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Phenomenological Ginzburg-Landau-like theory for superconductivity in the cuprates
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We propose and develop here a phenomenological Ginzburg-Landau-like theory of cuprate high-temperature
superconductivity. The free energy of a cuprate superconductor is expressed as a functional F of the complex
spin-singlet pair amplitude ψij ≡ ψm = �m exp(iφm), where i and j are nearest-neighbor sites of the square
planar Cu lattice in which the superconductivity is believed to primarily reside, and m labels the site
located at the center of the bond between i and j . The system is modeled as a weakly coupled stack of
such planes. We hypothesize a simple form F[�,φ] = ∑

m[A�2
m + (B/2)�4

m] + C
∑

〈mn〉 �m�n cos(φm − φn)
for the functional, where m and n are nearest-neighbor sites on the bond-center lattice. This form is
analogous to the original continuum Ginzburg-Landau free-energy functional; the coefficients A, B, and C

are determined from comparison with experiments. A combination of analytic approximations, numerical
minimization, and Monte Carlo simulations is used to work out a number of consequences of the proposed
functional for specific choices of A, B, and C as functions of hole density x and temperature T . There
can be a rapid crossover of 〈�m〉 from small to large values as A changes sign from positive to negative
on lowering T ; this crossover temperature Tms(x) is identified with the observed pseudogap temperature
T ∗(x). The thermodynamic superconducting phase-coherence transition occurs at a lower temperature Tc(x),
and describes superconductivity with d-wave symmetry for positive C. The calculated Tc(x) curve has the
observed parabolic shape. The results for the superfluid density ρs(x,T ), the local gap magnitude 〈�m〉, the
specific heat Cv(x,T ) (with and without a magnetic field), as well as vortex properties, all obtained using
the proposed functional, are compared successfully with experiments. We also obtain the electron spectral
density as influenced by the coupling between the electrons and the correlation function of the pair amplitude
calculated from the functional, and compare the results successfully with the electronic spectrum measured
through angle resolved photoemission spectroscopy (ARPES). For the specific heat, vortex structure, and
electron spectral density, only some of the final results are reported here; the details are presented in subsequent
papers.
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I. INTRODUCTION

The last two decades have seen unprecedented experimental
and theoretical activities involving cuprates that exhibit
high-temperature superconductivity.1–4 Even after this long
period of research, which has seen dramatic advances
in experimental techniques and materials quality, as
well as discovery of many unusual phenomena such
as the ubiquitous pseudogap in underdoped cuprates5–8

and the strange metal phase above the superconducting
transition temperature around optimal doping,1–3 there is
no common, broadly accepted understanding yet about their
origin.

Motivated by these, especially the increasing volume of
sophisticated spectroscopic data on the cuprates [such as those
obtained from angle resolved photoemission spectroscopy
(ARPES),9,10 scanning tunneling microscopy (STM),11 and
Raman12 experiments], we propose and develop here, as
well as in subsequent papers, a phenomenological model
for cuprate superconductivity that is analogous in form
to the well-known Ginzburg-Landau (GL) theory13 of
superconductivity. The starting point of our description
is the assumption that the free energy of a cuprate
superconductor can be expressed as a functional solely of
the complex pair amplitude. In the original continuum GL
theory, the free energy, expressed as a functional of the
complex order-parameter field ψ(r) = �(r) exp [iφ(r)], has

the form

F({ψ(r)}) =
∫

dr
(

Ac|ψ(r)|2 + Bc

2
|ψ(r)|4 + Cc

2
|∇ψ(r)|2

)
.

(1)

This form is justified near the actual superconducting transition
where the magnitude of the order parameter is small, so
a low-order power-series expansion in ψ(r) is adequate.
Further, ψ(r) is assumed to vary slowly with r, so it suffices to
keep only the |∇ψ(r)|2 term; this is the case in conventional
superconductors where the natural superconducting length
scale (also the coarse graining scale) ξ0 is large (compared
to, say, the Fermi wavelength). After the advent of the
microscopic Bardeen-Cooper-Schrieffer14 (BCS) theory of
superconductivity, ψ(r) was identified by Gor’kov15 with the
Cooper-pair amplitude, i.e., ψ(r) = 〈a↑(r)a↓(r)〉, where aσ (r)
[a†

σ (r)] is the operator that destroys (creates) an electron at r
with spin σ (σ =↑ ,↓). Gor’kov also obtained the coefficients
Ac, Bc, and Cc in terms of the electronic parameters of the
metal.

In our phenomenological description, we hypothesize that
a free-energy functional similar in structure to that of Eq. (1),
but defined on the square planar CuO2 lattice, describes the
properties of cuprate superconductors for a fairly wide range
of hole doping (x) and temperature (T ). Figure 1 shows the
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FIG. 1. (Color online) The square Cu lattice sites i,j,k,l, . . . in
the CuO2 plane and construction of the bond lattice out of the centers
of the Cu–O–Cu bonds. The larger solid circles at {Ri

.= i} (blue)
represent the positions of Cu lattice sites and the smaller ones at
{Rm

.= m ≡ ij} (magenta) show the positions of bond-center lattice
sites. Alternatively, we denote the bond-center lattice site between Ri

and Rj = Ri + aμ̂ as Riμ ≡ Ri + (a/2)μ̂ with μ̂ = +x̂, + ŷ. The
arrows indicate the direction of equivalent planar spins, with Sm =
(�m cos φm, �m sin φm) representing the complex order parameter
ψij ≡ ψm = �m exp(iφm), and antiferromagnetic ordering (shown)
of spins translating into a d-wave symmetry gap (long-range order).

square planar lattice schematically, and Fig. 2 shows the region
of the (x,T ) plane where our phenomenological description
is assumed to be applicable. The free energy is assumed to
be a functional of the complex spin-singlet pair amplitude
ψij ≡ ψm = �m exp(iφm), where i and j are nearest-neighbor
sites of the square planar Cu lattice and m labels the bond-
center lattice site located at the center of the bond between
the lattice sites i and j (see Fig. 1). The highly anisotropic
cuprate superconductor is modeled as a weakly coupled stack
of CuO2 planes in which the superconductivity is believed
to primarily reside; we ignore, as a first approximation, the
interplane coupling. The free-energy functional for a single
CuO2 plane is assumed to have the form

F({�m,φm}) = F0({�m}) + F1({�m,φm}), (2a)

F0({�m}) =
∑
m

(
A�2

m + B

2
�4

m

)
, (2b)

F1({�m,φm}) = C
∑
〈mn〉

�m�n cos(φm − φn). (2c)

A Gor’kov-like interpretation of ψij is that it is the
average spin-singlet nearest-neighbor Cooper-pair amplitude,
i.e., ψij = 〈bij 〉/

√
2 = (1/2)〈ai↓aj↑ − ai↑aj↓〉. The sites i and

j are different because strong electron repulsion (symbolized,
for example, by the Mott-Hubbard U ) disfavors on-site pairing,
while the existence of large nearest-neighbor antiferromag-
netic spin-spin interaction in the parent cuprate is identically
equivalent for spin- 1

2 electrons to attraction between nearest-

neighbor pairs [i.e., Jij (Si · Sj − 1
4 n̂i n̂j ) = −Jij b

†
ij bij , with Si

and n̂i the electron spin and number operators, respectively,
at the ith site]. This favors the formation of nearest-neighbor
spin-singlet pairs.

The first part F0 of F is the sum of identical independent
terms, each of which is a function of only the magnitude �m

of the order parameter on the bond lattice site. Equation (2b)
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FIG. 2. (Color online) A schematic illustration of the hole doping
x and temperature T plane (entire shaded region), where we assume
the functional of Eq. (2) to be applicable. The T 0

l (x) (solid brown line)
and Tc(x) (solid blue line) are shown along with the experimental
superconducting (SC) dome and antiferromagnetic (AF) regime at
very low hole doping. The two arcs shown by dotted lines denote
regions where quantum fluctuation effects, as well as other low-
energy degrees of freedom, such as electronic and spin plus their
coupling with pair degrees of freedom, need to be explicitly included
in the free-energy functional. For instance, inclusion of quantum
phase fluctuation effects in a minimal level leads to a Tc(x) curve in
agreement with experiment (see Sec. III).

is a simple form for it in the image of Eq. (1), with A and
B depending, in general, on x and T . We assume that B

is a positive constant independent of x and T and choose
A(x,T ) to change sign along a straight line T 0

l (x), running
from T = T0 at x = 0 to T = 0 at x = xc (see Fig. 2). As a first
approximation, this line can be identified with the pseudogap
temperature T ∗(x) because the magnitude of the local pair
ampliitude 〈�m〉 can increase dramatically as the temperature
crosses this line, as A changes from a positive to a negative
value. The occurrence of superconductivity, characterized by
a nonzero stiffness for long-wavelength phase fluctuations and
the associated superconducting phase coherence, depends on
the phase-coupling term (2c). If C in Eq. (2c) is taken to be
proportional to x, the superconducting transition temperature
Tc, as calculated in our theory, turns out to be proportional to x

for small values of it, in conformity with what is observed, e.g.,
the Uemura correlation.16 Also, if C is taken to be positive,
the transition is to a d-wave symmetry superconducting state
(see Sec. II). We therefore make this choice.

We emphasize that the assumed form of the functional and
the dependence of the coefficients on x and T are purely
phenomenological, guided by experimental results; the func-
tional is not derived from a microscopic theory. The functional
satisfies the usual symmetry and stability requirements: the
absence of odd powers of ψm ensures invariance of the free
energy under a global change of phase, and the free energy is
bounded below for the chosen positive B. Since �m = |ψm|
and �m�n cos(φm − φn) = −(|ψm − ψn|2 − �2

m − �2
n)/2, it

is readily seen that the free energy of Eq. (2) is similar
in form to a discretized version of the GL functional of
Eq. (1). However, there are important differences between our
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phenomenological approach and the original GL theory; these
differences are discussed in detail in Sec. II.

