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Magnetism, structure, and charge correlation at a pressure-induced Mott-Hubbard
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We use synchrotron x-ray diffraction and electrical transport under pressure to probe both the magnetism
and the structure of single-crystal NiS2 across its Mott-Hubbard transition. In the insulator, the low-temperature
antiferromagnetic order results from superexchange among correlated electrons and couples to a (1/2, 1/2, 1/2)
superlattice distortion. Applying pressure suppresses the insulating state, but enhances the magnetism as the
superexchange increases with decreasing lattice constant. By comparing our results under pressure to previous
studies of doped crystals, we show that this dependence of the magnetism on the lattice constant is consistent
for both band broadening and band filling. In the high-pressure metallic phase the lattice symmetry is reduced
from cubic to monoclinic, pointing to the primary influence of charge correlations at the transition. There exists
a wide regime of phase separation that may be a general characteristic of correlated quantum matter.
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I. INTRODUCTION

One of the great challenges of understanding correlated
materials is teasing apart the relative influences of the spin,
charge, orbital, and lattice degrees of freedom. The point
where an insulator becomes a metal highlights acutely the
competition between mechanisms, but it also affords a special
opportunity to limn the pertinent physics when different routes
across the phase transition are available. Going back to the
original ideas of Mott and Hubbard, we know that strong
Coulomb repulsion between electrons on a single lattice
site can localize charge even when band theory predicts
metallic behavior,1,2 and antiferromagnetism was attributed to
a consequence of superexchange between localized electrons.3

At the same time, Slater claimed that antiferromagnetism alone
could account for the formation of the insulating gap.4 All can
be subsumed by symmetry changes wrought by a structural
phase transition.5

The cubic pyrite crystal NiS2 has long been recognized
as a canonical Mott-Hubbard correlated insulator.2,6–11 Band-
structure calculations9 put the sulfur 3p band and the Ni
t2g band well below the half filled Ni eg band, pointing to
on-site Coulomb repulsion as the source of the insulating
energy gap Eg , which lies in the range 1–10 meV.10 The small
size of this gap demonstrates that NiS2 is an incipient Mott
insulator11 with the Coulomb repulsion U comparable to the
eg bandwidth, W = 2.1 eV.9 The gap can be suppressed either
by Se doping6,12,13 or applied pressure,14–16 but the scale of
the pressure required to drive the gap to zero in the pure limit
has introduced technical obstacles to systematic studies of
the competition between electronic, magnetic, and structural
correlations at the quantum phase transition. Doping with Se
expands the lattice and reduces the Ni 3d bandwidth,1,6 and
the transition in this case is thought to be driven by increasing
charge transfer between the Ni 3d and Se 4p bands.2 Applying
pressure tunes the ratio U/W and provides a more direct
approach to the Mott-Hubbard model.

We use synchrotron x-ray diffraction and electrical trans-
port in a diamond-anvil cell to parse the roles of the low-
temperature antiferromagnetism and the lattice structure, both
through the insulating state and at the transition to the metal
in the Mott-Hubbard system, NiS2. The reduced symmetry
in the metal to monoclinic—a highly unusual occurrence for
correlated materials described below—eliminates the change
in the structure as a likely origin of the delocalization of
charge. By comparing the pressure-induced transition in the
pure compound to the insulator-metal transition driven by
chemical substitution of Se for S, we identify the charge
degrees of freedom as the predominant driving mechanism.
Realizing the insulator-metal transition in high quality single
crystals of a stoichiometric material using applied pressure
further clarifies the physics by avoiding complications that
arise from chemical disorder, most notably the competition
between Anderson localization and the Mott transition.

II. EXPERIMENTAL METHODS

High-pressure single-crystal x-ray-diffraction measure-
ments were carried out at beamlines 4-ID-D and 6-ID-B of
the Advanced Photon Source. In a vertical scattering geometry
with a ψ diffractometer, a high resolution in the transferred
momentum q (full width at half maximum ∼1 × 10−3 Å

−1
) is

achieved using 50-μm vertically sized detector slits positioned
1.3 m away from the sample along the 2θ arm.17 The use of
double-bounce Pd mirrors for 20-keV x rays and an energy
discriminating NaI scintillation detector eliminated higher-
harmonic contamination of the diffraction signal. Our single
crystals were grown by the Te flux method to remove potential
complications from excess impurity concentrations.13 Crystals
were 25–50 μm in diameter and fit well within the diamond-
anvil cell pressure chamber. Five different crystals were
studied under pressure using a methanol : ethanol 4 : 1 mixture
for the pressure medium. Base temperature varied between
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3.5 and 5.8 K, and the pressure was calibrated in situ using
silver diffraction.17

