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Energy transport and fluctuations in small conductors
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The Landauer-Büttiker formalism provides a simple and insightful way for investigating many phenomena
in mesoscopic physics. By this approach we derive general formulas for the energy currents and apply them to
the basic setups. Of particular interest are the noise properties. We show that energy current fluctuations can be
induced by zero-point fluctuations, and we discuss the implications of this result.
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I. INTRODUCTION

The study of quantum effects in small conductors is gener-
ally referred to as mesoscopic physics. The wave nature of the
electrons is relevant and many counterintuitive results appear:
the quantization of the conductance, persistent currents in
small loops, the quantum Hall effect and the weak localization
effect, to cite but a few (for a review, see Ref. 1 and references
therein). In the Landauer-Büttiker formalism the motion of
the electrons in the conductors is described as a scattering
process. This approach was originally proposed to investigate
the conductance of a single-channel wire2,3 and then extended
to other structures4–7 and properties.8–11 Instead, there has
been much less interest in the thermoelectric properties.
The first investigations of energy transport in mesoscopic
conductors appeared in Refs. 12–14. The average properties
were studied also in Refs. 15 and 16, while the noise properties
were studied in Ref. 17. In this Brief Report we extend the
Landauer-Büttiker formalism to account for energy transport
and fluctuations. We derive the energy counterpart of several
results characterizing the electrical properties of mesoscopic
conductors. The role of irreversible processes is at the center
of our attention, especially in equilibrium at low temperatures.
In this regime we show that energy exchange can occur in a
two-terminal conductor, of course, under the constraint of no
net flow of energy.

II. GENERAL RESULTS

The model. We consider a multiterminal many-channel
coherent conductor. This means that the energy carriers can
enter or leave the sample through M leads with Nα transverse
channels, α = 1, . . . ,M , and their motion from one lead
to another is phase coherent. Each lead is connected to an
electron reservoir characterized by the temperature Tα , the
chemical potential μα , and the Fermi-Dirac distribution
function fα(E) = {exp[(E − μα)/kBTα] + 1}−1, where kB

is the Boltzmann constant. The reservoirs absorb all incident
electrons, irrespective of their phase and energy. Furthermore,
the reservoirs are incoherent, that is, the electrons emerging
from different reservoirs do not have any phase relationship,
and their phase is also independent of that of absorbed
electrons. We neglect any interaction of the electrons with
other electrons or with phonons, magnetic impurities, etc. At
the conductor, elastic-scattering processes take place. The
elastic-scattering properties of the conductor are described
by the scattering matrix S. It relates the amplitude of the
outgoing states to the amplitude of the incoming states. Let

Sαβ(E) be the submatrix of dimension Nα × Nβ defined as
[Sαβ(E)]mn = Sαβ,mn(E), m = 1, . . . ,Nα , and n = 1, . . . ,Nβ .
Sαβ(E) connects the incident amplitudes in lead β to the
outgoing amplitudes in lead α. An energy carrier arriving
at the conductor in contact β in channel n has a probability
Rββ,mn = |Sββ,mn|2 to be scattered back into contact β

in channel m and a probability Tαβ,mn = |Sαβ,mn|2 to be
scattered into contact α in channel m. Evidently, for a
carrier in contact β, the total probability of reflection and of
transmission into contact α are given by, respectively, Rββ =∑

mn Rββ,mn = ∑
mn |Sββ,mn|2 = Tr(S†

ββ Sββ) and Tαβ =∑
mn Tαβ,mn = ∑

mn |Sαβ,mn|2 = Tr(S†
αβ Sαβ); Tr stands for

trace. The conservation of the energy carriers imposes that S
is unitary.

Average properties. We assume that the energy carriers
are only electrons and we do not take into account the spin
degeneracy. The classical expression of the energy current
in lead α is given by Wα(t) = (1/e)

∫
(E − μ)dIα(t,E). At

low temperatures the chemical potential μ can be assumed
to be approximately the energy value above which transport
occurs, i.e., the Fermi energy EF . We subtract it from the total
energy of the energy carriers because we are interested in the
net energy flowing through the leads, to which the Fermi sea
does not contribute. With calculations similar to those made in
Refs. 8–11, we find that the average energy current in lead α is

〈Ŵα(t)〉 = 1

h

∑
β

∫
dE(E − μ)[Nαδαβ − Tαβ(E)]fβ(E),

(1)
where δαβ is the Kronecker delta. We consider the linear
response regime, i.e., for all β we write μβ = EF + �μβ and
Tβ = T + �Tβ . EF is the Fermi energy of the electrons in the
reservoirs and T is approximately the average temperature of
the system. When �μα and �Tα are supposed to be small,
we find that we can write the above expression as