The main objective of our study is to investigate whether
the free-energy functional defined above provides a good
description of experimental results over a wide range of x and
T . To this end, we have carried out several investigations of the
thermodynamic behavior of a system for which the equilibrium
properties are given by canonical (thermal) averages with the
functional of Eq. (2) playing the role of the Hamiltonian or
energy function. These calculations have been performed at
several levels of sophistication. We first used simple single-site
mean-field theory to obtain qualitative information about the
behavior of the system over a wide range of x and T .
We also used cluster mean-field theory to obtain more accurate
estimates of the superconducting transition temperature as
a function of doping. We used numerical minimization of
the free energy to obtain exact results for the properties of
the system and the structure of vortices at zero temperature.
We also used extensive Monte Carlo (MC) simulations to
obtain exact (modulo finite-size effects) information about the
thermodynamic behavior of the system at finite temperatures.
Since the free energy of Eq. (2) may be viewed as the
Hamiltonian of a two-dimensional XY model with fluctuations
in the magnitudes of the spins (see Sec. II for the details of
this analogy), we made use of well-known results about the
behavior of the XY model in two dimensions in the analysis
of the data obtained from our MC simulations. Finally, we
extended our free-energy functional to include quantum phase
fluctuations (see Sec. III) in order to study the effects of
these fluctuations on the transition temperature, and included
coupling of the pair degrees of freedom to electrons (see
Sec. VIII) to study the spectral properties of electrons mea-
sured in ARPES experiments. Simple, physically motivated,
approximate analytic methods were used in these studies.
The main results obtained from these extensive analytic and
numerical calculations are summarized in the following.

As a starting point, we calculate the superconducting
transition temperature Tc(x) and the average magnitude of the
local pair amplitude 〈�m〉 using single-site mean-field theory
for the model of Eq. (2). We show that this approximation leads
to general features of the x-T phase diagram in agreement with
experiment. In particular, we find a phase-coherent supercon-
ducting state with d-wave symmetry below a parabolic Tc(x)
dome and a phase-incoherent state with a perceptible local
gap that persists up to a temperature around T 0

l (x). Further,
effects of thermal fluctuations beyond the mean-field level are
captured via MC simulations of the model of Eq. (2) for a
finite two-dimensional lattice. Section III describes the results
for Tc(x) obtained from these simulations. The actual values of
A, B, and C used in these calculations are discussed in Sec. II.

The superfluid stiffness ρs(x,T ) (a quantity measured,
e.g., via the penetration depth) is calculated in Sec. IV.
Its doping and temperature dependence compare well with
experimental results.17–21 The thermally averaged local gap
�̄(x,T ) ≡ 〈�m〉 is obtained in Sec. V, where we calculate the
temperature Tms(x) corresponding to the maximum slope of
this quantity with and without the C term. This temperature
provides a measure of the pseudogap temperature T ∗(x). We
use these results to remark on contrasting scenarios7,8 proposed
for the doping dependence of the pseudogap. We find that

there is a contribution to �̄(x,T ) that turns on at Tc(x),
the superconducting transition temperature. This is obviously
connected with persistent observations of two different kinds
of energy gaps in several experiments.22,23 We also calculate
the ratio 2�(x,0)/Tc(x), which is observed to be generally
much larger than the BCS value of about 4 over a wide range
of x11,24 and to vary from system to system within the cuprate
family for the same x. Our results rationalize this behavior,
which is expected here since the origins of �(x,0) and Tc are
different.

The contribution of the pair degrees of freedom to thermal
properties, such as the specific heat Cv , can be obtained from
the free-energy functional of Eq. (2). We briefly report in
Sec. VI our calculation of Cv (details are given in a subsequent
paper25), and find that there are two peaks26–29 in it, a sharp
one connected with Tc (ordering of the phase of ψm) and a
relatively broad one (hump) linked to T ∗ (rapid growth of the
magnitude of ψm). The former is specially sensitive to the
presence of a magnetic field, as we find in agreement with
experiment.30,31 Vortices, which are topological singularities
in phase, are naturally explored in our approach.32 We use the
functional of Eq. (2) to find �m and φm at different sites m

for a 2π vortex, the core of which is at the center of a square
plaquette of Cu lattice sites (Sec. VII). We find that the vortex
changes character from being primarily a phase or Josephson
vortex for small x to a more BCS-like vortex with a large
diminution in the magnitude �m as one approaches the vortex
core for large x. Reference 33 describes these results in greater
detail.

Experimental information about the pair field ψm and its
correlations is not obtained directly, but from its coupling to
electrons [e.g., ARPES (Refs. 9 and 10) and STM (Ref. 11)],
photons (e.g., Raman scattering12 and light absorption34), and
neutrons.4 We therefore develop a theory for the coupling of
electrons near the Fermi energy with ψm and outline it in
Sec. VIII. A separate paper35 describes this approach in detail,
as well as the results (e.g., Fermi arcs that are ubiquitous above
Tc and the pseudogap for various momentum regions of the
Fermi surface, especially the antinodal region), which compare
very well with the results of recent ARPES measurements.
We present here the results for the antinodal pseudogap filling
temperature T an(x) and compare it with the other estimate of
the pseudogap temperature Tms(x) obtained in Sec. V.

The results summarized above establish that the simple
free-energy functional proposed here provides a consistent and
qualitatively correct (quantitative in some cases) description
of a variety of experimentally observed properties of cuprate
superconductors over a wide range of temperature T and hole
concentration x. This is the main conclusion of our study.
Section IX discusses certain generalizations, applications, and
limitations of the approach used in our study. Appendices A,
B, and C describe some technical details of the calculations.

II. THE FREE-ENERGY FUNCTIONAL

A. Generalities

As noted above, the free-energy functional used in our
study is phenomenological in nature with experimentally
inspired coefficients. We have deliberately kept it as simple
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as possible, without violating basic requirements of symmetry
and stability. The form of the functional of Eq. (2) is analogous
to that used in conventional GL theory. However, our approach
is different from the GL theory in several ways. The form
of the free-energy functional used in the GL theory of
supercoductivity and in similar theories of other continuous
phase transitions36 can be justified only if the temperature is
close to the transition temperature. This approach, therefore,
is expected to yield quantitatively correct results only in
the vicinity of the superconducting transition. This regime
of validity is ordained by the requirement of smallness and
slow spatial variation of the order parameter. Our use of the
simple, GL-like functional of Eq. (2) over a broad (x,T )
region can not be justified from similar considerations; the
validity of our approach can only be judged a posteriori by
comparing its consequences with experiments. Hence, we have
calculated a variety of experimentally measurable quantities
using the functional of Eq. (2) and compared the results with
those of the experiments. As discussed in detail in subsequent
sections, we find qualitative (and quantitative in some cases)
agreement between the theoretical and experimental results for
a wide variety of properties of cuprate superconductors. This
establishes the usefulness of our phenomenological approach
in describing the properties of cuprate superconductors over a
wide range of x and T .

Another important difference between our approach and
conventional GL theory is that the free-energy functional
that we consider is not coarse grained in the GL sense. We
believe that this is natural because all cuprate superconductors
are characterized by short intrinsic pairing length scales
or coarse-graining lengths (ξ0 ∼ 15 − 20 Å in the cuprates
rather than the value of ∼10 000 Å for conventional pure
superconductors). We thus use a nearest-neighbor coupling
of the pair amplitudes defined at the sites of the atomic
bond lattice in the second term of our functional [Eq. (2c)].
Another difference between the functional used in our study
and that of conventional GL theory is that the sign of the
coupling constant C in Eq. (2c) is taken to be positive, so the
pair amplitudes at nearest-neighbor sites of the bond-center
lattice have a phase difference of π in the ground state. This
difference in sign between the pair amplitudes on the horizontal
(in the x direction) and vertical (y direction) bonds of the
Cu lattice corresponds to the superconducting state having
d-wave symmetry. This is consistent with the experimental
fact that the superconducting gap �k is proportional to
(cos kxa − cos kya), which arises in our description from a
combination of nearest-neighbor Cooper pairs with relative
phases as mentioned above.

Some of the methods of calculation used in our study are
also different from those in the conventional GL theory of
superconductivity in which physical properties are calculated
using simple mean-field theory. The mean-field results are
expected to be valid if the temperature is outside the so-called
critical region36 around the transition temperature, where the
effects of fluctuations, not included in a mean-field analysis,
are important. For conventional superconductors with long
coherence lengths, the width of the critical region is very small,
so the mean-field theory provides a good description of most
of the experimentally observed behavior. This, however, is not
the case for cuprate superconductors with very short coherence

lengths and for our model of cuprate superconductivity.
For this reason, we have to go beyond mean-field theory
(which provides a qualitatively correct, but not quantitative,
description of the general behavior) and use other methods
(such as MC simulations) to obtain accurate results for the
thermodynamic behavior of our model.