The problem of vacancies, common to sulfides, is well
characterized8 in NiS2. Both S (about 4%) and Ni (varying) va-
cancies can be determined from the measured lattice constants
and electrical resistivity; in this way we estimate our sample
stoichiometry to be NiS1.96. There are two coexisting anti-
ferromagnetic structures in NiS2. The M1 antiferromagnetic
order with a wave vector (1, 0, 0) emerges from a second-order
phase transition at TN1 = 37–54 K, where TN1 strongly depends
on vacancy concentration and varies from sample to sample
(i.e., Ref. 7). The M2 antiferromagnetic order has a (1/2,
1/2, 1/2) wave vector and emerges at a first-order transition at
TN2 = 30 ± 1 K, where the transition temperature is consistent
across all published reports including those for different
vacancy concentrations. However, vacancies are responsible
for the variable canting angle in an antiferromagnet,18 as
observed in the M2 phase of NiS2.7,8

III. ANTIFERROMAGNETISM AT AMBIENT
AND HIGH PRESSURES

One outstanding question in the field of Mott-Hubbard sys-
tems concerns the role of period doubling antiferromagnetism
at the insulator-metal transition. The magnetostrictive response
of the lattice to M2 is likely rhombohedral19 and the distortion
from cubic symmetry is extremely small, with a relative
lattice constant change �a/a ∼ 2 × 10−4.20 Therefore for our
diffraction measurements we were able to model the insulating
ground state using a cubic matrix. At ambient pressure and T <

TN2 we report the discovery of charge-originated superlattice
diffraction peaks at (1/2, 1/2, 1/2)-type positions in reciprocal
space (Fig. 1), corresponding to the M2 magnetic structure.
Given the compatibility of diamond-anvil cell technology with
high-energy x-ray diffraction, this opens up the possibility
of combined magnetic and structural studies of the pressure-
driven Mott-Hubbard transition in pure NiS2. The temperature
dependence of the superlattice intensity [Fig. 1(a)] scales
linearly with the magnetic M2 neutron-diffraction intensity.7

The x-ray supperlattice and neutron M2 diffraction intensities
scale quadratically with the superlattice displacement and also
the magnetic moment, respectively. The scaling in Fig. 1(a)
thus points to a linear coupling between the M2 magnetic
moment and the superlattice displacement. A linear coupling
between magnetism and the lattice is rather common in solids,
and most often observed in low-dimensional systems.21 By
comparison, the external magnetostriction,20,22 measured by
the linear thermal expansion, scales quadratically with the M2
magnetic moment [Fig. 1(a)].

The intensity of the superlattice peaks provides a quan-
titative estimate of lattice distortion δ through the relation
ISL/I(311) = |q · δ/2|2S(SL)/S(311), where q is the super-
lattice ordering wave vector and S(SL) and S(311) are
the atomic form factors at the superlattice and (3, 1, 1)
positions, respectively. Given the domain degeneracy in each
superlattice order and uncertainty over the direction of δ, we
evaluate |q · δ/2|2 by averaging the direction of superlattice
displacement δ uniformly over the full 4π solid angle. Further

averaging was carried out over the four (1/2, 1/2, 1/2)-type su-
perlattice domains. In this way we estimate δ = (2.3 ± 0.7) ×
10−3 Å, which is a factor of 4 × 10−4 smaller than the lattice
constant a. Using a value for the lattice force constant appro-
priate to pyrite-structured 3d transition-metal dichalcogenides
(∼1 N/cm = 6.25 eV/Å

2
, Ref. 23), we estimate that the

elastic energy associated with the superlattice distortion is
approximately 0.017 meV per Ni atom. This is at least two
orders of magnitude smaller than the insulating gap and
the magnetic exchange coupling, and we therefore consider
the superlattice to be a minimally intrusive representation
of the underlying magnetic order. We also point out that
the superlattice distortion cannot account for the insulating
behavior. For a wide-band model appropriate to NiS2 (W �
Eg) both the lattice and electronic energies scale as δ2, and
we need only confirm that the net quadratic coefficient is
positive. Using Eq. (3.54) of Ref. 5 and inserting appropriate
values we find that the quadratic coefficient lies in the
range 2.4–3.1 eV/Å

2
. Therefore, rather than coupling to the

formation of an insulating energy gap, the superlattice is likely
driven by the variation in exchange constant J with Ni ion
displacement.21