〈Ŵα(t)〉 =
∑

β

�μβK
�μ
αβ +

∑
β

�TβK�T
αβ , (2)

with the thermal conductance matrices K
�μ
αβ and K�T

αβ defined
as

K
�μ
αβ = 1

h

∫
dE(E − EF )

[
−∂f (E)

∂E

]
[Nαδαβ − Tαβ(E)]

and

K�T
αβ = 1

hT

∫
dE(E − EF )2

[
− ∂f (E)

∂E

]
[Nαδαβ − Tαβ(E)];
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f (E) = {exp[(E − EF )/kBT ] + 1}−1. From Eq. (2) we see
that, in the linear response regime, there are two, clearly
independent, contributions to energy transport owing to
a temperature or a chemical potential gradient. In the
zero-temperature limit, of course, one has to use Eq. (1), as
we shall see in the next section.

Fluctuations. The spectral density of energy current fluctu-
ations SW

αβ is defined by

2πSW
αβ (ω)δ(ω+ω′)=〈�Ŵα(ω)�Ŵβ(ω′)+�Ŵβ (ω′)�Ŵα(ω)〉.

We indicate by �Ŵα(ω) = Ŵα(ω) − 〈Ŵα(ω)〉 the Fourier
transform of the fluctuating part of the energy current op-
erator in lead α. We introduce the matrix9 Aβγ (α,E,E′) =
Iαδαβδαγ − S†

αβ(E)Sαγ (E′); Iα is the identity matrix α × α.
By following closely the analysis proposed in Refs. 8, 9,
and 11, we find that

SW
αβ(ω)

= 1

h

∫
dE

(
E + h̄ω

2
− μ

)2

×
∑
δγ

Tr[Aδγ (α,E,E + h̄ω)Aγ δ(β,E + h̄ω,E)]

×{fδ(E)[1 − fγ (E + h̄ω)] + fγ (E + h̄ω)[1 − fδ(E)]}.
(3)

From the physical quantities entering this formula, we see
that energy current noise is determined by the transmission
properties of the conductor and the statistics of the energy
carriers. It is straightforward to verify that our result satisfies

SW
αβ(−ω) = SW

βα(ω). (4)

In the zero-frequency limit there is another useful identity. For
the unitarity of the scattering matrix we obtain

∑
α

SW
αβ(0) =

∑
β

SW
αβ(0) = 0. (5)

We conclude this section by making the remark that noise
evokes the idea of disorder, but SW

αβ is also a measure of the
correlation of the deviations away from the average value of
the energy current in the leads. Another important point is that
noise is determined by both the particle and the wave properties
of the energy carriers. Indeed, SW

αβ is derived starting from
operators in the second quantization formalism. The details
cannot be given here exhaustively, but we direct the reader to
Refs. 9 and 11 for analogous calculations.

III. APPLICATIONS

The quantum of thermal conductance. As a first application
of our general results, and notably of Eq. (2), we consider
a two-terminal conductor. The leads have the same number
of channels, N , and we suppose that energy transport is
owing only to a temperature gradient, that is, �μ1 = �μ2 = 0,
�T2 = 0, and �T1 �= 0, as shown in Fig. 1. On the basis of the
eigenchannels and by assuming that the scattering matrix is
approximately constant over the energy range where transport
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FIG. 1. Two-terminal conductor in the presence of a temperature
gradient: T1 �= T2.

occurs, the energy current through the two leads is given by

W = 〈Ŵ1〉 = −〈Ŵ2〉 = �T1

∑
n

Tn(EF )

× 1

hT

∫
dE(E − EF )2

[
−∂f (E)

∂E

]
. (6)

We denote Tn(EF ) as the eigenvalues of the matrix S†
21S21

evaluated at the Fermi energy. They should not be confused
with the temperature T . At low temperatures the integral in
the above result can be estimated. We obtain the quantum of
thermal conductance,12,18

Ko(T ) = 1

hT

∫
dE(E − EF )2

[
−∂f (E)

∂E

]
∼= π2k2

B

3h
T .

If now we apply a small voltage across the conductor, we
readily obtain the Wiedemann-Franz law L = Ko(T )/T Go =
(π2/3)(kB/e)2, where Go = e2/h is the quantum of conduc-
tance. L is usually referred to as the Lorentz number.