A natural description of the pair amplitude ψm is as a planar
spin of length �m pointing in a direction that makes an angle
φm with a fixed axis. The thermal (Boltzmann) probability
of the length distribution is given primarily by F0({�m})
of Eq. (2b), and the term in Eq. (2c) may be thought of as
the coupling between such spins. The temperature T ∗(x) can
be identified roughly as that at which the spin at each bond
lattice site acquires a sizable length locally without any global
ordering of the angles, whereas the antiferromagnetic (C > 0)
nearest-neighbor interaction leads to global order (d-wave
superconductivity) setting in at Tc. The two temperatures
are well separated for small x because A, B, and C are so
chosen that T ∗(x 
 0) � Tc. The region between T ∗ and
Tc is the pseudogap regime where, in the spin language,
antiferromagnetic short-range correlations grow with decreas-
ing temperature, their length scale diverging at Tc. There is
considerable experimental evidence for this view,5–7 although
there is also the alternative view that T ∗(x) is associated with
a new long-range order, e.g., d-density wave37 (DDW) or
time-reversal symmetry-breaking circulating currents.38

The BCS theory and conventional GL theory in which
the spin formation and ordering temperatures are the same
are limiting cases of this scenario. Something like this is
expected to happen in cuprates near xc (Fig. 2) as also follows
from our functional. The state below Tc has a nonzero order
parameter 〈ψm〉 for a system above two dimensions, and is
a Berezinskii-Kosterlitz-Thouless39–41 (BKT) bound vortex
state with quasi-long-range order in two dimensions, in which
case Tc is identified with the vortex unbinding temperature
TBKT. In the former case, the order parameter is the sublattice
magnetization �d (x,T ) = |〈ψm〉| with a k-dependent gap
�k = (�d/2)(cos kxa − cos kya). The interlayer coupling can
be described, in the manner of Lawrence and Doniach,42 by
adding, say, a nearest-neighbor coupling between spins on
different layers to our functional in Eq. (2). Since this is,
in practice, relatively small (the measured anisotropy ratio
in Bi2212 is about 100, for example43), it makes very little
difference quantitatively to most of our estimates, which
generally neglect this coupling. For instance, Tc calculated
by estimating the BKT transition temperature (TBKT) from
MC simulation of the two-dimensional model of Eq. (2) (see
Sec. III) is expected to be very close to the actual transition
temperature in the anisotropic three-dimensional (3D) model
with such small interlayer coupling.

A conventional GL theory of cuprate superconductivity
would involve a functional similar to that in Eq. (1) (but with
additional terms allowed by symmetry) with ψ(r) being the
d-wave superconducting order parameter, and the coefficients
so chosen that a mean-field treatment of the free energy
leads to a dome-shaped Tc(x) curve similar to that found
in experiments. However, a mean-field treatment, and the
conclusions obtained from it, would not be reliable because
of the smallness of the superconducting coherence length
in the cuprates and the consequent large fluctuation effects.

024510-4



PHENOMENOLOGICAL GINZBURG-LANDAU-LIKE THEORY . . . PHYSICAL REVIEW B 83, 024510 (2011)

In particular, the pseudogap temperature T ∗ (which is much
larger than Tc for small x, and goes to Tc as x increases)
would be absent in such a theory. By contrast, the assumption
that the basic low-energy Cooper-pair degree of freedom in
the cuprates is the bond pair gives a physical meaning to T ∗
as a pair magnitude crossover temperature, and describes the
regime between T ∗ and Tc as one in which the correlation
length associated with superconducting fluctuations of d-wave
symmetry grows and diverges at Tc. The effect of these
fluctuations is found to be crucial for many physical properties,
e.g., the Fermi arc phenomenon and the filling of the antinodal
pseudogap as T rises to T ∗. The superconducting order with
d-wave symmetry that sets in at Tc is an emergent collective
effect, arising from the short-range ψ∗

mψn interaction, much
as long-range Néel order arises from an antiferromagentic
coupling between nearest-neighbor spins.

GL theories for cuprates have been proposed by a large
number of authors, arising either out of a particular model for
electronic behavior, and often coupled with the assumption of
a particular glue for binding electrons into pairs,44–46 or out of
lattice-symmetry considerations.47,48 The functional in Eq. (2)
is consistent with square lattice symmetry and, in principle,
does not assume any particular electronic approach (weak
coupling or strong correlation, for example) or a mechanism
for the glue. However, some of the properties of the coefficients
are natural in a strong electron correlation framework. For
example, mobile holes in such a system can cause a transition
between a state in which there is a Cooper pair in the x-directed
ij bond (Fig. 1) to one in which the Cooper pair is in an
otherwise identical but y-directed bond jk nearest to it (or vice
versa), thus leading to a nonzero term F1 in Eq. (2). This is
probably connected with the observed49 empirical correlation
between Tc and the diagonal or next-nearest-neighbor hopping
amplitude of electrons in the Cu lattice.

B. Parameters of the Functional

The coefficients A, B, and C are chosen to be consistent
with experiments. Specifically, the coefficients are as follows:

A(x,T ) = A0

[
T − T0

(
1 − x

xc

)]
eT/Tp , (3a)

B = B0T0, (3b)

C(x) = xC0T0. (3c)

We require �m to have dimensions of energy [E] (or
temperature for Boltzmann constant kB = 1) and, hence, A0,
B0, and C0 have dimensions of [E]−2, [E]−4, and [E]−2,
respectively. They are rewritten in terms of T0 as well as three
dimensionless parameters f , b, and c, so F carries dimension
of energy as well. We thus have A0 = (f/T0)2, B0 = b(f/T0)4,
and C0 = c(f/T0)2. We choose b and c to have values of
order unity and fix them for different hole-doped cuprates by
comparing �0(x), T ∗(x), and T

opt
c obtained from the theory

with experiments (see the following for details).
The two temperature dependent parts of A as given above

arise as follows. The part [T − T0(1 − x/xc)] reflects our iden-
tification of the zero of A(x,T ) with the pseudogap temperature
and the experimental observation that the pseudogap region
extends downward nearly linearly from T = T0 at x = 0 to

T = 0 for x = xc. The relation between this straight line
T 0

l (x), the experimental T ∗(x), and the related quantities
T 0,1

ms (x) (obtained from a maximum slope criterion, Sec. V)
as well as T an(x) (obtained from the antinodal gap filling
criterion for the electron spectral function, Sec. VIII) is shown
in Figs. 7 and 16. The exponential factor eT/Tp suppresses
�̄(x,T ) at high temperatures [T � T 0

l (x)] with respect to
its temperature-independent equipartition value

√
T/A(x,T ),

which will result from the classical functional [Eq. (2)] being
used well beyond the near proximity of any critical temperature
where it is valid. Such a suppression is natural in a degenerate
Fermi system; the relevant local electron-pair susceptibility is
rather small above the pair-binding temperature and below
the degeneracy temperature. The temperature scale Tp is
of the order of T0, this being the energy scale for pair
binding. We take it to be T0 unless stated otherwise. In all
these calculations, we choose xc = 0.3 and b = 0.1 [except
in Fig. 4(b)]. The parameter b along with Tp controls the
temperature dependence of �̄(x,T ), especially the decrease
of �̄(x,T ) across the pseudogap temperature line T ∗(x), and
other details such as the height of the specific heat hump
around T ∗(x). Values of f , c, and T0 can be fixed for a
variety of cuprates by comparing the zero-temperature gap
�0(x), T ∗(x), and T

opt
c with experiments. For example, a

choice of parameters, roughly suitable for Bi2212, which has
an experimental T

opt
c 
 91 K, gives f 
 1.33, c 
 0.3 with

�0(x = 0) 
 82 meV, T0 
 400 K, and T
opt

BKT 
 72 K (T opt
c 


110 K from the single-site mean-field theory, see Sec. III).
Unless otherwise stated, we have used these parameter values
in the rest of the paper.

III. SUPERCONDUCTING TRANSITION
TEMPERATURE Tc(x)

The superconducting state is characterized by macroscopic
phase coherence. For superconductivity in cuprates described
by the functional [Eq. (2)], this means a nonzero value for the
superfluid stiffness or superfluid density ρs(x,T ) given by the
formula50

ρs = − C

2Nb

〈∑
m,μ

�m�m+μ cos(φm − φm+μ)

〉

− C2

2NbT

∑
μ

〈(∑
m

�m�m+μ sin(φm − φm+μ)

)2〉
,

(4)

where the subscript m + μ refers to Rm + lμ̂, with μ̂ running
over x and y directions in the bond-lattice coordinate system
(rotated by 45◦ with respect to the x axis shown in Fig. 1),
l = a/

√
2 is the spacing of the bond-center lattice, and Nb is

the number of sites in the bond-center lattice (Nb = 2N ). The
superconducting transition temperature Tc(x) is the highest
temperature at which ρs(x,T ) is nonzero. We use this fact
to obtain Tc(x) in single-site and cluster mean-field theories
(the relevant details are summarized in Appendix A). As
mean-field approximations are known36 to overestimate the
transition temperature, we treat the effect of fluctuations
in the model of Eq. (2) through MC simulations. In these
simulations, the standard Metropolis sampling scheme51 has
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been used for planar spins {Sm = (�m cos φm,�m sin φm)},
the lengths of which are controlled mainly by F0 [Eq.(2b)].
Simulations have been carried out for a 100 × 100 square
lattice (bond lattice) with periodic boundary condition.
Typically, 105 MC steps per spin have been used for
equilibration and measurements were done for next 3 × 105

(6 × 105 in some cases) MC steps per spin. Simulations were
done for the doping range 0–0.4 at various temperatures.

