipulation of E[k]. Treat E[k] as a D2 × D2 matrix with row
index αγ and column index βχ . To apply a unitary operation
on n consecutive sites, we combine the double tensor of the n

sites together into

Ẽ = E[1]E[2] · · · E[n] (7)

and then decompose Ẽ into a set of matrices Ãĩ :

Ẽαγ,βχ =
∑

ĩ

Ãĩ,αβ × Ã∗
ĩ,γ χ

. (8)

Note that Ãĩ,αβ is determined up to a unitary transformation
on ĩ. The index ĩ of Ãĩ,αβ , up to a unitary transformation,
can be viewed as the combination of i1,i2, . . . ,in, the indices
of A

[1]
i1,αβ ,A[2]

i2,αβ, . . . ,A
[n]
in,αβ . Going from the original indices

i1,i2, . . . ,in to the effective index ĩ corresponds to applying
a unitary operation on the n block, and Ãĩ describes the new
state after operation.

The unitary operation can be chosen so that local entangle-
ment is maximally removed. Ẽ contains all the information
about the entanglement of the block with the rest of the
system but no details of entanglement structure within the
block. Hence we can determine from Ẽ the optimal way
of decomposition into Ã, which corresponds to the unitary
operation that maximally removes local entanglement while
preserving the global structure. To do so, think of Ẽαγ,βχ as a
matrix with row index αβ and column index γχ . It is easy to

see that with such a recombination, Ẽ is a positive matrix and
can be diagonalized:

Ẽαγ,βχ =
∑

ĩ

λĩVĩ,αβV ∗
ĩ,γ δ

, (9)

where we have kept only the nonzero eigenvalues λĩ > 0 and
the corresponding eigenvectors Vĩ,αβ . Ã is then given by

Ãĩ,αβ =
√

λiVĩ,αβ, (10)

which are the matrices representing the new state. In retaining
only the nonzero eigenvalues, we have reduced the physical
dimensions within the block to only those necessary for
describing the entanglement between this block and the rest
of the system. Local entanglement within the block has been
optimally removed.

Each renormalization step in the renormalization proce-
dure hence works by grouping every n consecutive sites
together and then applying the above transformation to map
A[1],A[2], . . . ,A[n] to Ã. So one renormalization step maps
the original matrices (A[k]

ik
)(0) on each site to renormalized

matrices (A[k]
ik

)(1) on each block. Repeating this procedure for
a finite number of times corresponds to applying a finite depth
quantum circuit to the original state. If the matrices reaches
a simple fixed-point form (A[k]

ik
)(∞) (up to local unitaries), we

can determine from it the universal properties of the phase to
which the original state belongs.

Such a renormalization procedure hence provides a way
to classify matrix product states under LU transformations
by studying the fixed point (A[k]

ik
)(∞) to which a state flows.

Two states are within the same phase if and only their
corresponding fixed-point states can be transformed into each
other by (symmetric) LU transformations. In the following we
will apply this method to study short-range-correlated matrix
product states which faithfully represent the class of 1D gapped
ground states.

The short-range correlation is an extra constraint on the
set of matrix product states that we will consider. Not all
matrix product states describe gapped ground states of 1D
spin systems. In particular, 1D gapped ground states all
have finite correlation length36 for equal-time correlators
of any local operator, while matrix product states can be
long-range correlated. The finite correlation length puts an
extra constraint on MPSs that the eigenspectrum of E should
have a nondegenerate largest eigenvalue (set to be 1) (see
Appendix B).32,33,38 Therefore, we will assume this property
of E in our following discussion and corresponding MPSs will
be called short-range-correlated (SRC) MPSs.

This renormalization method is well suited for the study
of systems without translational invariance, which we will
discuss in detail. We will also make an attempt to study
translational-invariant systems with this method. While the
full translational symmetry is reduced to block translational
symmetry in the RG process, by studying the resulting
equivalence classes for different values of block size n, we
expect to obtain a more complete classification of translational-
invariant 1D systems. Indeed, the classification result is further
confirmed by using a translational-invariant LU transformation
in the time evolution form to study equivalence between TI
systems.

035107-4



CLASSIFICATION OF GAPPED SYMMETRIC PHASES IN . . . PHYSICAL REVIEW B 83, 035107 (2011)

In the following sections, we will present our analysis and
results for different cases. First we will consider the situation
where no specific symmetry is required for the system.

IV. NO TOPOLOGICAL ORDER IN 1D

When no symmetry is required for the class of sys-
tem, we want to know what kind of long-range entangle-
ment exists and hence classify topological orders in 1D
gapped spin systems. We will show that all gapped 1D
spin systems belong to the same phase if there is no
symmetry.

In other words, there is no topological order in 1D. This is
similar to the generic case discussed in Ref. 16.

To obtain such a result, we use the fact that gapped 1D
spin states are described by short-range-correlated matrix
product states. (A state is a gapped state if there exists
a Hamiltonian H such that the state is the nondegenerate
gapped ground state of H .) Then one can show that all SRC
matrix product states can be mapped to product states with
LU transformations and hence there is no topological order
in 1D.

Consider a generic system without any symmetry (in-
cluding translation symmetry) whose gapped ground state is
described as a MPS with matrices A

[k]
i that vary from site to

site. Reference 33 gives a “canonical form” for the matrices so
that the double tensor E[k]

αγ,βχ , when treated as a matrix with
row index αγ and column index βχ , has a left eigenvector

[k]

αγ = λ[k]
α δαγ and corresponding right eigenvector 


[k+1]
βχ =

λ
[k+1]
β δβχ . Here the λ’s are positive numbers and

∑
α λ2

α = 1.
δαγ = 1 when α = γ and δαγ = 0 otherwise. (The convention
chosen here is different from that in Ref. 33, but equivalent
up to an invertible transformation on the matrices A

[k]
i .)

This eigenspace has the largest eigenvalue in E[k],39 and is
usually set to be 1. Note that the right eigenvector on site
k is the same as the left eigenvector on site k + 1 and has
norm 1; therefore when the double tensors are multiplied
together, this one-dimensional eigenspace will always be
of eigenvalue 1.

There could be other eigenvectors of eigenvalue 1 in
E[k]. However, this would lead to an infinite correlation
length32,33,38 and hence is not possible in a 1D gapped
state. Therefore, for short-range-correlated MPSs, E[k] must
have a nondegenerate largest eigenvalue 1. When the double
tensors are multiplied together, the remaining block of E[k]

will decay exponentially with the number of sites. This
consideration is essential for determining the fixed point of the
renormalization procedure when applied to the MPS, as shown
below.

Now we apply the renormalization procedure as discussed
in the previous section to remove local entanglement from a
general SRC MPS. Take block size n. The double tensors on
the renormalized sites are given by (E[K])(1) = ∏

k∈K (E[k])(0),
where the k’s are the n sites in block K . (E, again, is treated as
a D2 × D2 matrix with row index αγ and column index βχ .)
After the renormalization process is repeated a finite number
of times, (E[k])(R) will be arbitrarily close to a fixed-point form
(E[k])(∞) with nondegenerate eigenvalue 1 and (E[k])(∞)

αγ,βχ =

̃[k]

αγ 
̃
[k+1]
βχ , where 
̃[K]

αγ = λ̃[k]
α δαγ and 
̃

[k+1]
βχ = λ̃

[k+1]
β δβχ .

FIG. 2. (Color online) Disentangling a fixed-point state (upper
layer, product of entangled pairs) into a direct product state (lower
layer) with LU transformations.

Now we can decompose (E[k])(∞) into matrices to find the
fixed-point state. One set of matrices giving rise to this double
tensor is given by(

A
[k]
il ir ,αβ

)(∞) =
√

λ̃
[k]
il

δilα ·
√

λ̃
[k+1]
ir δirβ (11)

where il,ir = 1, . . . ,D. Here we use a pair of indices (il,ir )
to label the effective physical degrees of freedom on the
renormalized site k, and (A[k]

il ,ir
)(∞) is a set of matrices that

defines the fixed-point MPS. It is clear from the form of
the matrices that at a fixed point every site is composed of
two virtual spins of dimension D. Every virtual spin is in
an entangled pair with another virtual spin on the neighboring
site |EPk,k+1〉 = ∑D

i=1 λ̃
[k+1]
i |i,i〉 and the full many-body state

is a product of these pairs. An illustration of this state is
given in Fig. 2 (upper layer). Obviously we can further
disentangle these pairs by applying one layer of local unitary
transformations between every pair of neighboring sites and
map the state to a product state (Fig. 2, lower layer).

Therefore, through these steps we have shown that all SRC
matrix product states can be mapped to product states with LU
transformations and hence there is no topological order in a
1D NTI system.

V. SYMMETRY-PROTECTED TOPOLOGICAL
ORDER IN 1D

If the class of systems under consideration has a certain
symmetry, the equivalence classes of states are defined in
terms of LU transformations that do not break the symmetry.
Therefore, when applying the renormalization procedure, we
should carefully keep track of the symmetry and make sure that
the resulting state has the same symmetry at each step. Because
of this constraint on local unitary equivalence, we will see that
gapped ground states which do not break the symmetry of the
system divide into different universality classes corresponding
to different symmetry-protected topological orders. We will
first discuss the case of on-site symmetries in detail for
non-translational-invariant systems, i.e., the system has only an
on-site symmetry and no translation symmetry. Then we shall
make an attempt to study translational-invariant systems, with
the possibility of having on-site symmetry or parity symmetry.
Finally, we shall consider the case of time-reversal symmetry.

A. On-site symmetry

A large class of systems is invariant under on-site symmetry
transformations. For example, the Ising model is symmetric
under the Z2 spin flip transformation and the Heisenberg model
is symmetric under SO(3) spin rotation transformations. In this
section, we will consider the general case where the system
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is symmetric under u(0)(g) ⊗ · · · ⊗ u(0)(g) with u(0)(g) being
a unitary representation of a symmetry group G on each site.
The representation can be linear or projective. That is, for any
g1,g2 ∈ G,

u(g1)u(g2) = eiθ(g1,g2)u(g1g2), (12)

where θ (g1,g2) = 0 in a linear representation and θ (g1,g2)
could take nontrivial values in a projective representation. A
projective representation of a symmetry group is generally
allowed in a quantum description of a system because the
factor eiθ(g1,g2) only changes the global phase of a quantum
state but not any physically measurable quantity. Therefore, in
our classification, we will consider not only the case of linear
representation, but also projective representations in general.