Dissipation and nonequilibrium noise. Let us consider a
two-terminal conductor at zero temperature over which a small
voltage V is applied. We choose �μ1 = eV and �μ2 = 0.
The leads have the same number of channels. By making use
of the Landauer formula, which yields the average current
I = (e2/h)T12V , and of the unitarity of the scattering matrix,
from Eq. (1) we readily obtain 〈Ŵ1〉 = −〈Ŵ2〉 = (1/2)IV . We
immediately see that 〈Ŵ1〉 + 〈Ŵ2〉 = 0, and thus the conductor
does not absorb energy. This result is usually interpreted as
follows. We might write the energy current flowing through
the leads as (I/e) × eV/2. I/e represents the flow of particles
through the conductor, and eV/2 is the average excess energy
of the electrons. When an electron enters the sample, it leaves
behind a hole with approximately the same energy. In order to
obtain the total energy dissipated in the reservoirs, we have to
also take into account the energy released by holes. This is done
by multiplying the energy current in the leads, which contribute
only the electrons, by a factor of 2. This yields the expected
result IV . Nevertheless, this analogy with the ohmic behavior
is only formal. In mesoscopic conductors we have a spatial sep-
aration between elastic and inelastic scattering. Our result, of
course, depends on the geometry of the conductor via its trans-
missive behavior, but the energy is dissipated in the reservoirs.

Let us turn to the energy current noise properties. From
Eq. (3), on the basis of eigenchannels, we obtain

SW
11(0) = 2

3h

∑
n

Tn(1 − Tn)(eV )3, (7)

and from Eqs. (4) and (5) we see that SW
11(0) = SW

22(0) =
−SW

12(0) = −SW
21(0). For completeness, let us point out that
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FIG. 2. Two-terminal conductor with a voltage probe. A fraction
of the energy carriers are scattered coherently and the others are
scattered incoherently in the forward and backward direction.

in the low-transparency limit, i.e., Tn � 1, corresponding, for
example, to the case of a tunnel barrier, we have SW

11(0) =
(2/3)(e3/h)

∑
n TnV

3 = (2/3)eIV2, where we have used the
Landauer formula G = (e2/h)

∑
n Tn for the conductance,

which yields the average current flowing through the conductor
I = GV . The above result is usually referred to as the classical
limit. It corresponds to the case where the emission of electrons
is uncorrelated and, as a result, the instants of emission are ran-
dom and governed by a Poisson-type distribution function.11

Inelastic scattering. We now study the effect of inelastic
scattering on energy transport. Within the scattering formal-
ism, neglecting any kind of interaction, it is possible to
introduce inelastic scattering by adding a fictitious voltage
probe to the mesoscopic conductor,19 as shown in Fig. 2. This
model for inelastic scattering has the advantage of reducing
the study of inelastic scattering to an elastic-scattering problem
with the further requirement of local current conservation at
the voltage probe. An ideal voltmeter has an infinite internal
impedance, and therefore at the voltage probe the current
vanishes at any moment of time,19,20 〈I3〉 = 〈(�I3)2〉 = 0.
This means that when an electron is absorbed by the voltage
probe reservoir, its phase and energy are randomized, and
immediately another electron is injected into the conductor
with an energy and a phase uncorrelated with those of the
outgoing electron. The energy current flowing through the
conductor has both a coherent and an incoherent component.
A fraction of the electrons is scattered coherently from contact
1 to contact 2 and the others are scattered inelastically in the
forward and in the backward direction. We concentrate on the
case of completely incoherent transmission, i.e., T21 = T12 =
0, and thus T3α = Tα3, at zero temperature. By using Eq. (1),
we find for the energy current in the three leads,

〈Ŵ1〉 = T13

h

(eV )2

2
− 1

h

T13T
2

31

(T31 + T32)2

(eV )2

2
,

〈Ŵ2〉 = − 1

h

T23T
2

31

(T31 + T32)2

(eV )2

2
,

〈Ŵ3〉 = − 1

h

T31T32

T31 + T32

(eV )2

2
.

The unitary of the scattering matrix guarantees that 〈Ŵ1〉 +
〈Ŵ2〉 + 〈Ŵ3〉 = 0, and so all dissipation processes occur in the
reservoirs. Then, the voltage probe reservoir absorbs energy:
the electrons entering the voltage probe are thermalized
through inelastic scattering and release a fraction of their
excess energy. 〈Ŵ3〉 is thus nothing but the Joule heat
dissipated in the voltage probe (cf. Refs. 19 and 21).