In our two-dimensional model, true long-range order
is destroyed by thermal fluctuations, but there is nonzero
superfluid stiffness due to vortex-antivortex binding (the BKT
transition39–41) below a temperature TBKT. We calculate the
superfluid stiffness in the MC simulation using the formula
of Eq. (4) and use it in conjunction with the Nelson-Kosterlitz
criterion52

ρs(TBKT)

TBKT
= 2

π
(5)

based on the BKT theory to obtain the vortex binding
temperature TBKT(x), which is identical to Tc(x) in 2D. The
above criterion, appropriate for a fixed-length XY model or
equivalently a low-fugacity 2D vortex gas, might not give
an accurate estimate of TBKT for the model of Eq. (2) in
the extreme overdoped regime close to x = xc due to large
fluctuations in the magnitudes �m.53 The TBKT obtained using
Eq. (5) should presumably be quite accurate in the underdoped
and optimally doped regions where the magnitudes effectively
become frozen, since T ∗(x) � Tc(x), resulting in a description
of the model [Eq. (2)] in terms of an effective fixed-length XY

model (Appendix C) close to the superconducting transition.
These results are shown in Fig. 3. Results for the temperature
dependence of the superfluid stiffness are presented in Sec. IV.

The calculated Tc curve is approximately of the same
parabolic shape as that found experimentally. The causes for
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FIG. 3. (Color online) Doping dependence of different tempera-
ture scales (T 0

l and TBKT) and the zero-temperature gap �0 [Eq. (8b)]
are shown in the main plot. Inset: Comparison of the Tc’s obtained
from single-site mean-field theory and cluster mean-field theory (T mf

c

and T cmf
c , respectively) (see Appendix A) with the BKT transition

temperature TBKT obtained from MC simulation, as discussed in the
text.

the qualitative disagreement at both ends (see Fig. 2) are not
difficult to understand. For very small x, as well as for x

near xc, our free-energy functional needs to be extended by
including quantum phase fluctuation effects. For such values
of x, zero-point fluctuations are important because the phase
stiffness is small. Additionally, low-energy mobile electron
degrees of freedom need to be considered explicitly for x

near xc. To include quantum phase fluctuation effects, we
supplement the GL functional of Eq. (2) with the following
term that describes quantum fluctuations of phases (φm) at a
minimal level54–56:

FQ({q̂m}) = 1

2

∑
mn

q̂mVmnq̂n. (6)

Here, q̂m is the Cooper-pair number operator at site m, and
φm in Eq. (2c) should be treated as a quantum-mechanical
operator φ̂m, canonically conjugate to q̂m so that [q̂m,φ̂n] =
iδmn.57 We take the simplest possible form for Vmn, i.e., Vmn =
V0δmn for the purpose of demonstrating the effect of quantum
fluctuations on the Tc(x) curve (Fig. 4), where V0 is the strength
of on-site Cooper-pair interaction. We have obtained a single-
site mean-field estimate of Tc(x), namely, T Q

c (x), including the
effect of FQ as shown in Fig. 4 and discussed in Appendix A.
As it is well known, mean-field theory overestimates the value
of the transition temperature. Hence, to compare T Q

c (x) with
TBKT(x) of Fig. 3 as well as with the experimental Tc(x) curve,
we scale the T Q

c calculated using Eq. (A6) by a factor of ∼0.6
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FIG. 4. (Color online) (a) Effect of quantum fluctuation on
Tc(x) curve of Fig. 3 for V0 = 0.09T0. The quantum fluctuation
renormalizes Tc to T Q

c throughout the whole x range (inset). In
the main figure, we have taken f = 1.55 to change the temperature
scale T0 (=460 K) while keeping �0(x = 0) = 82 meV (Sec. II B)
so that the optimal value of T Q

c matches that of TBKT in Fig. 3. (b)
A reasonably good comparison can be obtained with experimental
Tc(x) curve for La214 with the following choice of parameters
(Sec. II B): xc = 0.345, c = 0.33, b = 0.155, f = 1.063, Tp = T0,
and V0 = 0.15T0 with �0(x = 0) = 82 meV. This choice implies
T0 = 400 K. The dip of the experimental Tc around x ∼ 0.12 is due
to the 1/8 stripe anomaly (Ref. 58) which is out of the scope of the
present functional of Eq. (2) (see discussion in Sec. IX).
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in Fig. 4. This factor has been estimated by calculating the ratio
TBKT(x)/T mf

c (x) from Fig. 3 (inset). Quantitative agreement
for Tc for a specific cuprate La2−xSrxCuO4 is possible with
a particular choice of parameters, as shown in Fig. 4(b). In
this extension of the model, we have ignored the long-range
nature of the Coulomb (or charge) interactions, as well as
Ohmic dissipation. It has been argued55 that these two factors
together result in a fluctuation spectrum similar to the one
obtained in an approximation that ignores both, but retains the
short-range part of the charge interaction.

In the remaining parts of the paper, we do not consider
quantum phase fluctuations because they modify the results
qualitatively only in the extremely underdoped and overdoped
regions by aborting the superconducting transition as the phase
stiffness ρs(0) becomes small (see Fig. 5) at these two extremes
in our model. In the rest of the x range, these effects are
expected to renormalize59 the values of the parameters of the
functional of Eq. (3). We assume that such renormalizations
are implicit in our choice of the parameters A, B, and C in
tune with experimental facts (see Sec. II B).

IV. SUPERFLUID DENSITY ρs(x,T )

As mentioned above, we have evaluated the superfluid
density ρs at finite temperatures using Eq. (4) by MC
simulation of our model [Eq. (2)]. The results are discussed
below along with mean-field results. As we have mentioned
in Sec. III, the transition temperature TBKT can be estimated
from the universal Nelson-Kosterlitz jump of Eq. (5), where
ρs(T ) = 0 above Tc. We show the results for finite-temperature
superfluid density in Fig. 5(a).

The zero-temperature superfluid density can be calculated
easily from the ground-state energy change due to a phase
twist (a spin wave) and is given by

ρs(x,0) = C�2
0(x), (7)

where �2
0(x) is obtained from Eq. (8b) (see Sec. V). Evidently,

ρs(x,0) ∝ x for small x (as is implicit in the choice of C).
Tc(x), of course, is also proportional to x for small x, as can be
easily verified from Eq. (A5) (see Appendix A), which gives
a quite accurate estimate of Tc for low hole doping. Hence,
the Uemura relation16 is seen explicitly to be satisfied for this
choice of C. In Fig. 5(b), we plot ρs(x,0) as a function of x

along with Tc(x). The ρs(x,0) initially increases with x to reach
a maximum value (so dρs (0)

dx
= 0) slightly on the overdoped side

at x = xc2/2 and then ultimately drops to zero at xc2 as does
Tc as well (see Fig. 3), but the optimal Tc(x) and optimal
ρs(x,0) appear, in general, at two different values of doping
(xc2/2 > xopt for the present choice of parameters). A similar
behavior is observed in experimental studies of the muon-spin
depolarization rate σ0 ∝ ρs(x,0) of some cuprates, which can
be sufficiently overdoped.17,18 The depolarization rate depends
on the local magnetic field at the location of the muon; this has
been shown to be proportional to the superfluid stiffness that
controls the magnetic response of the superfluid.60 We also plot
Tc(x) as a function of ρs(x,0) [Uemura plot, inset of Fig. 5(b)]
which compares well with experimental plots of Tc versus σ0,
measured at low temperatures and shown in Refs. 17 and 19.

At low temperatures, the calculated ρs(x,T ) decreases
linearly with T from its zero-temperature value, i.e., ρs(x,T ) =
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FIG. 5. (Color online) (a) Calculated finite-temperature super-
fluid density for different x values. The dashed line corresponds to
the size of the universal Nelson-Kosterlitz jump [Eq.(5)] expected at
a BKT transition. TBKT(x) has been obtained from the intersection
of this line with ρs(x,T ) vs T curves. Inset: ρ ′

s(x), estimated by
fitting ρs(x,T ) vs T with a linear form ρs(x,T ) = ρs(x,0) − ρ ′

s(x)T .
(b) Zero-temperature superfluid density ρs(x,0), as a function of x,
compared with TBKT(x) and T cmf

c (x). The superfluid density has been
expressed in units of energy (meV) as appropriate in 2D. Vertical
dashed lines indicate x’s corresponding to optimal values of ρs(x,0)
and TBKT(x). The inset shows the Uemura plot (Refs. 16, 17, and 19)
Tc(x) vs ρs(x,0). The initial part of the upper branch corresponds
to the underdoped region, where the Uemura relation was inferred
(Ref. 16) originally. The subsequent decrease of ρs(x,0) along with
Tc in the overdoped regime (lower branch) is observed, for example,
in Tl2Ba2CuO6+δ (Refs. 17 and 19).

ρs(x,0) − ρ ′
s(x)T ; the coefficient of the linear term, namely,

ρ ′
s(x) remains more or less independent of x for small x and

approaches a constant value as x → 0 on the underdoped side.
The same trend can be observed in the experimental data20,21

for in-plane magnetic penetration depth λab, where λ−2
ab ∝ ρs .

It is interesting that a model for superconductivity such as
ours, which does not explicitly include electron degrees of
freedom, leads to a linear decrease61,62 in light of the fact that
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the linear dependence has been attributed to thermal, nodal
quasiparticles of the d-wave superconductor.1

V. AVERAGE LOCAL GAP �̄(x,T ) AND THE PSEUDOGAP

The energy gap �m is a thermodynamic variable with a cer-
tain probability distribution given by the functional of Eq. (2).
There is no direct measurement of the energy gap, unlike
that of Tc or of the superfluid stiffness discussed in Secs. III
and IV. The information about the energy gap is obtained via
the coupling of the gap (or more precisely, of electron pairs
giving rise to the gap) to electrons, photons, neutrons, etc.
In this section, we compute the thermodynamically averaged
local gap �̄(x,T ) = 〈�m〉 and compare our results with the
broadly observed trends for gaps as inferred from a number of
measurements on a variety of cuprates. These trends are for the
pseudogap as a function of hole doping x, and for the ratio of
the zero-temperature gap to the pseudogap temperature T ∗(x)
as well as to the directly measured superconducting Tc.