The on-site symmetry is the only symmetry required
for this class of system. In particular, we do not require
translational symmetry for the systems. However, for a simple
definition of phase, we will assume a certain uniformness in
the state, which we will define explicitly in the following.
We will classify possible phases for different G when the
ground state is invariant (up to a total phase) under such
on-site symmetry operations and is gapped (i.e., short-range
correlated). Specifically, the ground state |φL〉 on L sites
satisfies

u(0)(g) ⊗ · · · ⊗ u(0)(g)|φL〉 = αL(g)|φL〉, (13)

where |αL(g)| = 1 are g- and L-dependent phase factors.

1. On-site linear symmetry

First, let us consider the simpler case where the u(0)(g) form
a linear representation of G. αL(g) is then a one-dimensional
linear representation of G. Now we will try to classify these
symmetric ground states using symmetric LU transformations
and we find the following: Consider 1D spin systems with
only an on-site symmetry G which is realized linearly, all the
gapped phases that do not break the symmetry are classified
by H 2(G,C), the second cohomology group of G, if H 2(G,C)
is finite and G has a finite number of 1D representations.

We will also discuss the case of the U (1) group, which
has an infinite number of 1D representations. We will again
assume that all gapped states can be represented as short-range-
correlated matrix product states. We will use the renormaliza-
tion flow used before16 to simplify the matrix product states
and use the fixed-point matrix product states to characterize
different equivalent classes of LU transformations, as two
symmetric states belong to the same class if and only if their
corresponding fixed-point states can be mapped to each other
with symmetric LU transformations.

In order to compare different equivalent classes under
symmetric LU transformations, it is important to keep track
of the symmetry while doing the renormalization. First, in
the renormalization procedure we group n sites together into
a new site. The on-site symmetry transformation becomes
ũ(0)(g) = [⊗u(0)(g)]n, which is again a linear representation
of G. The next step in RG transformation applies a unitary
transformation w

[k]
1 to the support space of the new site k. This

is actually itself composed of two steps. First we project onto
the support space of the new site, which is the combination
of n sites in the original chain. This is an allowed operation

compatible with symmetry G as the reduced density matrix ρn

is invariant under ũ(0)(g), so the support space forms a linear
representation for G. The projection of ũ(0)(g) onto the support
space Pnũ

(0)(g)Pn hence remains a linear representation of G.
In the next step, we do some unitary transformation w

[k]
1 within

this support space which relabels different states in the space.
The symmetry property of the state should not change under
this relabeling. In order to keep track of the symmetry of the
state, the symmetry operation needs to be redefined as
(u[k])(1)(g) = w

[k]
1 Pnũ

(0)(g)Pn(w[k]
1 )†. After this redefinition,

the symmetry operations (u[k])(1)(g) on each new site k form a
new linear representation of G.

By redefining (u[k])(i)(g) at each step of RG transformation,
we keep track of the symmetry of the system. Finally at the
fixed point (i.e., at a large RG step i = R), we obtain a state
described by (A[k]

il ir
)(R) which is again given by the fixed-point

form Eq. (11). To describe a state that does not break the
on-site symmetry, here (A[k]

il ir
)(R) is invariant (up to a phase)

under (u[k])(R)(g) on each site k. Therefore,40

∑
j lj r

u
[k]
il ir ,j l j r (g)A[k]

j lj r = α
(R)
[k] (g)N−1

[k] (g)A[k]
il ir

M[k](g),

(14)
N[k](g) = M[k−1](g)

must be satisfied with some invertible matrix N[k](g) and
M[k](g). Here k labels the coarse-grained sites and we have
dropped the RG step label R [except in α

(R)
[k] (g)]. Each

coarse-grained site is a combination of nR original lattice sites
and α

(R)
[k] (g) form a 1D (linear) representation of G.

Solving this equation we find the following results (see
Appendix D):

(a) N[k](g) and M[k](g) are projective representations of
G [see Eq. (7)]. Projective representations of G belong to
different classes which form the second cohomology group
H 2(G,C) of G. (For a brief introduction on projective repre-
sentation, see Appendix C). M[k](g) and N[k](g) correspond to
the same element ω in H 2(G,C).

(b) The linear symmetry operation u[k](g) must be of the
form α

(R)
[k] (g)u[k],l(g) ⊗ u[k],r (g) where u[k],l and u[k],r are

projective representations of G and correspond to inverse
elements ω and −ω in H 2(G,C), respectively. α

(R)
[k] (g) is a

1D (linear) representation of G. u[k],l and u[k],r act on the two
virtual spins separately [see Eq. (D7)]. Therefore, the fixed-
point state is formed by entangled pairs |EPk,k+1〉 of virtual
spins which are invariant, up to a phase [due to the nontrivial
α

(R)
[k] (g)], under the linear transformation u[k],r (g) ⊗ u[k+1],l(g).

Now we use the uniformness of the state and simplify
our discussions. Specifically, we assume that α

(R)
[k] (g) does

not depend on the site index k. Certainly, α
(R)
[k] (g) does not

depend on k if the state has translation symmetry. If the 1D
representations of G are discrete, then for weak randomness
that slightly breaks the translation symmetry, α(R)

[k] (g) still does
not depend on k. So we can drop the k index and consider
α(R)(g).

Do different α(R)(g) label different symmetric phases?
First, the answer is no if the number of 1D representations
of G is finite [as is the case for Zn, SO(3), etc.]. This is
because we can always choose block size n properly so that
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α(R)(g) = 1 and the difference between symmetric states due
to α(R)(g) disappears. In the case of the U (1) group, there are
infinitely many different 1D representations eimθ , labeled by
integer m. For two states with positive m1,m2, we can always
choose the block size m2n

R ,m1n
R , respectively, so that the

1D representations become the same. This is also true for
negative m1,m2. But if m1,m2 take different signs (or one of
them is 0), the 1D representations will always be different no
matter what blocking scheme we use. Therefore, due to their
different 1D representations, U (1)-symmetric states divide
into three classes that can be labeled by {+,0,−}. After these
considerations, we will ignore the 1D representations α(R)(g)
in the following discussion.

We find that the entangled pairs |EPk,k+1〉 of virtual
spins in the fixed-point state are exactly invariant under the
linear transformation u[k],r (g) ⊗ u[k+1],l(g). The left virtual
spin of each site forms a projective representation of G

corresponding to element ω in H 2(G,C), while the right virtual
spin corresponds to element −ω. In Appendix E, we will show
that fixed-point states with the same ω can be related by a
symmetric LU transformation, while those with different ω

cannot. Therefore, the phases of SRC MPSs that are invariant
under linear on-site symmetry of group G are classified by
the second cohomology group H 2(G,C). [When G = U (1),
further divisions of classes due to different 1D representations
of G exist. The equivalence classes are labeled by α ∈ {+,0,−}
and ω ∈ H 2(U (1),C).]

2. On-site projective symmetry

Due to the basic assumption of quantum mechanics that the
global phase of a quantum state will not have any effect on the
physical properties of the system, it is necessary to consider not
only the linear representation of symmetry operations on the
system, but also the projective representations. For example,
on a half-integer spin, rotation by 2π is represented as −I ,
minus the identity operator instead of I . Hence, the rotation
symmetry SO(3) is represented projectively on half-integer
spins. In order to cover situations like this, we discuss in
this section systems with on-site projective symmetry of
group G.

Again, we consider the case when the ground state does
not break the symmetry, i.e., u(0)(g) ⊗ · · · ⊗ u(0)(g)|φL〉 =
αL(g)|φL〉, where u(0)(g) form a projective representation of
group G corresponding to class ω. Assuming uniformness of
the state, we require that ω does not vary from site to site.

But this can be reduced to the previous linear case. As long
as H 2(G,C) is finite and ω has a finite order n, we can take
block size n so that after blocking, the symmetry operation
on the renormalized site ũ(0)(g) = [⊗u(0)(g)]n corresponds to
nω = ω0 in H 2(G,C). Therefore, the state after one blocking
step is symmetric under an on-site linear representation of
group G and all the reasoning in the previous section applies.
We find that the classification with projective on-site symmetry
is the same as for linear on-site symmetry. That is, considering
1D spin systems with only an on-site symmetry G which is
realized projectively, all the gapped phases that do not break the
symmetry are classified by H 2(G,C), the second cohomology
group of G, if H 2(G,C) is finite and G has a finite number of
1D representations.

The U (1) group does not have a nontrivial projective
representation and will not introduce any complication
here.

3. Examples

Since G = Zn has no nontrivial projective representations,
we find that all 1D gapped systems with only on-site Zn

symmetry belong to the same phase.
For spin systems with only spin rotation symmetry,

G = SO(3). SO(3) has two types of projective representa-
tion described by H 2(SO(3),C) = {0,1}, corresponding to
integer- and half-integer-spin representations. We find that
for integer-spin systems, all 1D gapped systems with only
on-site SO(3) spin rotation symmetry have two different
phases.

Such a result has some relation to a well-known result41 for
a NTI spin-1 Heisenberg chain,

H =
∑

i

JiSi · Si+1. (15)

The model undergoes an impurity-driven second-order phase
transition from the Haldane phase23 to the random singlet
phase42,43 as the randomness in Ji increases.

For half-integer-spin systems, SO(3) is represented projec-
tively on each site, yet the classification is the same as in the
integer case. We find that for half-integer-spin systems, all 1D
gapped states with only on-site SO(3) spin rotation symmetry
have two different phases. Representative states of the two
phases are nearest-neighbor dimer states, but with the dimer
between sites 2i and 2i + 1 in the first phase and between sites
2i − 1 and 2i in the second phase.