Using the superlattice reflections as a measure of the M2
order, we are able to track the magnetism and the crystal
lattice through the pressure-driven insulator-metal transition.
The only high-pressure magnetic scattering study published
to date, by Panissod et al.,15 was limited to P < 2.9 GPa at
4.2 K with no disappearance of antiferromagnetism observed.
This study identified the insulator-metal phase boundary with
a suspected lattice discontinuity at 1.3 ± 0.4 GPa, leading to
the conclusion that the magnetism is continuous across the
insulator-metal transition.15 Here we observe the (1/2, 1/2,
1/2)-type superlattice distortion at every pressure from 0 to
2.84 GPa [Fig. 2(a)] at base temperature. Above 2.84 GPa the
superlattice vanishes in all samples [Figs. 2(c) and 2(d)]. Pub-
lished accounts14,16 and our own transport measurements place
the critical pressure for the insulator-metal phase boundary in
the range 2.2–3.1 GPa. This range brackets the upper limit
of the observed superlattice diffraction. It is therefore natural
to conclude that the disappearance of the low-temperature M2
magnetic state, the structural phase transition (see below), and
the insulator-metal transition all coincide at P ∼ 2.9 GPa.

The relationship between the correlated insulator and
M2 antiferromagnetism is further revealed by considering
the phase boundary TN2 as a function of lattice constant
for both NiS2 under pressure and NiS2−xSex in the P-x-T
phase diagram [Fig. 1(c)]. Antiferromagnetic coupling of
correlated electrons results from superexchange through the
S ligand fields.3 This coupling grows stronger as the lattice
constant is reduced,1 whether by chemical substitution or by
applied pressure, continuing smoothly and continuously across
the substitution-pressure interface. For the NiS2−xSex(P , x)
system, TN2 increases as the lattice constant shrinks, consistent
with the superexchange interaction. The M2 magnetism and
the associated superlattice distortion should be considered
byproducts of electron correlation and are not by themselves
responsible for driving the insulating state. Important evidence
for this also comes from electrical resistivity data which
show that the Arrhenius activation energy is unchanged on
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FIG. 1. (Color online) (a) Superlattice intensity ISL at ambient P plotted as a function of temperature. ISL is averaged over (3.5, 1.5, 1.5), (3.5,
0.5, 1.5), (2.5, 1.5, 1.5), and (2.5, 0.5, 1.5), and normalized to (3, 1, 1). Data were taken while warming (pink) and cooling (blue) through TN2 =
29.2 K. The x-ray superlattice intensity scales linearly with the intensity of magnetic neutron diffraction from the (1/2, 1/2, 1/2) M2 magnetic
order (open circles, data from Ref. 7), as well as the linear thermal expansion |�L/L| along (1, 1, 1) (black solid squares, data from Ref. 20).
Solid line is a guide to the eye. Inset: H , K , L scans of (1/2, 1/2, 1/2) superlattice diffraction at ambient P and T = 5.8 K. (b) Resistivity
of NiS2 at several pressures. All data follow an Arrhenius form through the first-order phase transition at TN2, which is marked by a kink.
(c) P-x-T phase diagram of the M2 magnetic phase. TN2 is plotted as a function of low-temperature cubic lattice constant a0 for both
NiS2 under pressure and NiS2−xSex (blue open symbols: Refs. 12, 15, 16; blue solid circle: our transport measurements). The two dot-
dash lines mark the first-order boundaries of the insulator-metal transition driven by pressure and chemical substitution, and bound the
M2 order.

cooling through TN2 [Fig. 1(b)]. The insulating energy gap is
thus well established before the formation of the M2 phase,
reflecting the fact that the energy scales of the charge and
magnetic interactions are well separated. The Hubbard U

is comparable to the Ni 3d eg bandwidth W = 2.1 eV, the
magnetic exchange coupling is comparable to the transition
temperature kBTN2 = 2.6 meV, and the superlattice distortion
energy scale is an even smaller 0.02 meV.

Careful study of the lattice structure reveals additional
information about the nature of the transition. High-resolution
θ − 2θ longitudinal scans at all orders of the superlattice