Figure 6 shows the dependence of �̄(x,T ), calculated
in the single-site mean-field theory (see Appendix A), on
temperature for different values of the hole doping x. We have
checked that the values of 〈�m〉 obtained from MC simulations
are quite similar to the mean-field results, the main difference
being that the singularity of the mean-field values at Tc(x)
is smoothed out in the MC results. Note that the quantity
�m = |ψm| is not the order parameter for superconductivity
and its average �̄(x,T ) can be (and is) nonzero at temperatures
above Tc. The average gap increases smoothly as T decreases;
the increase can be rather abrupt or gradual, depending on the
parameters [see Fig. 6(b)]. The part in �̄(x,T ) turning on at Tc

is generally small. The zero-temperature gap �0(x) ≡ �̄(x,0)
is the sum of these two, a gap that would have been there even
in the absence of phase coherence [shown by the dotted line
and calculated from �̃ = 〈�m〉0, where the thermal average
is evaluated using the single-site term F0 of Eq. (2)] and a
second part that is due entirely to phase coherence.

Measurements detect a diminution in the density of electron
states, one which depends on the direction of k along the
Fermi surface. Different measurements (e.g., NMR, resistivity,
ARPES, etc.) show characteristic changes at temperatures that
differ by 20 to 40 K.5 The pseudogap temperature T ∗(x)
is therefore not very well defined. T ∗ is generally seen to
decrease with hole doping x, nearly linearly, until it “hits” the
Tc(x) curve around (but slightly beyond) xopt. What happens
next is a matter of considerable controversy. Broadly, three
scenarios have been argued for, as described, for example, in
Ref. 7. One of them63 suggests that the pseudogap temperature
merges with Tc(x) a little beyond optimum doping. Another
scenario8,37,38 is that it goes through the Tc(x) dome and
reaches zero at a putative quantum critical point xqcp, which
controls the universal low-temperature behavior of the cuprate
around it in the (x,T ) plane. A third7 scenario is that there is
no T ∗ beyond the hole concentration x1 at which it touches
Tc(x). Operationally, we identify the pseudogap temperature
as one at which the absolute value of the slope of �̄(x,T )
as a function of temperature is a local maximum, calling it
Tms(x). In general, this definition leads to two characteristic
temperatures. One of these temperatures is at Tc because a part
of �̄(x,T ) suddenly turns on at Tc due to the onset of global
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FIG. 6. (Color online) Panel (a) shows the onset of the second gap
feature in �̄ = 〈�m〉 at Tc due to the presence of the C term in Eq. (2)
for x = 0.05, 0.10, 0.15, 0.19, 0.23, 0.27 (from top to bottom curve).
The dashed lines compare �̃ = 〈�m〉0 with �̄ (see text). Panel (b)
compares the temperature dependence of �̄ for Tp = T0 (solid lines)
and for Tp = 0.65T0 (dashed lines) for x = 0.05, 0.10, 0.15, 0.19
(from top to bottom curve). �̄ changes much more rapidly, especially
in the underdoped side, with decreasing temperature across T 0,1

ms (x)
for the second case. The results shown here and in Fig. 7 were obtained
from single-site mean-field theory.

phase coherence, leading to a divergence of the temperature
derivative at Tc. The other is at a temperature higher than Tc(x)
until an x value slightly above xopt. This fact leads to two kinds
of behavior for Tms(x) (Fig. 7) and, thus, for the pseudogap
temperature T ∗(x) if these two are identified with each other.
If we start from the low-doping (small x) side, where Tms(x)
is high, and follow it as x increases, noticing its origin in local
pairing and existence even when there is no global order, we
see that this branch of Tms(x) denoted as T 0

ms(x) in Fig. 7 hits
the Tc(x) line at x1 [Fig. 7(b)], goes through the Tc dome to
zero temperature at “xqcp”, and continues to be zero thereafter.
On the other hand, if beyond x1 we choose the other solution
for Tms(x) [called T 1

ms(x) in Fig. 7], which exists because of the
long-range order caused by the Josephson or C term in Eq. (2c),
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FIG. 7. (Color online) (a) Extraction of T 1
ms(x) from the positions

of the maximum of | ∂〈�m〉
∂T

| ≡ |∂T 〈�m〉| vs T curves (upper panel) at
various doping values. Two local maxima appear in the underdoped
regime, one sharp peak at Tc and a broad maximum at T 1

ms. T 1
ms(x)

merges with Tc(x) in the overdoped side (inset of upper panel).
Similar analysis (lower panel) is carried out on | ∂〈�m〉0

∂T
| (see text for

definition) to extract T 0
ms. (b) Comparison of T ∗(x), identified with

T 0,1
ms , with other relevant temperature scales; different pseudogap

scenarios (Ref. 7) are naturally embodied in our results, as discussed
in the text.

then one has a pseudogap curve that is above Tc(x) until x1 and
is the same as Tc(x) thereafter. These are two of the pseudogap
categories mentioned above. Different types of experiments are
likely to probe different types of pseudogap. For example, if
superconducting phase coherence is destroyed with a magnetic
field so that the C or Josephson term is ineffective, the observed
pseudogap behavior with x is that of the first category.

At zero temperature, the phase-coherent classical ground
state can be represented in terms of nearest-neighbor singlet-
bond pair fields ψm or, equivalently ψiμ (see Fig. 1), as

ψix = −ψjy = �0(x) ∀i,j, (8a)

�0(x) = �0(0)

(
1 − x

xc2

) 1
2

x � xc2 ,

= 0 x > xc2 . (8b)
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FIG. 8. (Color online) 2�0(x)/Tc(x) and 2�0(x)/T ∗(x) as func-
tions of x. Here T ∗(x) refers to T 1

ms(x) (see Fig. 7). The long-dashed
line corresponds to the nearly constant value of 2�0(x)/Tc(x) near
optimal doping.

Here, �0(x) is the zero-temperature gap (see Fig. 3),
�0(0) = 1/(f

√
b), and xc2 = xc/(1 − 2cxc) is obtained from

A(xc2 ,0) − 2C(xc2 ) = 0.
Our choice of the values of b and f fixes the ratio 2�0/T0 =

2/(f
√

b) to be around 3–5, which implies that 2�0(x)/T ∗(x)
also stays close to these values in the underdoped regime
(Fig. 8). It has been widely reported11,24 that the ratio of
the low-temperature (zero-temperature) gap to the pseudogap
temperature scale, specifically �0(x)/T ∗(x), for a range of
hole doping, especially below the optimum x, is about 4.3/2,
which is the universal d-wave BCS value64 for the ratio of zero-
temperature gap to superconducting transition temperature.
Further, by choosing c = 0.3, the ratio 2�0(x)/Tc(x) near
optimal doping is seen to be around 10 to 15 (as observed in
cuprates),9,11 being substantially higher than the BCS ratio.
In Fig. 8, the ratio 2�0(x)/Tc(x) is shown to be more or less
constant around optimal doping. The increase of this ratio as
(1 − x/xc2 )−1/2 for large x is an artifact of the chosen classical
functional.

VI. SPECIFIC HEAT

The electronic specific heat of the superconducting cuprates
has been measured in many experiments.26–28 It consists of a
sharp peak near the superconducting transition temperature
Tc(x) and a broad hump around the pseudogap T ∗(x),29 both
riding on a component that is clearly linear in T at temperatures
T � T ∗ in optimally doped and overdoped samples. Here,
we summarize theoretical results for the specific heat arising
from our functional [Eq. (2)], both with and without magnetic
field. A detailed description is given in a separate paper.25

The functional captures the thermodynamic probability of
(bosonic) Cooper-pair fluctuations and yields the contribution
of these fluctuations to the specific heat. Because of our
use of a classical functional, the low-temperature behavior
dominated by quantum effects is not properly accounted for;
we discuss this in the following. The low-energy electronic
degrees of freedom ignored in our treatment are the fermionic,
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FIG. 9. (Color online) (a) Specific heat obtained from MC
simulation of our model [Eq. (2)]. Panel (b) shows the evolution
of the broad maximum around T ∗ with doping in the underdoped
region.

non-Cooper-pair ones of the degenerate electron gas. We use
the free-energy functional [Eq. (2)] to write the specific heat
as

Cv = 1

Nb

∂〈F〉
∂T

= 1

Nb

[
1

T 2
(〈F2〉 − 〈F〉2)

+ ∂A

∂T

∑
m

(〈
�2

m

〉 − 1

T

(〈
�2

mF
〉 − 〈

�2
m

〉〈F〉))]
, (9)

where ∂A
∂T

= [f 2 exp(T/Tp) + A/Tp] for the particular choice
of A as in Eq. (3a). Clearly, the second term in Eq. (9) arises
from the fact that F is an effective low-energy functional,
the basic parameters of which, e.g., A, can be temperature
dependent. We evaluate Cv from Eq. (9) for different values
of doping x and temperature T by MC sampling of finite
2D systems as mentioned in Sec. IV. The simulations have
been carried out with f = 2 (see Sec. II B) while choosing
�0(x = 0) 
 54 meV, so that T0 = 400 K.