The projective representation of SO(3) on half-integer spins
forms a linear representation of SU (2). If we think of the linear
representation of SO(3) on integer spins as a(n) (unfaithful)
linear representation of SU (2) and allow the mixture of integer
and half-integer spins on one site, then the two phases of
SO(3) merge into one.26 Therefore, systems with only on-site
SU (2) symmetry (which implies a mixture of integer and
half-integer spins on each site) belong to one phase, as we
can map integer-spin singlets into half-integer-spin singlets
without breaking the SU (2) symmetry (see Appendix E).
Such a procedure breaks down if SO(3) symmetry is required
for each site as the direct sum of a linear representation (on
integer spins) and a projective representation (on half-integer
spins) is no longer a projective representation for SO(3).

In this way, we have obtained a full classification of the
phases of gapped NTI 1D spin systems with various on-site
symmetries.

B. Translation invariance

We have discussed the gapped phases of 1D NTI systems
that have some on-site symmetries. In this section, we
would like to discuss translation-symmetric systems. We will
consider those translation-symmetric systems whose ground
states are gapped and translation invariant. (In general, a state
which does not break the translational symmetry of the system
is invariant under translation up to a phase. That is, the state
carries a finite momentum. However, we will restrict ourselves
only to the case where the ground state has zero momentum
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U1 U1 U1 U1 U1 U1

U2 U2

U

FIG. 3. An {ni}-block TI LU transformation described by a
quantum circuit of three layers. Here n1 = 4, n2 = 3, n3 = 2. The
unitary transformations Ui on different blocks in the ith layer are the
same.

and we will say the states are translationally invariant instead
of translationally symmetric.)

1. {ni }-block TI LU transformations and b phases

To discuss the TI phases, we need to discuss the equivalence
classes under TI LU transformations. However, it is hard to use
quantum circuits to describe TI LU transformations. Thus, the
quantum circuit formulation used in this paper is inconvenient
to describe TI LU transformations. However, in this section,
we will first try to use the quantum circuit formulation of
LU transformations to discuss the phases of TI gapped states.
While we are able to identify many different phases in this
way, we cannot rigorously prove the equivalence of states
within each phase using the non-translational-invariant circuit.
In order to establish this equivalence, we later apply the other
formulation of local unitary transformation—a finite time
evolution with a local Hamiltonian [Eq. (2)] where TI can
be preserved exactly, and we confirm the classification result
obtained with quantum circuits(see Appendix G).

Let us consider the LU transformations represented by
quantum circuits which are formed by the unitary operators
on blocks of ni sites in the ith layer (see Fig. 3). We will call
such LU transformations {ni}-block LU transformations. If
the unitary operators on different blocks in the same layer
of the quantum circuit are the same, we will call the LU
transformations {ni}-block TI LU transformations.

In this paper, we will try to use the quantum circuit
formulation of the LU transformations to discuss gapped
translation-symmetric phases. One way to do so is to use the
equivalent classes of the {ni}-block TI LU transformations to
classify the gapped translation-symmetric phases. However,
since the {ni}-block TI LU transformations are different
from the TI LU transformations, the equivalent classes of
{ni}-block TI LU transformations are different from the
equivalent classes of the TI LU transformations. But since the
TI LU transformations are special cases of {ni}-block TI LU
transformations, each equivalent class of {ni}-block TI LU
transformations is formed by one or more equivalent classes
of TI LU transformations.

Therefore, we can use the equivalent classes of {ni}-
block TI LU transformations to describe the gapped TI
phases, since different equivalent classes of {ni}-block TI LU
transformations always represent different TI quantum phases.
On the other hand, the equivalent classes of {ni}-block TI
LU transformations may not separate all gapped TI phases.
Sometimes, a single equivalent class of {ni}-block TI LU
transformations may contain several different gapped TI
phases.

To increase the resolution of the {ni}-block TI LU trans-
formations, we would like to introduce the block-equivalent
classes: two states belong to the same block-equivalent classes,
if and only if, for all values of ni , they can be mapped into
each other through {ni}-block TI LU transformations.

Clearly, each block-equivalent class might still contain
several different gapped TI phases. In this paper, we will
call a block-equivalent class a block phase, or b phase. It
is possible that the block-equivalent classes are the same as
the universal classes that represent the gapped TI phases. In
this case the gapped TI b phases are the same as the gapped
TI phases, and we can study the gapped TI phases through
block-equivalent classes. In the following, we will first study
the b phases for 1D strongly correlated systems with translation
and some other symmetries and then confirm that gapped TI b
phases do coincide with gapped TI phases.

To describe TI gapped states we will use the TI MPS
representation with site-independent matrices. But how do we
know a TI gapped state can always be represented by a MPS
with site-independent matrices? A nonuniform MPS in Eq. (4)
can represent a TI state if the matrices A

[k]
i satisfy, for example,

A
[k+1]
i = M−1A

[k]
i M (16)

for an invertible matrix M .
It is proven in Ref. 33 that every TI state does have a TI

MPS representation. Specifically, in the example considered
above, we can transform the matrices so that they become site
independent. Let us introduce

Ã
[k]
i = N−1

[k−1]A
[k]
i N[k]. (17)

By construction, A
[k]
i and Ã

[k]
i will represent the same MPS.

We see that

Ã
[k+1]
i = N−1

[k] A
[k+1]
i N[k+1]

= N−1
[k] M

−1A
[k]
i MN[k+1] (18)

= N−1
[k] M

−1N[k−1]Ã
[k]
i N−1

[k] MN[k+1].

We see that if we choose

N[k] = M−k, (19)

we will have

Ã
[k+1]
i = Ã

[k]
i , (20)

hence reducing the original nonuniform representation to a
uniform one.

We also wish to remark that by a “TI gapped state,’ we
mean that there exists a TI gapped Hamiltonian HL on a lattice
of L sites such that the TI gapped state is the ground state of
HL. We would like to stress that we do not need the above
condition to be true for all values of L. We only require HL

to be gapped for a sequence of lattice sizes {Li} such that
limi→∞ Li = ∞. In this paper, when we discuss a system of
size L, we always assume that L belongs to such a sequence
{Li}. This consideration is important if we want to include in
our discussion, for example, boson systems with 1/2 particle
per site, which can only be defined for even system size L.
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2. Gapped TI b phases coincide with gapped TI phases

In the above discussion, we see that for a large block size,
the related matrix [see (7)] Ẽ = E[1]E[2] · · ·E[n] is dominated
by its largest eigenvalue. For translation-invariant states,E[i] =
E and Ẽ = En. So the fixed-point Ẽ, and hence the gapped TI
b phase, is directly determined by the largest eigenvalue and
the corresponding left and right eigenvectors of E.

Since a gapped TI b phase is directly determined by E on
each site, we do not need to do any blocking transformation
to understand the gapped TI b phase. We can directly extract
its fixed-point tensor from E. This suggests that gapped TI
b phases coincide with gapped TI phases. Indeed, we can
directly deform E to the fixed-point Ẽ by changing other
non-largest eigenvalues to zero. Such a procedure allows us to
deform the matrix Ai,αβ of the initial MPS to the fixed-point
matrix Ãi,αβ of the final MPS. Since the largest eigenvalue of
E is not degenerate, the state remains short range correlated
(and gapped) during the deformation.32,33,38 (Recently, we
learned that a similar method is used by Schuch et al.44)
Also the state does not break the translation symmetry (unlike
the n-block transformations) and other symmetries during
the deformation. This allows us to show that the gapped
TI phases is characterized by the largest eigenvalue and the
corresponding left and right eigenvectors of E. Thus gapped
TI b phases coincide with gapped TI phases. For details, see
Appendix G.

In the following, we will use the {ni}-block TI LU
transformations to discuss various gapped TI phases of 1D
systems.

3. 1D systems with only translation symmetry

For 1D systems with only translation symmetry, there is
only one gapped TI phase.

This result generalizes the earlier result that for 1D systems
with no symmetry, there is only one gapped phase. To obtain
the new result, we basically repeat what we did in Sec. IV.
The only difference is that the matrices representing the state
now are site independent, and in Sec. IV we use {ni}-block LU
transformations to reduce the 1D NTI MPS, while to derive
the new result, here we use {ni}-block TI LU transformations
to reduce the 1D TI MPS.

4. 1D systems with translation and on-site unitary symmetries

Similarly, by repeating the discussions in Secs. V A 1 and
V A 2 for {ni}-block TI LU transformations on the 1D TI MPS,
we can show that, for a 1D spin system with translation and an
on-site projective symmetry u(g), the symmetric ground state
cannot be short-range correlated, if the projective symmetry
u(g) corresponds to a nontrivial element in H 2(G,C).

The reason is as follows. If a 1D state with translation
symmetry is short-range correlated, it can be represented by
a TI MPS. Its fixed-point MPS also has an on-site projective
unitary symmetry ũ(g). For a proper choice of block size n,
we can make u(g) and ũ(g) be the same type of projective
representation described by ωsym ∈ H 2(G,C). For TI fixed-
point MPSs, we have ω[k] = ω[k−1] since M[k](g) = M[k−1](g)
(cf. Appendix D). Thus ωsym = 0, that is, the trivial element
in H 2(G,C). So, if ωsym 	= 0, the 1D TI state cannot be
short-range correlated. In other words, 1D spin systems with

translation and an on-site projective symmetry are always
gapless or have degenerate ground states that break the
symmetries.

If the ground state of the 1D spin system does not break
the on-site symmetry and the translation symmetry, then the
ground state is not short-range correlated and is gapless. If
the ground state of the 1D spin system breaks the on-site
symmetry or the translation symmetry, then the ground state
is degenerate. As an application of the above result, we find
that 1D half-integer-spin systems with translation and SO(3)
spin rotation symmetry are always gapless or have degenerate
ground states, which agrees with the well-known result of
Ref. 24 and its generalizations.18,19

To have a gapped TI 1D state with an on-site symmetry, the
symmetry must act linearly (i.e., not projectively). In this case,
we can show that the total phase factor of the state αL(g) breaks
up into L 1D representations α(g) (see Appendix F): For 1D
spin systems of L sites with translation and on-site symmetry
G, a gapped state that does not break the two symmetries must
transform as

u(0)(g) ⊗ · · · ⊗ u(0)(g)|φL〉 = [α(g)]L|φL〉 (21)

for all values of L that are large enough. Here u(0)(g) is the
linear representation of G acting on the physical states in
each site and α(g) is a one-dimensional linear representation
of G.

