
PHYSICAL REVIEW B 83, 033402 (2011)

Photocurrent in a visible-light graphene photodiode
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We calculate the photocurrent in a clean graphene sample normally irradiated by a monochromatic
electromagnetic field and subject to a step-like electrostatic potential. We consider the photon energies h̄� that
significantly exceed the height of the potential barrier, as is the case in the recent experiments with graphene-based
photodetectors. The photocurrent comes from the resonant absorption of photons by electrons and decreases with
increasing ratio h̄�/U0. It is weakly affected by the background gate voltage and depends on the light polarization
as ∝ sin2 γ , γ being the angle between the potential step and the polarization plane.
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Unique transport and optical properties of graphene make
it likely to find a broad application in optoelectronics.1

Those include, in particular, a remarkable purity of this
two-dimensional semiconductor and its gapless band structure,
that enables one to easily change the doping level by applying
gate voltages and operate graphene devices in a broad range of
external radiation. Unlike the case of ordinary semiconductors,
the frequency of applied radiation may be rather low, owing
to the absence of forbidden band in graphene. Apart from
practical applications, graphene reveals a bunch of new fun-
damental light-induced phenomena, for example, the photon-
assisted interference between electron paths2 or the Hall effect
without magnetic field.3

Over the past year there have been demonstrated a number
of graphene-based photodetectors.4–7 The simplest device of
this kind is an irradiated graphene sample subject to a step-
like electrostatic potential, for example, a p − n junction or
a unipolar (n − n or p − p) junction. Such a detector can
operate in a wide frequency range of external radiation for
there is no gap between the conduction and the valence bands
in graphene. To achieve the maximal photocurrent one should
apply radiation with the photon energy h̄� of the order of
the height of the potential barrier U0 in the junction.8 As the
attainable doping level in graphene lies within hundreds of
millivolts, this corresponds to the radiation in the terahertz or
the far-infrared frequency range.

Transport in illuminated graphene junctions with the
ratio h̄�/U0 of order unity has been analyzed in detail in
Ref. 8. However, the more experimentally accessible radiation
wavelengths, yet those of greater practical importance, belong
to the near-infrared and the visible range, corresponding to the
photon energies h̄� significantly exceeding the characteristic
electrostatic potentials that can be created in graphene devices
by means of gate electrodes. The analysis of the photocurrent
in the latter regime (i.e., at h̄�/U0 � 1) is the subject of the
present Brief Report.

Generally speaking, photocurrent in an irradiated graphene
sample may arise for a number of reasons. Even in the absence
of an external potential it may be caused by the photon
drag effect or by the light-induced currents on the edges
of the sample.9,10 These two mechanisms of generating the
photocurrent can be separated from the others by checking the
dependency of the current on the angle of incidence and by
moving the light spot to the edge of the sample, respectively.9

If a sample is heated nonuniformly by the radiation, the

photocurrent may also arise due to the thermophotoelectric
effect.7 Clearly, the photocurrent is not allowed by the
symmetry in a normally irradiated uniform sample with the
borders equally (un)affected by the light.

In the recent experiments with graphene photodetectors
(Refs. 4 and 5) the voltages on the gate electrodes determine
the value of the photocurrent, the latter being a direct measure
of the slope of the potential profile. This suggests that the
light absorption leads to the creation of electron-hole pairs,
separated further by the electric field in the junction, which
results in the generation of the photocurrent.

In the present Brief Report we calculate the photocurrent
that emerges in an irradiated graphene sample in the presence
of a nonuniform potential due to the resonant absorption of
photons by electrons. We consider a wide graphene strip
(Fig. 1) subject to a smooth potential U (z) which varies
monotonously from U0/2 at z = −∞ (left lead) to −U0/2
at z = +∞ (right lead).

Result. We find the photocurrent as

I = κ
e3W

h̄cF

(
U0

h̄�

) 3
2

S sin2 γ, (1)

where γ is the angle between the polarization plane of the light
and the potential barrier (axis x in Fig. 1), S is the radiation
intensity, W is the width of the strip, F is the characteristic
slope of the potential, and κ is a constant of order unity.