We notice that in both theory (see Fig. 9) and
experiment,28,65,66 there is a sharp peak in Cv around Tc (or
TBKT in our case to be more precise). The peak amplitude
increases as x increases, leading to a BCS-like shape in the
overdoped side. In addition, there is a hump,29 relatively broad
in temperature, centered around T ∗. The hump is most clearly
visible in the calculation for the underdoped regime where
T ∗ and Tc are well separated; its size in the theory depends
on A and B [Eq. (3)]. In experiments, for the underdoped
side, its beginnings can be seen; unfortunately, there are very
few experiments over a wide enough temperature range to
encompass the hump fully in this doping regime. The two
features, namely, the peak and the hump, and their evolution
with x can be rationalized physically. The peak is due to the
low-energy pairing degrees of freedom, which cause long-
range phase coherence leading to superconductivity; these are
phase fluctuations in the underdoped regime. The hump is
mainly associated with the regime where the energy associated
with order-parameter magnitude fluctuations changes rapidly
with temperature. Since this change is a crossover centered

around T ∗ rather than a phase transition, there is only a
specific heat hump, not a sharp peak or discontinuity. For small
x, T ∗ � Tc and so we see that the hump is well separated
from the peak. As x increases, T ∗ approaches Tc and, in
the overdoped regime, these are not separated and there is
no hump, only a peak corresponding to the superconducting
transition.

In order to compare our results with experiments, in
particular the features related to critical fluctuations near
Tc), we remove the contributions that are special to the
chosen classical functional and are not connected with the
Cooper-pair degrees of freedom in the real systems. First, at
low temperatures T � Tc, the fact that we have a classical
functional here leads to a large specific heat of the order of the
Dulong-Petit value, and there is an additional contribution [ ∂A

∂T
,

see Eq. (9)] due to temperature dependence of A, whereas the
actual specific heat is expected to be small because of quantum
effects (it is ∼T 2 due to nodal quasiparticles68). To account
for this difference, we compute the leading low-temperature
contribution to the specific heat arising from our functional
equation (2). Similarly, at high temperatures T > T ∗, the con-
tribution from pairing degrees of freedom for the actual system
is expected to be small, whereas from the functional [Eq. (2)],
it is not so due to the simplified from used for the single-site
term [Eq. (2b)]. We compute Cv from a high-temperature
expansion for the intersite term in Eq. (2) We interpolate for the
specific heat using the low- and high-temperature expansion
results, and subtract the resulting part (includes the hump)
from the calculated specific heat. This subtracted specific heat
is plotted in Fig. 10(a) for three values of doping. These
are compared with the experimental electronic specific-heat
data of Ref. 27 for YBCO after analogous subtraction of a
noncritical smooth part obtained from interpolation between
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FIG. 10. (Color online) (a) The critical peak appearing near Tc for
three values of x. The inset demonstrates the procedure used for the
subtraction of the noncritical background (dashed line), as mentioned
in the text. (b) Analogous plot for the experimental specific-heat data
for Y0.8Ca0.2Ba2Cu3O7−δ from Ref. 27. Here, x values are estimated
using the empirical form of Persland et al. (Ref. 67). Again, the inset
shows the subtracted background (dashed line) for x = 0.15.
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FIG. 11. (Color online) (a) Evolution of the height of the
specific-heat peak appearing near Tc with doping, compared
with the analogous plot (b) obtained from experimental data for
Y0.8Ca0.2Ba2Cu3O7−δ (Ref. 27).

low- and high-temperature regions (excluding the peak) is done
[see inset of Fig. 10(b)]. This procedure also removes the
linear-T contribution to specific heat arising from unpaired
low-energy electronic degrees of freedom present in the
system but not in our functional equation (2). Since the
peaks are large and occur over a narrow temperature near
Tc, they are relatively free from possible errors due to the
subtraction procedure mentioned above. The experimental and
theoretical results for specific heat peaks are shown separately
in Fig. 10. We see that they compare well with each other. The
qualitative agreement is brought out clearly in Fig. 11, where
we plot the specific-heat peak height with x and compare
the dependence with what is observed in experiment. This
implies that our model for the bond pairs and their interaction
to generate a d-wave superconductor is a faithful represen-
tation of the relevant superconductivity-related degrees of
freedom.

The effects of a magnetic field on the specific heat have been
cataloged in Refs. 30 and 31, where it is found that the specific-
heat peak near Tc is increasingly smoothed out with magnetic
field, but the peak position does not shift by much, especially
in highly anisotropic systems such as Bi2212 and Bi2201.
This effect is most clearly visible for small x, and occurs even
for magnetic fields as small as a few Tesla. We assume that
only the intersite term depends on the vector potential A, via
the Peierls phase factor, namely, that (φm − φn) in Eq. (2c) is
replaced by (φm − φn − 2e

h̄c

∫ Rn

Rm
A · dl). The resulting specific-

heat peak curves obtained from MC simulations are plotted in
Fig. 12 for two x values at different values of fH = Hl2/�0,
i.e., the flux going through each elementary plaquette of
the bond lattice in units of the fundamental flux quantum
�0 = hc/(2e), where H is the applied uniform magnetic field
perpendicular to the plane (i.e., H = Hẑ) and we assume the
extreme type-II limit. The results compare well with those of
experiment.31
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FIG. 12. (Color online) Effect of a magnetic field on the specific-
heat peak for (a) x = 0.11 and (b) x = 0.16. The subtraction
procedure employed in Fig. 10 is used here as well, as shown in
the insets.

VII. VORTEX STRUCTURE AND ENERGETICS

We use the functional [Eq. (2)] to find the properties of
vortices that are topological defects in the ordered phase. This
has been extensively done in the GL theory for conventional
superconductors.32 We use the free-energy functional of
Eq. (2) at T = 0, where it describes the ground-state prop-
erties, to generate a single vortex configuration by minimizing
F with respect to �m and φm at each site, while keeping
the topological constraint of total 2π winding of the phase
variables at the boundary of a Nb × Nb lattice. This is a
standard way of generating a stable single k = 1 vortex
configuration with the vortex core at the middle of the central
square plaquette in the computational lattice. The results for
{�m,φm} are shown in Fig. 13 for two different values of
hole doping x, namely, x = 0.10 (underdoping) and x = 0.30
(overdoping). Figure 13(a) shows the order parameter at a
point m on the square lattice as an arrow with a length
proportional to the value of �m there, and an inclination to
the x-axis equal to the phase angle φm.

We notice that, for the underdoped cuprate (e.g., x = 0.10)
unlike the overdoped one (x = 0.30), the order-parameter
magnitude does not decrease by much as one moves radially
inward from far to the core [Fig. 13(b)]. This is characteristic
of a phase or Josephson vortex for which the properties
have been investigated for coupled Josephson junction lattice
system.69 We propose, therefore, that vortices in cuprates in the
underdoped regime are essentially Josephson vortices. This is
natural here because the Cooper-pair amplitude �m has sizable
fluctuations only close to T ∗, which is well separated from Tc

(Tc � T ∗) in the underdoped regime; so, near T = 0, there are
very small � fluctuations. Further, for a lattice system (and not
for a strict continuum), such a defect is topologically stable
since the smallest possible perimeter is the elementary square.
On the other hand, beyond optimum doping where, according
to Fig. 7, T ∗ coincides with Tc, the order-parameter magnitude
�m decreases substantially on moving radially inward toward
the vortex core, very much like a conventional superconducting
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FIG. 13. (Color online) (a) Single-vortex configuration for x =
0.10 and x = 0.30. Arrows indicate the equivalent planar spins.
A sublattice transformation has been performed on the phases for
convenience of representation. (b) Variation of the magnitude of the
bond-pair field near the vortex core for the aforementioned values
of x. The magnitude is plotted in units of its maximum value attained
in the bulk �0 (mentioned at the top of each color bar). (c) The angular
averaged gap magnitude �(r) (normalized by �0) as a function of
distance from the core for the two x values. Inset shows the doping
dependence of the magnitude at the core �core estimated by fitting
�(r) with �0 tanh (r/ξc) + �core, while ξc and �core are kept as fitting
parameters.

or BCS vortex. The variation of the normalized magnitude
of the bond-pair field �(r)/�0 with the radial distance r

from the vortex core in the two cases is shown in detail in
Fig. 13(c), which clearly illustrates the difference between
the behavior in the two cases. The inset of Fig. 13(c) shows
the extrapolated values of the magnitudes (�core) at the core
(r = 0) as a function of x, indicating that there is a smooth
crossover from a Josephson-like vortex to a BCS-like vortex
with increasing hole density x.

The core energy Ec of a single vortex is naturally described
as the extra energy �Ev = Ev − E0, where E0 is the energy
of the ground-state configuration (the Néel ordered state
in this case) and Ev is the total energy of a single-vortex
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FIG. 14. (Color online) (a) The excess energy of a vortex �Ev

as a function of system size (see main text) for three values of x.
Intercepts of the dashed lines with the vertical axis yield the values
of the corresponding core energies Ec. (b) Ec is compared with Tc.
As with ρs(0) [see Fig. 5(b)], Ec peaks at x 
 0.19. The inset shows
the proportionality of Ec and TBKT in the underdoped side.

configuration, from which the elastic energy due to phase
deformation36 is subtracted, i.e.,

�Ev = Ec + πρs(0) ln(R/l). (10)

The quantity R is defined as R = (Nb − 1)l/
√

π , where l is the
lattice constant of the bond lattice, so that πR2 is the area of the
computational lattice. We plot in Fig. 14(b) the core energy Ec

as a function of x and compare its absolute value with Tc. The
quantity Ec has been estimated from the intercept of the �Ev

versus ln(R/l) (different system sizes) straight line with the
energy axis. We notice that, for small x, Ec(x) ∝ Tc(x) [inset
of Fig. 14(b)], which is not surprising from the XY model
considerations.70

VIII. ELECTRON SPECTRAL FUNCTION AND ARPES

The cuprate superconductor obviously has both electrons
and Cooper pairs of the same electrons coexisting with each
other. In a GL-like approach such as ours, only the latter
are explicit, while the former are integrated out. However,
effects connected with the pair degrees of freedom are
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explored experimentally via their coupling to electrons, with
a very prominent example being photoemission in which the
momentum and energy spectrum of electrons ejected from
the metal by photons of known energy and momentum is
investigated. Since ARPES (angle resolved photoemission
spectroscopy)9,10 is a major and increasingly high-resolution71

source of information from which the behavior of pair degrees
of freedom is inferred, we mention here some experimental
consequences of a theory of the coupling between electrons
and the complex bond-pair amplitude ψm. The theory as well
as a number of its predictions (in agreement with ARPES
measurements) are described in detail in Ref. 35.