Let us apply the above result to a boson system with
p/q bosons per site. Here the boson number is conserved
and there is a U (1) symmetry. Certainly, the system is well
defined only when the number of sites L has the form L = Jq

(assuming p and q have no common factors). For such L,
we find that αL(g) = α0(g)J = α0(g)L/q , where α0(g) is the
generating 1D representation of the U (1) symmetry group. So
Eq. (21) is not satisfied for some large L. Therefore, a 1D state
of conserved bosons with fractional bosons per site must be
gapless, if the state does not break the U (1) and the translation
symmetry.

In higher dimensions, the situation is very different. A 2D
state of conserved bosons with fractional bosons per site can
be gapped, and, at the same time, does not break the U (1) and
the translation symmetry. 2D fractional quantum Hall states of
bosons on a lattice provide examples of this kind of state.

Also, by repeating the discussions in Sec. V A 1 for {ni}-
block TI LU transformations on the 1D TI MPS, we can show
that for 1D spin systems with only translation and on-site linear
symmetry G, all the phases of gapped states that do not break
the two symmetries are classified by a pair (ω,α) where ω ∈
H 2(G,C) label different types of projective representations of
G and α labels different 1D representations of G.

Here α(g) is a 1D representation of G that appears in
Eq. (21). The symmetric LU transformations cannot change
the 1D representation α(g). So the different phases are also
distinguished by the 1D representations α of G.

Here are a few concrete examples. If we choose the
symmetry group to be G = Zn, we find that, for 1D spin
systems with only translation and on-site Zn symmetry, there
are n phases for gapped states that do not break the two
symmetries.
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This is because Zn has no projective representations and
has n different 1D representations. As an example, consider
the model

H =
∑

i

[ − hσ z
i − σx

i−1σ
y

i σ z
i+1

]
, (22)

where σx,y,z are the Pauli matrices. The model has a Z2

symmetry generated by σ z. The two different Z2-symmetric
phases correspond to the h → ∞ phase and the h → −∞
phase of the model.

If we choose the symmetry group to be G = SO(3), we
find that, for 1D integer-spin systems with only translation
and SO(3) spin rotation symmetry, there are two phases
for gapped states that do not break the two symmetries.
This is because SO(3) has only one 1D representation and
H 2(SO(3),C) = Z2. Such a result agrees with the well-known
result that the Affleck-Kennedy-Lieb-Tasaki (AKLT) state45

of a spin-1 chain and the direct product state with spin 0 on
each site represent two different SO(3)-symmetric TI phases.
The AKLT state (and the related Haldane phase23) has gapless
boundary spin-1/2 states46–48 and nontrivial string orders,49,50

which indicate that the AKLT state is really different from
the spin-0 product state. Actually, the full symmetry of SO(3)
can be relaxed to only the dihedral group D2(Z2 × Z2) by
rotation by π around the x, y, and z axes. As explained in
Appendix C, D2 has one nontrivial projective representation,
to which the AKLT state corresponds. The AKLT state is
different from the spin-0 product state as long as on-site D2

symmetry is preserved. This is consistent with the result in
Refs. 22 and 50.

5. 1D systems with translation and parity symmetries

In this section, we will consider the case of parity symmetry
for a translational-invariant system. We define the parity
operation P for a spin chain to be in general composed of
two parts: P1, exchange of sites n and −n; P2, on-site unitary
operation u(0) where (u(0))2 = I . (The Z2 operation u(0) is
necessary in the definition of parity if we want to consider, for
example, a fixed-point state with |EP 〉 = |00〉 + |11〉 to be
parity symmetric. The state is not invariant after exchange of
sites, and only maps back to itself if in addition the two virtual
spins on each site are also exchanged.) As in the previous
discussion, P gets redefined as we renormalize the state until
at the fixed point P1 becomes the exchange of renormalized
sites and P2 becomes u(∞) on every site, (u(∞))2 = I . The
fixed-point matrices hence satisfy (the ∞ label is dropped)∑

j lj r

uil ir ,j l j r AT
j lj r = ±M−1Ailir M (23)

for some invertible matrix M , where we have used that the 1D
representation of parity is either (1,1) or (1,−1). We label the
two 1D representations with α(P ) = ±1. Here M satisfies
M−1MT = eiθ . But M = (MT )T = e2iθM; therefore eiθ =
±1 and correspondingly M is either symmetric, M = MT ,
or antisymmetric, M = −MT . We will label this sign factor
as β(P ) = ±1.

Solution of this equation gives that u = α(P )v(ul ⊗ ur ),
where v is the exchange operation of two virtual spins il and
ir and ul ,ur act on il ,ir , respectively. (ul)T = β(P )ul and

(ur )T = β(P )ur . It can then be shown that each entangled
pair |EPk,k+1〉 must be symmetric under parity operations
and satisfies ur

k ⊗ ul
k+1|EPk+1,k〉 = α(P )|EPk,k+1〉. There are

hence four different symmetric phases corresponding to
α(P ) = ±1 and β(P ) = ±1. By enlarging the local Hilbert
space, we can show as before that fixed points within each
class can be mapped from one to the other with the {ni}-block
TI LU transformation preserving the parity symmetry. On
the other hand, fixed points in different classes cannot be
connected without breaking the symmetries. Therefore, under
the {ni}-block TI LU transformation, there are four block
classes with parity symmetry and hence four parity-symmetric
TI phases: For 1D spin systems with only translation and parity
symmetry, there are four phases for gapped states that do not
break the two symmetries.

As an example, consider the following model:

H =
∑

i

[−BSz
i + Si · Si+1

]
, (24)

where Si are the spin-1 operators. The model has a parity
symmetry. The B = 0 phase and the B → +∞ phase of the
model correspond to two of the four phases discussed above.
The B = 0 state23 is in the same phase as the AKLT state. In the
fixed-point state for such a phase, |EPk,k+1〉 = |↑↓〉 − |↓↑〉.
The parity transformation exchanges the first and the second
spin, and induces a minus sign: P : |EPk,k+1〉 → −|EPk,k+1〉.
The B → +∞ state is the Sz = 1 state. Its entangled pairs are
|EPk,k+1〉 = |↑↑〉, which do not change sign under the parity
transformation. Thus the stability of the Haldane or AKLT
state is also protected by the parity symmetry.20–22

To understand why there are four parity-symmetric phases
instead of two (parity even and parity odd), we give four
representative states in Fig. 4, one for each phase. A connected
pair of black dots denotes an entangled pair. + stands for a
parity-even pair, for example, |00〉 + |11〉, and − stands for
a parity-odd pair, for example, |01〉 − |10〉. Each rectangle
corresponds to one site, with four virtual spins on each site.
The four states are all translational invariant. If the parity
operation is defined to be exchange of sites together with
exchange of virtual spins 1 and 4, 2 and 3 on each site, then
states (a) and (d) are parity even while (b) and (c) are parity
odd. But (a) and (d) [or (b) and (c)] are different parity-even
(-odd) states and cannot be mapped to each other through local
unitary transformations without breaking parity symmetry.

(d)

+ +

+ + + +

+ + + + + + +

− − −

− − − −

− − − − − − −

(a)

(b)

(c)
+

FIG. 4. (Color online) Representative states of the four parity-
symmetric phases, corresponding to (a) α(P ) = 1, β(P ) = 1,
(b) α(P ) = −1, β(P ) = 1 (c) α(P ) = −1, β(P ) = −1, (d) α(P ) =
1, β(P ) = −1. + stands for a parity-even entangled pair (e.g.,
|00〉 + |11〉), and − stands for a parity-odd entangled pair (e.g.,
|01〉 − |10〉). Each site contains four virtual spins.
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Written in the matrix product representation, the matrices of
the four states will transform with α(P ) = ±1 and β(P ) = ±1,
respectively. Therefore, the parity-even or parity-odd phase
breaks into two smaller phases and there are in all four phases
for parity-symmetric systems.

C. Time-reversal symmetry

Time reversal, unlike other symmetries, is represented by
the antiunitary operator T , which is equivalent to the complex
conjugate operator K followed by a unitary operator U . T

has two projective representations: one on integer spins with
T 2 = I and the other on half-integer spins with T 2 = −I .
The classification of gapped 1D time-reversal-invariant phases
follows closely the cases discussed before. In this section, we
will highlight the differences and give our conclusion.

First, a state |φ〉 is called time-reversal invariant if T ⊗
T · · · ⊗ T |φ〉 = β|φ〉, where |β| = 1. But for antiunitary T ,
the global phase β is arbitrary and in particular we can
redefine |φ′〉 = √

β|φ〉, such that T ⊗ T · · · ⊗ T |φ′〉 = |φ′〉.
Therefore, in the following discussion, we will assume without
loss of generality that β = 1.

Now let us consider a system without translational invari-
ance. T 2 = I or −I does not make a difference here as we
can take block size 2 so that on the renormalized site, T 2 is
always equal to I . Using arguments similar to those in the case
of on-site unitary symmetry, we can keep track of and redefine
the symmetry operations as we do the renormalization. Finally,
at the fixed point we have a state described by matrices
(A[k]

il ir
)(∞) which is invariant under the time-reversal operation

(T [k])(∞) = (u[k])(∞)K , that is,∑
j lj r

u
[k]
il ir ,j l j r

(
A

[k]
j lj r

)∗ = N−1
[k] A

[k]
il ir

M[k],

(25)
N[k] = M[k−1],

where the fixed-point label ∞ has been omitted. Solving this
equation, we find the following:

(a) M[k]M
∗
[k] = eiθ I . As M[k] is invertible, eiθ = ±1.

(b) u[k] = u[k],l ⊗ u[k],r , where u[k],l(u[k],l)∗ = ±I and
u[k],r (u[k],r )∗ = ±I . Therefore, each entangled pair is time-
reversal invariant,

(u[k],r ⊗ u[k+1],l)K|EPk,k+1〉 = |EPk,k+1〉. (26)

As in previous sections, we can show that uu∗ = I and
uu∗ = −I correspond to two equivalence classes and two
time-reversal-invariant fixed-point states can be mapped into
each other if and only if they belong to the same class.
Therefore, our classification result for time-reversal symmetry
is that, for 1D gapped spin systems with only time-reversal
symmetry, there are two phases that do not break the symmetry.