Equation (1) indicates that the photocurrent vanishes if the
polarization plane is parallel to the barrier (γ = 0). In fact, it
does not vanish completely, but acquires an extra power of the
small parameter U0/h̄� � 1

I‖ = κ‖
e3W

h̄cF

(
U0

h̄�

) 5
2

S, (2)

κ‖ is another constant of order unity.
Coefficients κ and κ‖ can be evaluated exactly for any

particular form of the potential barrier. For instance, if the
slope F of the potential is constant on the interval from
z = −U0/(2F ) to z = U0/(2F ) and zero otherwise, then
κ = 8/3 and κ‖ = 32/15.

Model. The Hamiltonian of electrons in irradiated graphene
in each valley reads

Ĥ = vσ̂ [p − ec−1A(t)] + U (z), (3)
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FIG. 1. (Color online) Graphene junction irradiated by an elec-
tromagnetic wave.

where the vector potential A(t) accounts for the external
electromagnetic field (EF). For a linearly polarized wave one
can choose

A(t) = c�−1E cos(�t). (4)

The “pseudospin” σ in Eq. (3) is the spin-1/2 operator
defined on the space of the two sublattices in graphene. The
characteristic size of the step-like barrier lies typically within
dozens of nanometers (see, e.g., Ref. 4), not exceeding the
mean free path, so the transport in absence of radiation may
be considered ballistically.

Scattering off photons. The dynamics of electrons affected
by light has been considered microscopically in Ref. 8. We
provide here a simple semiqualitative picture describing the
main features of this dynamics.

The light strongly affects electron motion only close to
the “resonant points,” where the splitting 2vp between the
conduction and valence bands matches the photon energy
h̄�. Far from the resonant points the radiation weakly affects
electron dynamics and can be neglected. The motion between
the resonant points can be considered semiclassically. Electron
velocity there has a constant value v, as follows from Eq. (3)
at A = 0.

The rate of the radiation-induced transitions between the
conduction and the valence bands

� = 2πh̄−1�2 sin2 β δ(2vp − h̄�), (5)

may be viewed at small radiation intensities as a mere Fermi-
golden-rule result. Here the “dynamical gap”8

� = v|e|E/(2�), (6)

characterizes the strength of the radiation and β is the angle
between the electron momentum and the light polarization
plane. The delta function guarantees that the transitions occur
only at the resonant points. During the light-induced scattering,
electron momentum p does not change, but the pseudospin flips
and the energy increases (decreases) by h̄� when absorbing
(emitting) a photon.

Let α be the angle between the classical electron momentum
p and the potential gradient dU/dr. Integrating Eq. (5) over
time and using that ṗ = −dU/dr we find the probability of
electron scattering at the resonant point

L(β,α) = π�2 sin2 β/(vF cos α). (7)

If an electron runs against a resonant point when moving along
a certain classical trajectory, it scatters with probability L or
continues its motion undisturbed by the radiation along the
same trajectory with probability 1 − L.

The previous results, Eqs. (5) and (7), are obtained pertur-
batively in the limit of small � and thus require sufficiently
small radiation powers. One can also derive Eqs. (5) and (7)
explicitly by solving the Schrödinger equation for electrons
in the presence of EF or using the kinetic equation.8 The
condition of smallness of the radiation power reads L � 1
and corresponds to the most experimentally relevant range of
the system parameters.

Formula for the current. The previous generic picture of
the light-affected electron dynamics in a nonuniform potential
allows one to find the electron trajectories and to calculate the
photocurrent as8

I = 4W
∑

n

∫
dp

(2πh̄)2
v‖Pn(p) {f [ε(p)] − f [ε(p) + nh̄�]},

(8)

where the integration is carried out over the incoming electron
momenta p in the left lead, v‖ is the the respective longitudinal
velocity, Pn(p) the probability for an electron outgoing from
the left lead to penetrate into the right lead absorbing n photons,
f (ε) is the equilibrium distribution function in both leads, and
W the width of the graphene strip. Equation (8) is, in fact,
the Landauer formula generalized to account for the inelastic
processes of photon absorption/emission.