reflection are consistently close to resolution limited
[Fig. 2(a)], giving M2 correlation lengths greater than 1000 Å
[Fig. 2(b)]. This is consistent for all pressures within the
phase boundary. For the fcc lattice peaks, longitudinal scans
(Fig. 3) reveal a more complicated picture. All measured
line shapes are resolution limited for 0 < P < 0.85 GPa.
However, beginning at 0.85 GPa we observe multiple splitting
of diffraction peaks in almost every sample at every pressure.
This indicates the emergence of structural domains of reduced
symmetry. Importantly, the superlattice reflections remain
resolution limited before disappearing entirely above 2.84 GPa
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FIG. 2. (Color online) (a) Comparison of the high-resolution
longitudinal line scans of the superlattice at four pressures between 0
and 2.84 GPa. Data are plotted from the center q0 of each individual
peak and displaced vertically with scale bars representing individual
intensity relative to that of the (3, 1, 1) order. All line shapes
are nearly resolution limited approaching the phase boundary. This
indicates that the crystal remains cubic with long M2 correlation
lengths throughout the insulating phase. The antiferromagnetic M2
order disappears at higher pressures as exemplified by two null
scans through the superlattice positions at 2.90 ± 0.05 and 3.86 ±
0.12 GPa. (b) Calculated lower bounds of correlation lengths for the
superlattice. Separate points at a given P represent scans through
different superlattice orders. All measurement temperatures were
between 3.5 and 5.8 K.

[Fig. 2(a)]. The contrast between the multiply split fcc Bragg
peaks and the sharp superlattice reflections is proof of phase
coexistence between 0.85 and 2.84 GPa. We note that the
onset of the high-pressure structural phase that we observe at
0.85 GPa may explain the phase boundary at 1.3 ± 0.4 GPa
claimed in previous neutron-scattering work.15
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FIG. 3. (Color online) (a) Longitudinal θ − 2θ scans of the
(2, 1, 1) lattice reflection at 0.85 ± 0.10 GPa, the lowest P at
which phase separation was observed. (b) Rocking curve recorded
at q = 2.721 Å

−1
for the same (2, 1, 1) reflection. The colored bars

indicate the three different central θ values used in the scans in panel
(a). (c) Longitudinal scan of the (2, 2, 0) lattice reflection at 3.86 GPa
where only the high-P phase is present. The fourfold splitting of
(2, 2, 0) indicates a lattice symmetry of monoclinic or lower in the
metal. (d) Lattice constants vs pressure for pure NiS2 at T = 5 K. Both
the low-P and high-P phases were observed in the phase-separated
region, but with insufficient detail to determine the lattice parameters
a,b,c of the high-P phase. The lattice constants a0 of the low-P
phase were determined from the d spacings of both the superlattice
and cubic fcc reflections.

IV. LATTICE STRUCTURE UNDER PRESSURE

The crystal symmetry of the high-pressure metallic phase
can be determined either with single-crystal refinement of
a single-domain specimen or with powder refinement of
a polycrystalline sample with full knowledge of symmetry
split peaks. We identified a single-domain sample in the
high-pressure phase at 2.9 GPa. Six diffraction orders were
measured and a least-squares refinement reveals an almost
monoclinic structure with lattice parameters (to a 95%
confidence level) a = 5.5852(22) Å, b = c = 5.6021(6) Å,
α = 89.984(8)o, β = 89.930(18)o, and γ = 89.967(13)o. The
values of (a − c)/a and (90o − β) measured at P = 2.9 GPa
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are consistent with measurements at 3.86 GPa (Fig. 3), where
the fourfold splitting of the (2, 2, 0) peak only can be explained
by a symmetry of monoclinic or lower. Constraining the
symmetry to monoclinic, we obtain (to a 95% confidence level)
a = 5.5748(9) Å, b = c = 5.5853(6) Å, β = 89.949(1)o at
3.86 GPa. The fourfold splitting of (2, 1, 1) at 0.85 GPa (Fig. 3)
is consistent with this picture, as it cannot be explained by a
single phase of symmetry higher than monoclinic.

Notably, symmetry reduction on passing into the metal-
lic phase is the opposite of what is observed in many
other transition-metal oxides including the prototypical Mott-
Hubbard system V2O3, which is a rhombohedral metal and
a monoclinic insulator. For a noninteracting band structure,
a reduction of lattice symmetry favors insulating behavior.2,5

The observation here for NiS2 that the symmetry is reduced
in the metal therefore emphasizes the role played by electron
correlations in the insulator.

V. CONCLUSION

Our results address long-standing debates over the role
of magnetism and crystal structure at the insulator-metal
transition,1,2,4,5,24 while at the same time raising questions

about quantum phase transitions in the presence of strong
electron correlations. The broad regime of phase coexistence
that we observe while tuning U/W adds to a growing list
of correlated electron systems that exhibit phase coexistence
around a first-order quantum phase transition.25 We have es-
tablished that the magnetic, superexchange interaction cannot
account for electron localization in the insulator and that strong
electron correlations drive the insulator-metal transition even
in the presence of a structural distortion. Magnetotransport
measurements in the compressed metal are required to probe
the evolution and gapping of the Fermi surface, as well as the
role of quantum fluctuations, as the transition is approached
from above.
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