If the system has additional translation symmetry, we
can similarly classify the TI phases and find that, for 1D
systems with only translation and time-reversal symmetry T ,
there are two gapped phases that do not break the two
symmetries, if on each site the time-reversal transformation
satisfies T 2 = I . 1D integer-spin systems are examples of this
case. The Haldane or AKLT state and the spin-0 product state
are representatives of the two phases respectively.15,21,22 We
also have the following result: 1D systems with translation and

time-reversal symmetry are always gapless or have degenerate
ground states, if on each site the time-reversal transformation
satisfies T 2 = −I . 1D half-integer-spin systems are examples
of this case.

VI. GENERALIZATION TO HIGHER DIMENSIONS

In the last few sections, we classified symmetry-protected
topological orders in one dimension, using (symmetric) LU
transformations. Can we use (symmetric) LU transformations
to classify (symmetry-protected) topological orders in higher
dimensions?

In higher dimensions, the situation is much more compli-
cated. First, infinitely many kinds of nontrivial topological
orders exist for class of systems without any symmetries.7,51

A partial classification is given in Ref. 8 for such a case in 2D.
In the presence of symmetry, the phase diagram is even more
complicated. 2D topological orders protected by time-reversal
and point-group symmetry were studied in Ref. 52. So far, we
do not have a detailed understanding of topological phases in
the presence of symmetry.

However, using similar arguments as those used for 1D
systems, we can obtain some simple partial results for higher
dimensions. For example, we have that, for d-dimensional
spin systems with only translation and an on-site symmetry G

which is realized linearly, the object (α,ω1,ω2, . . . ,ωd ) labels
distinct gapped quantum phases that do not break the two
symmetries. Here α labels the different 1D representations of
G and ωi ∈ H 2(G,C) label the different types of projective
representations of G.

Let us illustrate the above result in 2D by considering
a tensor network state (TNS) on a square lattice, where
the physical states existing on each vertex i are labeled by
mi. A translation-invariant TNS is defined by the following
expression for the many-body wave function �({mi}):

�({mi}) =
∑
ijkl···

A
m1
ejif A

m2
jhkgA

m3
lqrkA

m4
t lsi · · · . (27)

Here A
mi
ijkl is a complex tensor with one physical index mi

and four inner indices i,j,k,l. The physical index runs over
the number of physical states d on each vertex, and the
inner indices run over D values. The TNS can be represented
graphically as in Fig. 5. If the tensor A satisfies

Am
lrud = α(g)

∑
l′r ′u′d ′

umm′(g)[M−1(g)]ll′Mr ′r (g)

× [N−1(g)]dd ′Nu′u(g)Am′
l′r ′u′d ′ , (28)

m m

m m
qt

e h

1 2

34

g

s r

f

ki
l

j

FIG. 5. Tensor network: A graphic representation of the tensor-
product wave function (27) on a 2D square lattice. The indices on the
links are summed over.
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(d)(c)

(a) (b)

FIG. 6. (Color online) (ω1 = 0,1; ω2 = 0,1) label four distinct
states in integer-spin systems with translation and spin rotation
symmetries: (a) (ω1,ω2) = (0,0), (b) (ω1,ω2) = (0,1), (c) (ω1,ω2) =
(1,0), and (d) (ω1,ω2) = (1,1). The open dots represent 0 spins. The
solid dots represent 1/2 spins. Two solid dots connected by a line
represent a spin singlet formed by two 1/2 spins. The state in (a) has
a spin 0 on each site. The state in (b) and (c) has two spins 1/2 on each
site [or four states per site that form the spin-(0+1) representation of
SO(3)]. The state in (d) has four spins 1/2 on each site [or 16 states
per site that form the spin-(0 + 0 + 1 + 1 + 1 + 2) representation of
SO(3)].

for some invertible matrices M(g) and N (g) then the many-
body wave function �({mi}) is symmetric under the on-site
symmetry transformation g in the on-site symmetry group G.
Here α(g) is a one-dimensional representation of G, the D × D

matrices M(g) form a projective representation represented
by ω1 ∈ H 2(G,C), and the D × D matrices N (g) form a
projective representation represented by ω2 ∈ H 2(G,C). Since
a symmetric LU transformation cannot change (α,ω1,ω2),
(α,ω1,ω2) label distinct quantum phases.

In fact (α,ω1,ω2) are all measurable, so they indeed label
distinct quantum phases. On a torus of size Lx × Ly , the
symmetric many-body wave function �({mi}) transforms as

the 1D representation αLxLy (g) under the on-site symmetry
transformation g. If G has only a finite number of 1D
representations, we can always choose Lx and Ly such that
αLxLy (g) = α(g).

On a cylinder of size Lx × Ly with an open boundary in the
x direction, the states on one boundary will form a projective
representation which is represented by Lyω1 ∈ H 2(G,C).
Similarly, if the open boundary is in the y direction, the states
on one boundary will form a projective representation which
is represented by Lxω2 ∈ H 2(G,C). If we choose Lx and Ly

properly (for example, to make Lxω2 = ω2 and Lyω1 = ω1),
we can detect both ω1 and ω2.

A system with integer on-site spins gives us an example
with G = SO(3), if the system has translation and spin
rotation symmetry. For G = SO(3) there is no nontrivial
1D representation. So we can drop the consideration of α.
Also G = SO(3) has two types of projective representation:
H 2(SO(3),C) = {0,1}, where ω = 0 is the trivial projective
representation, which corresponds to linear representations of
SO(3) (on integer spins), and ω = 1 is the nontrivial projective
representation, which corresponds to half-integer spins. Thus
(ω1 = 0,1; ω2 = 0,1) label four distinct states in 2D (see
Fig. 6).

VII. CONCLUSION

Using the (symmetric) local unitary equivalence relation
between gapped ground states in the same phase and the
matrix product representation of 1D states, we classify possible
quantum phases for strongly interacting 1D spin systems with
a certain symmetry when the ground state of the system
does not break the symmetry. Our results are summarized in
Table I.

Many well-known results are rederived using a quite
different approach, for example the existence of the Haldane
phase23 and the gaplessness of the spin-1/2 Heisenberg
model.24 Those results are also greatly generalized to other
situations, for example to the cases of time-reversal symmetry

TABLE I. Summary of classification results for 1D gapped spin system with symmetric ground states. H 2(G,C) is the
second cohomology group of group G over complex number C. α(G) is a 1D representation of G.

Symmetry No. or label of different phases Example system

None 1
On-site linear symmetry of group G ω ∈ H 2(G,C)a On-site Zn or SU (2): One phase

On-site SO(3) or D2 on integer spin: Two phases
On-site projective symmetry of group G ω ∈ H 2(G,C) On-site SO(3) or D2 on

half-integer spin: Two phases
Time reversal (TR) 2
Translational invariance (TI) 1
TI + on-site ω ∈ H 2(G,C) and α(G) TI + on-site Zn: n phases
linear symmetry of group G TI + on-site SO(3) on integer spin: Two phases
TI + on-site 0 TI + on-site SO(3) or D2 on
projective symmetry of group G half-integer spin: No gapped phase
TI + parity 4
TI + TR 2 if T 2 = I TI + TR on integer spin: Two phases

0 if T 2 = −I TI + TR on half-integer spin: No gapped phase

aThis result applies when α(G) form a finite group; when G = U (1), further classifications according to different α(U (1))
exist.

035107-12



CLASSIFICATION OF GAPPED SYMMETRIC PHASES IN . . . PHYSICAL REVIEW B 83, 035107 (2011)

and D2 symmetry. We find that the projective representations
play a very important role in understanding and formulating
those generalized results.

In higher dimensions, things are more complicated. Nev-
ertheless, similar considerations allow us to obtain some
interesting examples of symmetry-protected topological or-
ders. A complete classification of higher-dimensional phases,
however, requires at least a full understanding of topo-
logical orders, an element that is absent in the 1D phase
diagram.

Results similar to ours on the classification of integer and
half-integer 1D spin chains with SO(3) symmetry have been
obtained independently by Kitaev recently.53
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APPENDIX A: LOCAL UNITARY TRANSFORMATION ON
MATRIX PRODUCT STATE AND INVARIANCE OF

DOUBLE TENSOR

In this section we present the proof for the theorem
that two sets of matrices Ai,αβ and Bj,αβ , where i,j label
different matrices and αβ are the row and column indices of
the matrices, give rise to the same double tensor Eαγ,βχ =∑

i Ai,αβ × A∗
i,γ χ = ∑

j Bj,αβ × B∗
j,γ χ , if and only if they are

related by a unitary transformation Bj,αβ = ∑
i UjiAi,αβ . The

dimension M of i and the dimension N of j can be different.
Suppose that M < N . We can always append the list of
matrices Ai,αβ with zero matrices and make the dimension
of i equal to N . Uji is then a unitary operator defined on
N -dimensional Hilbert space. The complete proof of this
theorem can be found in Ref. 37, where this property is
discussed in terms of “the unitary degree of freedom in the
operator sum representation of quantum channels.” Here we
re-present this proof following the notation and terminology
of the current paper for simplicity of understanding.

First we prove the “if” part of the theorem. Suppose that
Bi,αβ = ∑

j UijAj,αβ ; then

EB
αγ,βχ =

∑
i

Bi,αβ × B∗
i,γ χ

=
∑

i

∑
j1

∑
j2

Uij1Aj1,αβ × U ∗
ij2

A∗
j2,γ χ

=
∑
j1,j2

∑
i

Uij1U
†
j2i

Aj1,αβ × A∗
j2,γ χ

=
∑
j1

Aj1,αβ × A∗
j1,γ χ = EA

αγ,βχ (A1)

Therefore the two double tensors are the same. This proves the
first part of the theorem.