In principle, our scheme of calculations follows that
of Ref. 8: We have to count all the classical trajectories
corresponding to the inelastic electron transmission from the
left to the right lead and then, using Eq. (8), calculate the
value of the photocurrent. In the case of a shallow potential
barrier, U0 � h̄�, studied in the present Brief Report, we
are dealt with a greater variety of electron paths than in
the previously studied case of a relatively high potential.8

Let us consider these trajectories in detail.
Electron trajectories. As follows from the resonance

condition h̄� = 2vp, the kinetic energies of an electron before
(after) and after (before) the photon absorption (emission)
equal, respectively, vp = h̄�/2 and vp = −h̄�/2. Hence
photons can be absorbed only by incident electrons in the
narrow energy band (Fig. 2)

−h̄�/2 − U0/2 < ε < −h̄�/2 + U0/2, (9)
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FIG. 2. (Color online) Inelastic penetration of an electron from
the left to the right lead. The reflection from the potential barrier must
occur either (a) before or (b) after the photon absorption.
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FIG. 3. (Color online) Classical trajectories of electrons incident
on the potential barrier. Photon absorption occurs at (a) the first
resonant point and (b) the second resonant point. Solid lines show the
paths that contribute to the photocurrent, dashed lines show the other
possible trajectories. Blue (black) and orange (gray) lines correspond,
respectively, to the motion in the valence and the conduction bands.

far below the Fermi level. So long as the latter has the same
order of magnitude as U0, its exact position is not important
for the photocurrent.

Each electron with energy in the interval (9) and with a
sufficiently small transverse momentum

vp⊥ < h̄�/2, (10)

inevitably meets a resonant point on its way from one lead
to the other. Assume an electron incident from the left lead
absorbs a photon at the very first resonant point I, Fig. 3(a).
Before and after the absorption, its longitudinal velocity is
directed, respectively, to and from the right lead. The velocity
reversal may result in the return to the left lead, as shown
by the orange (gray) line in Fig. 3(a). The electron, however,
may also penetrate into the right lead and thus contribute to
the photocurrent if it is reflected from the potential barrier
after the photon absorption [see the orange (gray) solid line
in Fig. 3(a)]. As the transverse momentum p⊥ is conserved
during the motion, ε + h̄� and U0/2 are, respectively, the full
energy and the potential in the left lead, the return to this lead
does not occur if and only if

ε + h̄� − vp⊥ < U0/2. (11)

Thus, we have shown that the charge carriers, which absorb
photons at their first resonant points and satisfy conditions (9)–
(11), contribute to the photocurrent.

What if the photon absorption at the first resonant point did
not happen? Then the electron can proceed further to the other
lead, meeting no other resonant points, or it can turn back,
Fig. 3, provided

−ε − U0 < vp⊥. (12)

In the latter case the second resonant point II will be reached,
for the longitudinal momentum decreases monotonously up
to a certain turning point and then grows again. The sign
of the longitudinal velocity at the second resonant point is
opposite to that at the first one, so after the reflection the
electron moves toward the right lead, along the orange (gray)
line in Fig. 3(b). Then, since the momentum of the electron
grows monotonously, neither resonant nor turning points can
be met further.

Therefore, each electron, whose energy and momenta
satisfy conditions (9), (10), and (12) can contribute to the
photocurrent upon the photon absorption at point II.

Clearly, elastic penetration from one lead to another is also
possible, but, according to Eq. (8), does not contribute to the
photocurrent. We have considered then all the scenarios of the
light-assisted transmission from left to right, the contribution
with n = +1 in Eq. (8). In principle, we are also to deal with
electrons that absorb a photon on their way from right to left.
It is more convenient, however, to consider the time-reversed
processes and speculate in terms of the states outgoing from
the same left lead and emitting a photon at the resonant points.
Indeed, in Eq. (8) these processes are accounted for by the
terms with n = −1, whereas the integration is carried out over
the states in the left lead only.

The energies of the charge carries, that can emit photons,
lie in the range

h̄�/2 − U0/2 < ε < h̄�/2 + U0/2. (13)

The reflection from the potential barrier without emitting a
photon is not possible, for the longitudinal momentum of the
electrons in the conduction band grows monotonously as the
potential decreases. This forbids the processes analogous to
what is shown in Fig. 3(b). Similarly, if an emission occurs at
a resonant point, electron inevitably returns to the left lead.