In formulating a theory of this kind, one faces the difficulty
of having to develop a description of electrons in a presumably
strongly correlated system such as a cuprate, which is
viewed as a doped Mott insulator1 with strong low-energy
antiferromagnetic correlation between electrons at nearest-
neighbor sites.4 In particular, one needs to commit oneself
to some model for electron dynamics, which then implies
an approach to the coupling between electronic and pair
degrees of freedom. We develop what we believe is a minimal
theory, appropriate for low-energy physics. We assume that, for
low energies |ω| � �0, well-defined electronic (tight-binding
lattice) states with renormalized hopping amplitudes t, t ′, t ′′,
etc., exist and couple to low-energy pair fluctuations ψm =
ψiμ = 〈(ai↓ai+μ↑ − ai↑ai+μ↓)/2〉 (see Fig. 1). Superconduct-
ing order (more precisely, phase stiffness) and fluctuations in
it are reflected, respectively, in the average 〈ψiμ(τ )〉 and the
correlation function 〈ψiμ(τ )ψ∗

jμ′(τ ′)〉 [or its Fourier transform
Dμμ′(2q,izm), with zm = 2mπ/β being the bosonic Matsubara
frequency where m is an integer]. A nonzero value of 〈ψiμ(τ )〉
in the AF long-range-ordered phase below Tc leads to the
well-known Gor’kov d-wave Green’s function and quasipar-
ticles with spectral gap �k = (�d/2)(cos kxa − cos kya). The
correlation function Dμμ′(q,ω) has a generic form for small q

and ω, which can be related to the functional [Eq. (2)].
The coupling between low-excitation energy electrons and

low-lying pair fluctuations (both inevitable) leads to a self-
energy with a significant structure as a function of electron
momentum k and excitation energy ω. Physically, we have
electrons (e.g., those with energy near the Fermi energy)
moving in a medium of pairs that have finite range AF or
d-wave correlation for T > Tc, and have long-range order of
this kind for T < Tc (in addition to spin-wave-like fluctua-
tions). The electrons exist both as constituents of Cooper pairs
and as individual entities; the pairs and the electrons are in
mutual chemical equilibrium. The energy shift or dynamic
polarization of electrons due to this process leads to a number
of effects, which are described in Ref. 35. For example, for
T > Tc, we find a pseudogap in electronic density of states
that persists until T ∗. We get Fermi arcs,9,10,72 i.e., regions
on the putative Fermi surface where the quasiparticle spectral
density has a peak at zero excitation energy in contrast to the
pseudogap region where the peak is not at the Fermi energy.
The antinodal pseudogap fills up between Tc and T ∗ with
increasing temperature. Below Tc, there is a sharp antinodal
quasiparticle peak, the strength of which is related to the
superfluid density as observed in experiment.73 We also obtain
a bending or departure of the �k versus k curve from the
mean-field canonical d-wave form due to order-parameter or

spin-wave fluctuations. Here, we only outline our theoretical
approach and show how a temperature T an can be obtained
from the filling in of the antinodal pseudogap above Tc . We find
that T an compares well in its magnitude and x dependence with
other measures of the pseudogap temperature scale described
in Sec. V.

The physical quantity of interest is

A(k,ω) = − 2

π
Im[G(k,iνn → ω + iδ) (11)

[the fermionic Matsubara frequency νn = (2n + 1)π/β, with
n being an integer]. Assuming translational invariance, one
has the Dyson equation for G, namely,

G−1(k,iνn) = (G0)−1(k,iνn) − �(k,iνn), (12)

where �(k,iνn) is the self-energy.
G0(k,iνn) is described in terms of a spectral density in

the usual Lehmann representation.74 The spectral density
for low excitation energies has a Dirac δ-function part, i.e.,
A0(k,ω) = zkδ(ω − ξk), where ξk is the effective quasiparticle
energy measured from the chemical potential μ and zk (<1)
is the quasiparticle residue. In the plain vanilla or renormal-
ized tight-binding free-particle theory,75,76 zk = 1 and ξk =
εeff

k − μ, with εeff
k = gt

∑
(Ri−Rj ) tij exp[−ik · (Ri − Rj )], so

G0(k,iνn) = 1/(iνn − ξk). The factor gt is due to correlation
effects calculated in the Gutzwiller approximation,76 which
projects out states with doubly occupied sites; one further
assumes that the renormalized quasiparticles propagate coher-
ently.

We use a standard approximation for �(k,iνn), which is
shown diagrammatically in Fig. 15. This describes a phonon-
like process neglecting vertex corrections; the propagating
electron becomes a Cooper pair (boson) plus an electron in the
intermediate state, and these recombine to give a final-state
electron with the same (k,iνn). The internal propagator in
Fig. 15 is the true or full propagator G. However, in common
with general practice, we find � and thence G by inserting G0

instead of G in the former. This is known to be quite accurate,74

e.g., for the coupled electron-phonon system.

i zm

k, i νn nνik,μ

2q,

−k+2q, ν− ni + i zm
μ′

FIG. 15. Self-energy approximation used to calculate the electron
Green’s function G(k,iνn). The wavy line denotes the pair propagator
Dμμ′ (2q,izm) and the line with an arrowhead pointing toward left
indicates the full electron Green’s function G(−k + 2q, − iνn +
izm) (see text). The external lines (dashed) at two ends of the
diagram represent bare (left) and true (right) electron propagators.
In the static approximation, Dμμ′ (2q,izm) ≡ (Dμμ′ (2q)/T 2)δzm,0 and
the summation over the internal bosonic Matsubara frequency in
the above diagram drops out (see Appendix B).
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In the static approximation valid at high temperatures when
the pair lifetime τp � 1/(kBT ) (see Appendix B), the general
algebraic expression for �(k,iνn) is

�(k,iνn) = − 1

N

∑
q,μ,μ′

G0(−k + 2q, − iνn)

×Dμμ′(2q)fμ(k,q)fμ′(k,q), (13)

where N is the total number of Cu sites on a single CuO2

plane and μ, μ′ refer to the direction of the bond, i.e., x or y.
The static pair propagator is Dμμ′(2q) = T 2Dμμ′(2q,0) (see
Fig. 15), where Dμμ′(2q) = ∑

R Dμμ′(R) exp (−i2q · R) with
Dμμ′(R) = 〈ψμ(R)ψ∗

μ′(0)〉. Since the XY -like interaction term
[Eq. (2c)] between nearest-neighbor bond pairs (see Fig. 1) is
antiferromagnetic,

Dxx(R) = Dyy(R) = −Dxy(R) = D(R). (14)

Further, the quantity fμ(k,q) is a form factor describing
the coupling between an electron and a bond pair. For a
tight-binding lattice and nearest-neighbor bonds, fμ(k,q) =
cos[(kμ − qμ)a].

The pair correlator of Eq. (14) can be written in the standard
way,36 i.e.,

D(Rm − Rn) = 〈ψ̃m〉〈ψ̃∗
n )〉 + S(Rm − Rn), (15)

where ψ̃m = �m exp (iϕm) with ϕm = φm for x bonds and
ϕm = φm + π for y bonds (see Fig. 1); S(R) is the fluctuation
term. In the long-range ordered state below Tc, the first term
is nonzero. In that case, if one neglects effects of fluctuations,
i.e., S(R) altogether (as is done in mean-field theory), then one
obtains the exact Gor’kov self-energy form,74 i.e., �(k,iνn) =
�2

k/(iνn + ξk) in Eq. (13) and corresponding spectral gap
�k = (�d/2)(cos kxa − cos kya) in the Néel ordered state.
Spin-wave-like fluctuations below Tc can be incorporated
through S(R), which generally decays algebraically for large
distances, i.e., S(R) ∼ R−η (η > 0, its value depends on
dimension). Above Tc, 〈ψ(R)〉 = 0 and the only contribution
comes from the fluctuation part. Generically, there is a finite
correlation length ξ above Tc and S(R) ∼ exp (−R/ξ ) or
S(q) ∼ 1/[1 + (ξq)2].