On the other hand, suppose that the two double tensors are
the same, EA

αγ,βχ = EB
αγ,βχ = Eαγ,βχ . Reorder the indices of

E and treat it as a matrix with row indices αβ and column
indices γχ . We will denote the double tensor after this
reordering as Êαβ,γ χ . It is easy to see that Ê is a positive
semidefinite matrix, as∑

αβ,γ χ

v∗
αβÊαβ,γ χvγχ

=
∑

i

⎛
⎝∑

αβ

v∗
αβBi,αβ

⎞
⎠ ×

(∑
γχ

B∗
i,γ χvγχ

)
� 0 (A2)

for any vector vαβ .
Diagonalize Ê into

Êαβ,γ χ =
∑

k

λkek,αβ × e∗
k,γ χ (A3)

with λk � 0. Define vectors ẽk,αβ = √
λkek,αβ , so that

Êαβ,γ χ = ∑
k ẽk,αβ × ẽ∗

k,γ χ . ẽk,αβ form a complete orthogonal
set and hence we can expand Ai,αβ and Bi,αβ in terms of them:

Ai,αβ =
∑

k

Pikẽk,αβ,

(A4)
Bi,αβ =

∑
k

Qikẽk,αβ .

Then

Êαβ,γ χ =
∑

i

Ai,αβ × A∗
i,γ χ

=
∑
k1k2

∑
i

Pik1P
∗
ik2

ẽk1,αβ × ẽ∗
k2,γ χ . (A5)

But we know that Êαβ,γ χ = ∑
k ẽk,αβ × ẽ∗

k,γ χ . Therefore,∑
i Pik1P

∗
ik2

= δk1k2 and P is a unitary matrix.
Similarly we can show that Q is a unitary matrix. Therefore

Ai,αβ and Bj,αβ are related by a unitary transformation Uij

where U = PQ†. We have thus proved both parts of the
theorem.

APPENDIX B: DEGENERACY OF LARGEST EIGENVALUE
OF DOUBLE TENSOR AND CORRELATION LENGTH OF

MATRIX PRODUCT STATE

In Sec. III, we cited the property of matrix product states
that the finite correlation length of the state is closely related
to the nondegeneracy of the largest eigenvalue of the double
tensor, as discussed in Refs. 32,33, and 38. In this section,
we give a brief illustration of why this is so. For simplicity
of notation, we focus on the translational-invariant case first.
Generalization to matrix product states without translational
invariance is straightforward and similar conclusions can be
reached.

For a matrix product state |φ〉 described by matrices
Ai,αβ with double tensor Eαγ,βχ = ∑

i Ai,αβ × A∗
i,γ χ , de-

fineE[O]αγ,βχ = ∑
ij OijAi,αβ × A∗

j,γ χ for arbitrary operator
Oij . Follow the previous convention and treat E and E[O] as
matrices with row index αγ and column index βχ . The norm
of the wave function is given by 〈φ|φ〉 = Tr(EN ), where N

is the total length of the chain. Without loss of generality,
we can set the largest eigenvalue of E to be 1 and hence the
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norm goes to a finite value (dimension of the eigenspace) as N

goes to infinity. The expectation value of any local operator O

is 〈O〉 = Tr(EN−1E[O])/Tr(EN ) and the correlation between
two operators O1 and O2 becomes

〈O1O2〉 − 〈O1〉〈O2〉
= Tr(EN−L−2E[O1]ELE[O2])/Tr(EN )

− Tr(EN−1E[O1])Tr(EN−1E[O2])/Tr2(EN ). (B1)

The physical constraints on the expectation value and
correlation functions of local operators require that the double
tensor E has certain properties. First, put E into its Jordan
normal form and decompose it as E = ∑

λ λPλ + Rλ, where
Pλ is the diagonal part and Rλ the nilpotent part. But
for the largest eigenvalue 1, R1 must be 0, as otherwise
for large system size N 〈O〉 = Tr(EN−1E[O])/Tr(EN ) ∼
Tr{(P1 + R1)NE[O]} will be unbounded for any E[O] that
satisfies Tr(R1E[O]) 	= 0. The physical requirement that any
local operator has bounded norm requires that R1 must
be 0.

Next we will show that the dimension of P1 is
closely related to the correlation length of the state.
At large system size N , the correlator 〈O1O2〉 −
〈O1〉〈O2〉 = Tr{P1E[O1](

∑
λ λPλ + Rλ)LE[O2]}/Tr(P1) −

Tr(P1E[O1])Tr(P1E[O2])/Tr2(P1). When L is large, we
keep only the first-order term in (

∑
λ λPλ + Rλ)L and

the correlator goes to Tr(P1E[O1]P1E[O2])/Tr(P1) −
Tr(P1E[O1])Tr(P1E[O2])/Tr2(P1). If P1 is one dimensional,
the two terms both become 〈v1|E[O1]|v1〉〈v1|E[O2]|v1〉
and cancel each other for any O1,O2, and the second-order
term in (

∑
λ λPλ + Rλ)L dominates, which decays as

λL. For λ < 1, the correlator goes to zero exponentially
and the matrix product state has a finite correlation
length. On the other hand, if P1 is more than one
dimensional, the first-order term has a finite contribution
independent of L,

∑
i,j 〈vi |E[O1]|vj 〉〈vj |E[O2]|vi〉/Tr(P1) −

〈vi |E[O1]|vi〉〈vj |E[O2]|vj 〉/Tr2(P1), where vi,vj are
eigenbases for P1. Therefore, degeneracy of the largest
eigenvalue of the double tensor implies a nondecaying
correlation. To describe quantum states with finite correlation
length, the double tensor must have a largest eigenvalue that
is nondegenerate.

If the system is not translational invariant and E[k] vary
from site to site, we cannot diagonalize all the double tensors
at the same time. However, as shown in the “canonical
form” of Ref. 33, there is a largest eigenspace of E[k] (with
eigenvalue 1) such that the right eigenvector on site k is
the same as the left eigenvector on site k + 1. Therefore,
when they are multiplied together this eigenspace will always
have eigenvalue 1. There could be other eigenspaces with
eigenvalue 1 and matching eigenvectors from site to site. How-
ever, then we can show, as in the TI case, that this leads to an in-
finite correlation length. On the other hand, other eigenspaces
could have eigenvalues smaller than 1 or they have mismatched
eigenvectors. If this is the case, all other eigenspaces decay
exponentially with the number of sites multiplied together
which gives rise to a finite correlation length. We will say that
E[k] has a nondegenerate largest eigenvalue 1 for this case in
general.

APPENDIX C: PROJECTIVE REPRESENTATION

The operators u(g) form a projective representation of
symmetry group G if

u(g1)u(g2) = ω(g1,g2)u(g1g2), g1,g2 ∈ G. (C1)

Here ω(g1,g2) ∈ C, the factor system of the projective repre-
sentation, satisfies

ω(g2,g3)ω(g1,g2g3) = ω(g1,g2)ω(g1g2,g3), (C2)

for all g1,g2,g3 ∈ G. If ω(g1,g2) = 1, this reduces to the usual
linear representation of G.

A different choice of prefactor for the representation
matrices u′(g) = β(g)u(g) will lead to a different factor system
ω′(g1,g2):

ω′(g1,g2) = β(g1g2)

β(g1)β(g2)
ω(g1,g2). (C3)

We regard u′(g) and u(g), which differ only by a prefactor,
as equivalent projective representations and the corresponding
factor systems ω′(g1,g2) and ω(g1,g2) as belonging to the same
class ω.

Suppose that we have one projective representation u1(g)
with factor system ω1(g1,g2) of class ω1 and another
u2(g) with factor system ω2(g1,g2) of class ω2; obviously
u1(g) ⊗ u2(g) is a projective presentation with factor group
ω1(g1,g2)ω2(g1,g2). The corresponding class ω can be written
as a sum ω1 + ω2. Under such an addition rule, the equivalence
classes of factor systems form an Abelian group, which is
called the second cohomology group of G and denoted as
H 2(G,C). The identity element ω0 of the group is the class
that contains the linear representation of the group.

Here are some simple examples:
(a) Cyclic groups Zn do not have a nontrivial projective

representation. Hence for G = Zn, H 2(G,C) contains only
the identity element.

(b) A simple group with nontrivial projective representa-
tion is the Abelian dihedral group D2 = Z2 × Z2. For the
four elements of the group (0/1,0/1), consider represen-
tation with Pauli matrices g(0,0) = [ 1 0

0 1 ], g(0,1) = [ 0 1
1 0 ],

g(1,0) = [ 1 0
0 −1 ], g(1,1) = [ 0 −i

i 0 ]. It can be check that this
gives a nontrivial projective representation of D2.

(c) When G = SO(3), H 2(G,C) = Z2. The two elements
correspond to integer and half-integer representations of
SO(3), respectively.

(d) When G = U (1), H 2(G,C) is trivial: H 2(U (1),C) =
Z1. We note that {eimθ } form a representation of U (1) = {eiθ }
when m is an integer, but {eimθ } will form a projective
representation of U (1) when m is not an integer. But under
the equivalence relation (C3), {eimθ } correspond to the trivial
projective representation, if we choose β(g) = e−imθ . Note
that β(g) can be a discontinuous function over the group
manifold.

APPENDIX D: SOLVING THE SYMMETRY CONDITION
FOR A FIXED POINT

In this Appendix, we explicitly solve the symmetry condi-
tion Eq. (14). The goals are (1) to classify possible symmetry
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operations at a fixed point and (2) to find the corresponding
symmetric fixed-point state. For simplicity, we drop the site
index [k] and rewrite Eq. (14) as

∑
j lj r

uil ir ,j l j r (g)

α(R)(g)
Ajlj r = N−1(g)Ailir M(g), (D1)

where u(g) is a projective or linear unitary representation of
G, the matrix Ailir is given by its matrix elements Ailir ,αβ =√

λl
il δilα · √

λr
ir δirβ with il,α = 1, . . . ,Dl , ir ,β = 1, . . . ,Dr ,

and M(g),N (g) are sets of invertible matrices labeled by
g. Since u(g)

α(R)(g) is also a projective or linear unitary repre-

sentation of G, we can absorb α(R)(g) into u(g) and rewrite
Eq. (D1) as∑

j lj r

uil ir ,j l j r (g)Ajlj r = N−1(g)Ailir M(g). (D2)

We note that matrix elements Ailir ,αβ are nonzero only when
α = il , β = ir , and the full set of {Ailir } form a complete basis
in the space of (Dl × Dr )-dimensional matrices.