Thus, there is no contribution to the photocurrent from the
energy interval (13), and one has to take into account only
the processes shown by solid lines in Fig. 3. Each of this
processes involves at least one piece of a classical trajectory
reflecting from the potential barrier. In the shallow potential
under consideration the reflection is possible only during
the motion nearly parallel to the barrier (axis x). Hence,
the photocurrent found in the present Brief Report should be
significantly smaller than that studied before in Ref. 8 at large
ratio U0/h̄�. In the latter case nearly all electrons rebound
from the barrier and photon absorption assists hopping from
one trajectory of reflecting type to another such trajectory,
similar to what is shown in Fig. 3 by the solid lines. As we have
shown, at U0/h̄� � 1 the structure of electron paths is more
diverse and very few of them contribute to the photocurrent.

Integration over the electron states. We must take into
account the contributions to the photocurrent of electrons with
momenta p in the left lead, such that

h̄�/(2v) < p < h̄�/(2v) + U0/v, (14)

[cf., Eq. (9)] and incident at angles θ between the momenta p
and the barrier that lies in one of the two intervals

√
2 [1 − h̄�/(2vp)]1/2 < θ < 2 [1 − h̄�/(2vp)]1/2 , (15)√

2 [1 − h̄�/(2vp)]1/2 < θ < [2U0/(vp)]1/2 , (16)

corresponding, respectively, to Figs. 3(a) and 3(b).
The photon absorption at low radiation powers occurs with

small probability

L = π�2 sin2 γ /θres, (17)
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where θres is the angle between the momentum and the barrier
at the resonant point, determined by the transverse momentum
conservation law

p cos θ = h̄� cos θres /(2v). (18)

In Eqs. (15)–(17) we used the smallness of angle θ .
Performing in Eq. (8) the integration over the intervals(14)–

(16) of the momenta and angles and substituting the probability
P+1(p) byL, Eq. (17), we arrive at the main results of our Brief
Report, Eqs. (1) and (2).

Physical interpretation. Equation (1) indicates that the
photocurrent quickly decreases with wavelength in the range
of photon energies exceeding the height of the potential
barrier. Indeed, only electrons with energies close to ±h̄�/2
participate in the photon-assisted transport. With increasing
this energy the shallow potential becomes more transparent and
has a lesser effect on electron motion, leading to the decrease
of the photocurrent.

Since the energies of the involved electrons lie far below or
far above the Fermi level, the photocurrent weakly depends
on the background gate voltage. The dependency on the
polarization direction ∝ sin2 γ can be understood as follows.
The photocurrent comes mainly from electrons moving nearly
parallel to the barrier, as the others’ motion is unimpeded by
the potential. The light absorption rate is proportional to the
square of the component of the electric field E⊥ perpendicular
to the electron velocity, where E⊥ ∝ sin γ for the specified
electrons.

Albeit the photon absorption occurs far from the Dirac
point and thus its description applies as well to an ordinary
semiconductor, the dependency of the photocurrent on the
radiation frequency �, Eqs. (1) and (2), is determined by the

band structure of graphene. Because there is no gap between
the conduction and the valence bands, the photocurrent in
graphene does not vanish even at very low frequencies,
contrary to the case of an ordinary semiconductor.

The dependency of the current on the polarization can be
used to separate the resonant photon absorption, considered
here, from the other possible mechanisms of generating the
photocurrent (e.g., a nonuniform heating of the sample by
light). In the latter case phonons may play the same role as
photons, but there would be no polarization dependency of the
current.

Estimation. Let us estimate the value of the photocurrent for
the typical device parameters.4 For h̄� = 2 eV, U0 = 50 meV,
W = 0.6 μm, S = 13 kW/cm2, and the characteristic size of
the potential step L = 100 nm (F = U0/L) we obtain from
Eq. (1) at γ = π/2 the current I ≈ 12 nA, in agreement with
the characteristic values of the current measured in Ref. 4.
In principle, the recombination length of photoexcited charge
carriers may be comparable with L, then one should anticipate
an attenuation of the current within an order of magnitude. As
we mentioned before, checking its dependency on polarization
could verify and help one to further investigate the mechanism
of the current generation.

Conclusion. We calculated photocurrent in a graphene
junction irradiated by light with the photon energy h̄� consid-
erably exceeding the characteristic height U0 of the potential.
The result is significantly smaller than the photocurrent in the
case h̄� � U0. It strongly depends on the polarization of light
and is weakly affected by the background gate voltage.
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