Instead, we study energy current fluctuations in the
quasielastic regime. This means that the electron entering
the voltage probe is replaced by an electron with the same
energy, but of an uncorrelated phase.22 This is the reason why
this model is generally employed to simulate phase-breaking
processes. Energy conservation is achieved by demanding that,
at the voltage probe, current is conserved in each energy
interval.22 It is worth noting that phase-breaking processes
do not affect the average energy current flowing through the
conductor. In fact, we find that 〈Ŵ1〉 = −〈Ŵ2〉 = IV/2, as ob-
tained for the two-terminal conductor. For the noise properties,
from Eq. (3), in the zero-frequency limit, we find that

SW
11(0) = 2

3
eIV 2

[
e2

h

∑
n

T (1)
n

(
1 − T (1)

n

)
R4

1

+ e2

h

∑
n

T (2)
n

(
1 − T (2)

n

)
R4

2 +R2
1R2 + R1R

2
2

]/
R3,

where T (1)
n and T (2)

n designate the transmission probabilities
from contact 1 to contact 3 and from contact 3 to contact 2,
respectively (see Fig. 2); then R = G−1 = R1 + R2 is the
total resistance of the conductor, with R1 = (h/e2)/T31 and
R2 = (h/e2)/T32. As before, SW

11(0) = SW
22(0) = −SW

12(0) =
−SW

21(0). Interestingly, for a ballistic conductor, the above
result does not vanish, in contrast to Eq. (7), but reduces to
SW

11(0) = (2/3)eIV 2R1R2(R1 + R2)−2. This indicates that
the presence of phase-breaking processes are associated with
energy current fluctuations.

Equilibrium noise. We recall that in equilibrium the power
spectrum of current fluctuations is given by

SI (ω) = 4GE(ω,T ), (8)

where

E(ω,T ) = h̄ω

2
+ h̄ω

exp(h̄ω/kBT ) − 1
. (9)

G is the conductance of a two-terminal conductor and E(ω,T )
is the average energy at temperature T of an oscillator of
frequency ω, which is the sum of the zero-point energy and
the Planck spectrum. Equation (8) is known as the fluctuation-
dissipation theorem, stating that equilibrium is governed
by irreversible processes at the microscopic level causing
fluctuations, because the system experiences a fluctuating
force arising from the interaction with its environment.23,24

At high temperatures, Eq. (9) reduces to the classical
equipartition value, indicating that the fluctuating force
originates from thermal agitation, while at low temperatures
we are left with the quantum of zero-point energy. We want
to understand whether vacuum fluctuations are associated
with energy exchange. Let us first consider energy current
noise at a nonvanishing temperature T in the zero-frequency
limit. A simple calculation shows that Eq. (3) yields SW

αβ(0) =
2kBT 2(K�T

αβ + K�T
βα ). This is the Johnson-Nyquist formula
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for energy current noise. Now at zero temperature we find
that

SW
αβ(ω) = 2

3

1

e2
(Gαβ + Gβα)

(
h̄|ω|

2

)3

. (10)

For clarity we have written the above expression in terms
of the conductance matrix Gαβ = (e2/h)(Nαδαβ − Tαβ).
The only fundamental constant that enters this result is the
Planck constant, and we see that the energy current noise is
proportional to h̄2, in line with what was obtained in Ref. 25.
Equation (10) is the main result of our work. It is interesting to
consider the case of a ballistic, single-channel, two-terminal
conductor because this situation admits a simple interpretation.
We find that SW

11(ω) = SW
22(ω) = −SW

12(ω) = −SW
21(ω) =

(h̄2/12π )|ω|3 > 0. This means that the energy current
fluctuates, and if a mode tends to enter the sample in a lead,
the same mode tends to leave the sample from the other lead.
It also follows that energy transport is forbidden only on the
average.

IV. CONCLUSIONS

Within a unified framework we have investigated energy
transport and fluctuations in mesoscopic conductors. Im-
portantly, our results on noise can be of relevance for the
debate on dephasing from vacuum fluctuations.25–29 In the
Landauer-Büttiker formalism there are no fluctuating forces
appearing explicitly, but we neglect any kind of interaction
in the leads. For this reason, Eq. (10) allows us to conclude
that energy exchange between the reservoirs is forbidden only
on the average. Finally, the conductor and the leads form
a conservative Hamiltonian system, and ultimately we have
shown with an example that the coherence of an open quantum
system is not always fully preserved also in equilibrium at very
low temperatures.
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25K. E. Nagaev and M. Büttiker, Europhys. Lett. 58, 475 (2002).
26P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett.

78, 3366 (1997).
27D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett. 81, 1074 (1998).
28P. Cedraschi, V. V. Ponomarenko, and M. Büttiker, Phys. Rev. Lett.
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