M(g),N (g) do not necessarily form a representation of
G. But the fixed-point form of the matrices requires that
M(g),N (g) be a projective representation, as on the one hand∑

j lj r

uil ir ,j l j r (g1g2)Ajlj r

=
∑

j lj r klkr

ωsym(g1,g2)uil ir ,klkr (g1)uklkr ,j l j r (g2)Ajlj r

=
∑
klkr

ωsym(g1,g2)uil ir ,klkr (g1)N−1(g2)Aklkr M(g2)

= ωsym(g1,g2)N−1(g2)N−1(g1)Ailir M(g1)M(g2), (D3)

and on the other hand∑
j lj r

uil ir ,j l j r (g1g2)Ajlj r = N−1(g1g2)Ailir M(g1g2).

(D4)

Therefore

ωsym(g1,g2)N−1(g2)N−1(g1)Ailir M(g1)M(g2)

= N−1(g1g2)Ailir M(g1g2) (D5)

for all il ir . However, the set of matrices {Ailir } form a com-
plete basis in the space of (Dl × Dr )-dimensional matrices.
Therefore,

ωsym(g1,g2)N−1(g2)N−1(g1) ⊗ M(g1)M(g2)

= N−1(g1g2) ⊗ M(g1g2), (D6)

N (g) and M(g) form two projective representations

N (gh) = ωN (g,h)N (g)N (h),
(D7)

M(gh) = ωM (g,h)M(g)M(h),

with |ωN (g1,g2)| = |ωM (g1,g2)| = 1, and

ωsym(g1,g2) = ωM (g1,g2)

ωN (g1,g2)
. (D8)

Let us rewrite Eq. (D2) as

N (g)

⎛
⎝∑

j lj r

uil ir ,j l j r (g)Ajlj r

⎞
⎠ M−1(g) = Ailir . (D9)

We note that

N (g)

⎛
⎝∑

j lj r

(Ñ−1)j l ,il M̃ir ,j r Ajlj r

⎞
⎠ M−1(g) = Ailir , (D10)

where the matrices M̃ and Ñ are given by

M̃αβ = Mαβ

√
λr

α√
λr

β

, Ñαβ = Nαβ

√
λl

β√
λl

α

. (D11)

Since the set of matrices {Ailir } forms a complete basis in the
space of (Dl × Dr )-dimensional matrices, we find

uil ir ,j l j r (g) = (Ñ−1)j l ,il (g)M̃ir ,j r (g). (D12)

Putting back the factor of α(R)(g), we find that

uil ir ,j lj r (g) = α(R)(g)(Ñ−1)j l ,il (g)M̃ir ,j r (g). (D13)

APPENDIX E: EQUIVALENCE BETWEEN SYMMETRIC
FIXED-POINT STATES

From the solution in Appendix D, we know that the
fixed-point state symmetric under linear on-site symmetry of
group G takes the form

|φ〉(∞) = |EP1,2〉|EP2,3〉 · · · |EPk,k+1〉 · · · , (E1)

where |EPk,k+1〉 is an entangled pair between the right virtual
qubit on site k and the left virtual qubit on site k + 1(see Fig. 2,
upper layer). Each entangled pair is invariant under a linear
symmetry transformation of the form u[k],r (g) ⊗ u[k+1],l(g),

u[k],r (g) ⊗ u[k+1],l(g)|EPk,k+1〉 = |EPk,k+1〉. (E2)

But u[k],r (g) or u[k+1],l(g) alone might not form a linear
representation of G. They could in general be projective
representations of G. If u[k],r (g) is a projective representation
corresponding to class ω in H 2(G,C), then u[k+1],l must
correspond to class −ω. ω does not vary from site to site
and labels a particular symmetric fixed-point state.

Now we will show that symmetric fixed-point states
with the same ω can be connected through symmetric LU
transformations and hence belong to the same phase while
those with different ω cannot and belong to different phases.
First, suppose that two symmetric fixed-point states |φ1〉 and
|φ2〉 are related to the same ω, i.e.,

u
[k],r
1 (g) ⊗ u

[k+1],l
1 (g)|EPk,k+1〉1 = |EPk,k+1〉1,

(E3)
u

[k],r
2 (g) ⊗ u

[k+1],l
2 (g)|EPk,k+1〉2 = |EPk,k+1〉2,

where |EPk,k+1〉1(2) is an entangled pair of virtual spins on
the Hilbert space H[k],r

1(2) ⊗ H[k+1],l
1(2) . u

[k],r
1(2) (g) is a projective

representation of G corresponding to ω onH[k],r
1(2) and u

[k+1],l
1(2) (g)

a projective representation corresponding to −ω on H[k+1],l
1(2) .

We can think of |EPk,k+1〉1 and |EPk,k+1〉2 as existing
together in a joint Hilbert space (H[k],r

1 ⊕ H[k],r
2 ) ⊗ (H[k+1],l

1 ⊕
H[k+1],l

2 ). The symmetry representation on this joint Hilbert
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FIG. 7. (Color online) Fixed-point state related to projective
representation of class ω before (upper) and after (lower) a local
unitary operation on the shaded region that does not break the
symmetry. White dots correspond to ω0, the identity element in
H 2(G,C), black dots correspond to ω, and gray dots correspond
to −ω.

space can be defined as

u[k],r (g) ⊗ u[k+1],l(g)

= [
u

[k],r
1 (g) ⊕ u

[k],r
2 (g)

] ⊗ [
u

[k+1],l
1 (g) ⊕ u

[k+1],l
2 (g)

]
.

(E4)

As u
[k],r
1 (g) and u

[k],r
2 (g) [also u

[k+1],l
1 (g) and u

[k+1],l
2 (g)] both

correspond to ω (−ω), their direct sum u[k],r (g)[u[k+1],l(g)]
is also a projective representation corresponding to ω (−ω).
Therefore, we have a linear representation of G on each site
k, u[k],l(g) ⊗ u[k],r (g), and both |EPk,k+1〉1 and |EPk,k+1〉2 are
symmetric under u[k],r (g) ⊗ u[k+1],l(g).

Now we can perform a LU transformation on the joint
Hilbert space and rotate continuously between |EPk,k+1〉1 and
|EPk,k+1〉2. That is,

U (θ ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
(|a〉〈b| + |b〉〈a|), (E5)

where |a〉 = |EPk,k+1〉1, |b〉 = |EPk,k+1〉2, and θ goes from 0
to π . By doing this locally to each pair, we can map |φ1〉 to |φ2〉
(and vice versa) with LU transformations without breaking the
on-site symmetry of group G. Therefore, |φ1〉 and |φ2〉 belong
to the same phase if they are related to the same ω.

On the other hand, if |φ1〉 and |φ2〉 are related to ω1 and
ω2, respectively, we will show that they cannot be connected
by any LU transformation that does not break the symmetry.
Suppose that ω1 is nontrivial, we start with |φ1〉, and apply a
local unitary operation U to a finite region (shaded in Fig. 7).
|φ1〉 is composed of invariant singlets of symmetry group G.
If U does not break the symmetry, the resulting state should
still be composed of singlets. The singlet pairs outside of the
shaded region are not changed while those overlapping with
the shaded region can take any possible structure after the
operation U .

No matter what the change is, the right virtual spin on
the site to the left of the region corresponding to ω1 should
form a singlet with some degrees of freedom in the region.
As the singlet is invariant under a linear representation of G,
these degrees of freedom in the region must form a projective
representation of G corresponding to −ω1. These degrees of
freedom could exist on one site or be distributed over several
sites. However, the sites only support linear representations.
Therefore, there must be some remaining degrees of freedom
on the same sites that correspond to ω1. These remaining
degrees of freedom must form singlets again with other degrees
of freedom in the region that corresponds to −ω1. We can
continue this argument until finally some degree of freedom in

the region corresponding to −ω1 connects with the left virtual
spin on the site to the right of the region corresponding to ω1

and forms a singlet.
In Fig. 7, we illustrate one possible structure of singlets

after operation U . White dots correspond to ω0, the identity
element in H 2(G,C), black dots correspond to ω1, and gray
dots correspond to −ω1.

Therefore, we can see that no matter what the symmetric
LU operation on |φ1〉 might be, singlet entangled pairs related
to ω1 must connect head to tail and cover the whole length of
the chain. In other words, we cannot shrink a chain of singlet
entangled pairs related to nontrivial ω1 continuously to a point
or change it to ω2 by acting on it locally and without breaking
the symmetry. Hence fixed-point states with different ω cannot
be related to each other by a symmetric LU transformation and
hence belong to different classes.

APPENDIX F: A PROOF OF EQ. (21)

A gapped TI state can be represented by a uniform MPS.
After R steps of {ni}-block RG transformation, we obtain
a MPS described by matrices (Ailir )(R) which is given by
Eq. (11). To describe a state that does not break the on-site
linear symmetry, here (Ailir )(R) is invariant (up to a phase)
under u(R)(g) on each site. Therefore,40

∑
j lj r

uil ir ,j l j r (g)Ajlj r = α(R)(g)M−1(g)Ailir M(g) (F1)

must be satisfied with some invertible matrix M(g). Here we
have dropped the RG step label R [except in α(R)(g)]. Each
coarse-grained site is a combination of

∏R
i=1 ni original lattice

sites and the α(R)(g) form a 1D representation of G.
So if the number of sites has the form L = Q

∏R
i=1 ni , then

αL(g) in Eq. (13) will have the form

αL(g) = [α(R)(g)]Q (F2)

for any value of Q. Now let us choose Q = ∏R′
i=1 n′

i where∏R
i=1 ni and

∏R′
i=1 n′

i have no common factors. The total system

size becomes L = ∏R
i=1 ni

∏R′
i=1 n′

i . We can perform, instead,
an R′ step of the {n′

i}-block RG transformation, which leads
to a 1D representation α(R′)(g). We find that αL(g) in Eq. (13)
will have the form

αL(g) = [α(R′)(g)]Q
′
, (F3)

where Q′ = L/
∏R′

i=1 n′
i = ∏R

i=1 ni . Thus

αL(g) = [α(R)(g)]
∏R′

i=1 n′
i = [α(R′)(g)]

∏R
i=1 ni . (F4)

Since
∏R

i=1 ni and
∏R′

i=1 n′
i have no common factors, there

must exist a 1D representation α(g) of G, such that

α(R)(g) = [α(g)]
∏R

i=1 ni , α(R′)(g) = [α(g)]
∏R′

i=1 n′
i . (F5)

Now Eq. (F2) becomes

αL(g) = [α(g)]Q
∏R

i=1 ni = [α(g)]L (F6)

which gives us Eq. (21).
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APPENDIX G: EQUIVALENCE BETWEEN GAPPED TI b
PHASES AND GAPPED TI PHASES

We have been using the quantum circuit formulation to
study TI systems and classify b phases. As the quantum circuit
explicitly breaks translational symmetry, it is possible that each
b phase contains several different TI phases. (On the other
hand, states in different b phases must belong to different TI
phases.) In this Appendix, we will show that each b phase
actually corresponds to a single TI phase by establishing a TI
LU transformation between states in the same b phase. We
will use the time evolution formulation of LU transformation
(2) and find a smooth path of the gapped TI Hamiltonian
whose adiabatic evolution connects two states within the same
b phase.

First, as an example, we consider the case of TI only
and show that there is only one gapped TI phase. Each
translational-invariant MPS is described (up to a local change
of basis) by a double tensor E (see Fig. 8),

Eαγ,βχ =
∑

i

Ai,αβ ⊗ A∗
i,γ χ . (G1)

The MPS is short-range correlated if E has a nondegenerate
largest eigenvalue 1. E can be written as

Eαγ,βχ = E0
αγ,βχ + E′

αγ,βχ = 
αγ 
βχ + E′
αγ,βχ , (G2)

where 
 is the eigenvector of eigenvalue 1 and E′ is of
eigenvalue less than 1. In the canonical form,33 
αγ = λαδαγ ,
λα > 0. Obviously, E0 is a valid double tensor and represents
a state in fixed-point form. We can smoothly change E to E0

by reducing the E′ term to 0 from t = 0 to t = T as

E(t) = E0 +
(

1 − t

T

)
E′. (G3)

Every E(t) represents a TI SRC MPS. To see this, note that if
we recombine the indices αβ as row indices and γχ as column
indices and denote the new matrix as Ê (see Fig. 8), then both
Ê and Ê0 are positive semidefinite matrices. But then every
Ê(t) is also positive semidefinite, as for any vector |v〉

〈v|Ê(t)|v〉 = 〈v|Ê0|v〉 + (1 − t

T
)〈v|Ê′|v〉

= (1 − t

T
)〈v|Ê|v〉 + t

T
〈v|Ê0|v〉 > 0.

E(t) is hence a valid double tensor, and the state represented
can be determined by decomposing E(t) back into matrices
Ai(t). Such a decomposition is not unique. Ai(t) at different
times is determined only up to a local unitary on the physical

FIG. 8. Graphical representation of (a) matrices labeled by
physical index i and (b) double tensor denoted by E or Ê. E is a
matrix with αγ as row index and βχ as column index. Ê is a matrix
with αβ as row index and γχ as column index.

index i. But without loss of generality, we can choose the
local unitary to be continuous in time, so that the Ai(t) vary
continuously with time and reach the fixed-point form at t = T

(up to a local change of basis). The state represented by |φ(t)〉
hence also changes smoothly with t and is a pure state with
a finite correlation length as all eigenvalues of E(t) except
for 1 are diminishing with t .32,54 Therefore, E(t) represents
a smooth path in the TI SRC MPS that connects any state
to a fixed-point state (up to a local change of basis). Note
that the number of matrices Ai(t) necessary to compose E(t)
may change with t , corresponding to a change in the local
Hilbert space dimension as we do the deformation. We allow
such changes in general as we can imagine the states to be
embedded in very large (but finite) local Hilbert spaces. At
each time point t , the state might be supported only on a
subspace of the total Hilbert space.

How do we know that no phase transition happens along the
path? This is because for every state |φ(t)〉, we can find a parent
Hamiltonian that changes smoothly with t and has the state as
a unique gapped ground state.44 Following the construction
in Refs. 32 and 33, we choose a sufficiently large but finite l

and set the parent Hamiltonian to be H (t) = −∑
k h(t)k,k+l ,

where h(t)k,k+l is the projection onto the support space of the
reduced density matrix on site k to k + l at time t . Note that
this Hamiltonian is translation invariant. For large enough l,
h(t)k,k+l will always be (D × D) dimensional. As the state
changes continuously, its reduced density matrices from site k

to k + l change smoothly. Because the dimension of the space
does not change, h(t)k,k+l also changes smoothly with time.
Moreover, it can be shown that H (t) is always gapped as the
second largest eigenvalue of E(t) never approaches 1. 32,33

Therefore, by evolving the Hamiltonian adiabatically from
t = 0 to t = T , we obtain a local unitary transformation55

connecting any state to the fixed-point form, and in particular
without breaking the translation symmetry.

Because any TI fixed-point state can be disentangled into
product states in a TI way, we find that all TI 1D gapped
ground states are in the same phase, if no other symmetries
are required.

If the system is TI and has on-site symmetry, we need
to maintain the on-site symmetry while doing the smooth
deformation. A TI SRC MPS that is symmetric under on-site
symmetry of group G is described by matrices that satisfy∑

j

uij (g)Aj = α(g)M−1(g)AiM(g) (G4)

for some invertible projective representation M(g). The double
tensor E hence satisfies

Eαγ,βχ =
∑

α′β ′γ ′χ ′
M−1

αα′Mββ ′(M∗)−1
γ γ ′M

∗
χχ ′Eα′γ ′,β ′χ , (G5)

where the group element label g has been omitted. Because
E0 as the nondegenerate one-dimensional eigenspace of E
must be invariant under the same transformation, so must E′.
Therefore we have

E0
αγ,βχ =

∑
α′β ′γ ′χ ′

M−1
αα′Mββ ′(M∗)−1

γ γ ′M
∗
χχ ′E0

α′γ ′,β ′χ ′ ,

E′
αγ,βχ =

∑
α′β ′γ ′χ ′

M−1
αα′Mββ ′(M∗)−1

γ γ ′M
∗
χχ ′E′

α′γ ′,β ′χ ′ .
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Now we smoothly change the double tensor as in Eq. (G3).
Evidently, the symmetry condition Eq. (G5) is satisfied for
all t .

Decompose E(t) back to matrices Ai(t) so that the repre-
sented state |φ(t)〉 changes smoothly with time. Denote the
symmetry-transformed double tensor as EM(g). As EM(g)(t) =
E(t), there must exist a unitary operator ũ(g)(t), such that∑

j

ũij (g)(t)Aj (t) = M−1(g)Ai(t)M(g), (G6)

where ũ(g)(t) is a linear representation of G. Redefine
u(g)(t) = ũ(g)(t) × α(g); then∑

j

uij (g)(t)Aj (t) = α(g)M−1(g)Ai(t)M(g). (G7)

As Ai(t) is chosen to be continuous with time, from the above
equation we can see that u(g)(t) is also continuous in time. On
the other hand, u(g)(t) forms a linear representation of G. For
all the cases we are interested in, the linear representations of
G are discrete. Therefore, as u(g)(t) evolves smoothly with
time, it cannot change from one representation to another
but only from one equivalent form to another, which differ
by a unitary conjugation. That is, u(g)(t) = V (t)u(g)V †(t),
with a continuous V (t). We can incorporate V (t) into the
matrices Ai(t) and define Ãi(t) = ∑

j V
†
ij (t)Aj (t), so that

Ãi(t) is symmetric under u(g) for all t . In the following
discussion, we will assume that such a redefinition is made
and the symmetry operation of the system will always be
u(g) ⊗ · · · ⊗ u(g). Therefore, the continuous evolution ofE(t)
from t = 0 to t = T corresponds to a continuous evolu-
tion of short-range-correlated states |φ(t)〉 which is always
symmetric under the same on-site symmetry u(g), with the
same phase factor [α(g)]L and related to the same projective
representation ω.

Such a smooth path in symmetric state space corresponds to
a smooth path in symmetric Hamiltonian space. Construct the

parent Hamiltonian as discussed previously. Because the state
is symmetric under on-site u(g), the support space on sites k

to k + l must then form a representation space for [⊗u(g)]l .
Therefore, it is easy to see that the parent Hamiltonian, being a
summation of projections onto such spaces, is also a symmetry
under on-site u(g). Moreover, the Hamiltonian remains gapped
and TI. In this way, we have found a smooth path of a
symmetric, in particular TI, Hamiltonian whose adiabatic
evolution connects any symmetric state labeled by α(g) and ω

to the corresponding fixed-point state (up to a local change of
basis), hence establishing the symmetric TI LU equivalence
between them.

As we show in Appendix E that fixed-point states with the
same α(g) and ω can be related by symmetric local unitary
transformations to each other, we now complete the proof
that for 1D spin systems with only translation and an on-site
linear symmetry G, all gapped phases that do not break the two
symmetries are classified by a pair (ω,α) where ω ∈ H 2(G,C)
labels different types of projective representations of G and
α labels different 1D representations of G.

Similarly, if the system has translation and parity symmetry,
we can establish the equivalence between states labeled by the
same α(P ) and β(P ) in a translational-invariant way [see the
discussion below Eq. (23)]. The procedure is totally analogous
to that in the on-site symmetry case, with the only difference
that the symmetry conditions for the matrices and double
tensors become ∑

j

uijA
T
j = ±M−1AiM,

Eβχ,αγ =
∑

α′β ′γ ′χ ′
M−1

αα′Mββ ′(M∗)−1
γ γ ′M

∗
χχ ′Eα′γ ′,β ′χ ′ .

We find that for 1D spin systems with only translational and
parity symmetry, there are four gapped phases that do not break
the two symmetries.
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