Since we are mainly interested in the spectroscopic features
of the pseudogap regime when T ∗(x) is perceptibly higher than
Tc(x) (so fluctuations in the pair magnitude �m are small and
short ranged), we write

D(R) 
 〈�(R)〉〈�(0)〉〈ei[ϕ(R)−ϕ(0)]〉 ≡ �̄2F (R), (16)

where F (R) = 〈ei[ϕ(R)−ϕ(0)]〉 is the phase correlator.
Analytical expression for the self-energy from Eq. (13)

can be obtained below Tc, where quasi-long-range order in a
purely 2D system or true long-range order in an anisotropic 3D
system occurs, as well as above Tc in the temperature regime
where the exponential decay of correlation is governed by a
large correlation length ξ .35 We have carried out calculations35

for both anisotropic 3D and 2D cases, while incorporating a
small interlayer coupling C⊥ (with C/C⊥ ∼ 100 as suitable
for Bi2212) in Eq. (2) for the former. Above Tc, the anisotropic
3D system behaves effectively as 2D (Ref. 77); our results for
various spectral properties are quantitatively similar and, even
below Tc for this large anisotropy ratio, qualitative features are

the same for both the cases. Hence, we present here the results
for the pure 2D system. More specifically, we have used
the form

F (R) = (�̃R)−ηe−R/ξ (17)

to calculate the self-energy [Eq. (13)]. Here, �̃ is related to
the upper wave-vector cutoff of the lattice and η = T/(2πρs)
below Tc where ξ → ∞. Above Tc, we have set η = ηBKT =
0.25. A combination of MC simulation and well-known
Kosterlitz-Thouless renormalization group relations has been
used to estimate ξ (x,T ) from the functional [Eq. (2)] (see
Appendix C for details). The self-energy �(k,iνn) obtained
using the form of F (R) in Eq. (17) evolves smoothly from be-
low Tc (superconducting state) to above Tc (pseudogap state).

For k on the Fermi surface78 in the antinodal region,
we calculate A(k = kan,ω). Above Tc, but below a certain
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FIG. 16. (Color online) (a) Variation of antinodal gap �an with
temperature. Slope discontinuities in �an vs T curves correspond
to Tc (TBKT). (b) Pseudogap temperature scale T an obtained from
the antinodal gap-filling criterion mentioned in the main text. The
temperature T an(x) is compared with other temperature scales T 0

l (x),
T 0

ms(x), and TBKT(x). Here, we have taken the nearest-neighbor
hopping t = 300 meV and the next-nearest-neighbor hopping t ′ =
−t/4 (Ref. 81).
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temperature (denoted as T an), two peaks appear in A(kan,ω)
at nonzero ω, one at ω < 0 and another at ω > 0, signaling the
presence of a pseudogap above Tc. The antinodal gap (denoted
as �an) can be defined from the position of the peak at negative
energy (ω < 0). This quantity has been plotted in Fig. 16(a) as
a function of temperature for a few values of x.

The quantity �an goes to zero rather abruptly at T an,
although the average local gap �̄ is nonzero above T an (see
Fig. 6). The antinodal pseudogap fills in at this temperature.35

In Fig. 16(b), T an is plotted as a function of x. We notice
that this temperature is close to various pseudogap-related
temperatures, e.g., the somewhat arbitrary linear T 0

l (x) used
in Eq. (2), as well as the temperature scale T 0

ms(x) estimated
from the temperature dependence of the local gap magnitude.
The x dependence of T an is similar to that of T ∗ as inferred
from ARPES79 as well from various other probes such as
Raman spectroscopy12 and spin susceptibility5,8 over a rather
large range of x.

The picture used in our calculation continues to regard
the electrons as coherent at all temperatures, whereas there
is experimental evidence80 that the incoherence temperature
is proportional to x so it is rather small for small x. Also,
for very small x, the holes tend to localize, so a renormalized
band theory implying extended homogeneous electronic states
is inappropriate.

IX. DISCUSSION AND FUTURE PROSPECTS

We mention here some obvious directions in which the
functional and the approach used here need to be developed.
One is to obtain other testable and/or experimentally measured
consequences of the proposed functional. For example, in
a magnetic field, the intersite term in Eq. (2) has its phase
altered by the Peierls phase factor, as we have mentioned at
the end of Sec. VI. One should use this to find the Tc(H )
curve for different values of doping x and hence the bare
coherence length ξ0 defined through the phenomenological

equation 1
Tc

( dTc

dH
)T =Tc

= ( ξ 2
0

�0
). The charge-related response of a

system described by Eq. (2), e.g., the diagonal and off-diagonal
components of the conductivity tensor σxx(H,T > Tc) and
σxy(H,T > Tc), and the Nernst coefficient αxy(H,T > Tc),
needs to be calculated and compared with experiment. Slightly
farther afield, the coupling of the field ψm to different probes
will enable one to analyze experimental results obtained, e.g.,
from scanning tunneling spectroscopy, Raman spectroscopy,
and neutron scattering. A generalization to a quantum ψm

functional and inclusion of other time-dependent effects, e.g.,
Coulomb interaction and dissipation, may enable one to de-
scribe quantum phase fluctuation effects, which are especially
prominent (and decisive) for extreme underdoping.82

A very peculiar feature of cuprates is the unusually large
proximity effect83 observed in them. While XY -spin-like mod-
els have been proposed for this,84 a complete understanding of
the size, temperature, and doping dependence, etc., does not
exist. It is possible that this theory can be adapted to address
this question.

The theory presented needs to be extended in many major
ways. For example, there is a lot of experimental evidence4

that the system is a Mott insulator at x = 0, with a large super
exchange Jij ∼ 0.15 eV, as well as for low-energy magnetic

correlations in doped cuprates. This antiferromagnetic inter-
action evolves into superconductivity for surprisingly small
hole doping, x � 0.05. While the crossover and the possibility
of coexistence have been investigated at T = 0,85–87 there
is a need for a coupled functional for these two bosonic
degrees of freedom that goes over to the kind of theory
that we have described at large x, while it describes an
antiferromagnetic Mott insulator at x = 0 and persistent spin
correlations (including spin-density-wave correlations) at x �=
0. Similarly, there is considerable evidence for other kinds
of correlations, e.g., nematic,88 stripes,89 checkerboard,90 and
charge density wave,91 the significance of which varies with
material, doping (including commensuration effects58), and
temperature. An appropriate GL-like functional is one way of
exploring the details of this competition; an attempt in this
direction already exists.92

The cuprate properties are very sensitive to certain impu-
rities, e.g., Zn replacing Cu. Whether this can be described
well in a GL-like theory is an interesting question. The
effect of impurities or in-plane (intraplane) disorder is an
even more general question in terms of its effect on pairing
degrees of freedom as well as incorporation of this effect in
this kind of picture. A subject of basic interest in cuprate
superconductivity is the possibility of time-reversal symmetry
breaking associable with T ∗.38 There are at least two obser-
vations, one of Kerr effect93 and another of ferromagnetism
with lattice symmetry,94 that seem to point to time-reversal
symmetry breaking below T ∗. Since these involve spontaneous
long-range order in circulating electric currents, each within
a single unit cell of the lattice, and these currents can be
modeled in a GL functional, one can explore this phase and its
consequences in our theory.

In conclusion, we believe that the phenomenological theory
proposed and developed here not only ties together a range
of cuprate superconductivity phenomena qualitatively and
confronts them quantitatively with experiment, but also has
the potential to explore meaningfully many other phenomena
observed in them.
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APPENDIX A: MEAN-FIELD THEORY

We describe here various approximate solutions for the
properties of the lattice functional of Eq. (2). The approx-
imations discussed here are single-site mean-field theory
and cluster mean-field theory. We also make use of several
well-known results from the Berezinskii-Kosterlitz-Thouless
theory36,40,41 for XY spins in two dimensions in combination
with Monte Carlo simulation (see Sec. III). For positive C in
Eq. (2c), there is a low-temperature phase with long-range
AF order (d-wave superconductivity) or broken symmetry
(for d > 2). The most common approximation for locating
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and describing this transition is (single-site) mean-field the-
ory, in which we self-consistently calculate the staggered
magnetic field h = (hx,hy) acting on the planar spins Sm =
(�m cos φm,�m sin φm) due to its nearest neighbors, assuming
it to be the same at each site (modulo the sign change because
of the two-sublattice AF order).

In such a mean-field theory,36,95 the self-consistent solution
is given by

hα = 4C〈Sα〉0 (α = x,y) (A1)

with

〈Sα〉0 =
(

hα

h

) ∫ ∞
0 �2d�P0(�)I1(h�/T )∫ ∞
0 �d�P0(�)I0(h�/T )

. (A2)

Here, P0(�) = exp [−β(A�2 + (B/2)�4)] dictates the local
distribution (thermal) of gap magnitude, h =

√
h2

x + h2
y is the

magnitude of the staggered field, and I0 and I1 are modified
Bessel functions of the first kind. The transition temperature
Tc (which is denoted as T mf

c in Fig. 3) satisfies the implicit
equation

2C〈�2〉P0 |T =Tc
= Tc, (A3)

where 〈�2〉P0 = ∫ ∞
0 �3d�P0(�)/

∫ ∞
0 �d�P0(�). Other

physical quantities, such as the superfluid stiffness, the super-
conducting order parameter, and the internal energy (and its
temperature derivative, the specific heat Cv), can be obtained
using the self-consistent solution of Eq. (A1). For instance, in
this approximation, the superfluid density ρs is given by

ρs = − C

2Nb

〈∑
m,μ

�m�m+μ cos(φm − φm+μ)

〉
0

= C
∑

α=x,y

〈Sα〉2
0. (A4)

In reality, the field acting on a spin fluctuates from site
to site. The spatially local fluctuations are systematically
included in the well-known cluster theories, the oldest of which
is the Bethe-Peierls approximation,95 which consists of a single
site coupled to the nearest neighbors that are described by a
mean field. We have used it to calculate an improved Tc (T cmf

c ),
as shown in the inset of Fig. 3.

For small x, where amplitude fluctuations can be neglected,
an estimate of Tc (denoted as Tc,0) is obtained by replacing
〈�2〉0 in the above relation [Eq. (A3)] by �2

m,0 that minimizes
the single-site termF0, so �2

m,0 = −A(x,T )/B for x � xc and
�m,0 = 0 for x > xc. In this approximation,

Tc,0 = 2xc

2xc + b

(
1 − x

xc

)
x � xc

= 0 x > xc. (A5)

Here we have neglected the exponential temperature de-
pendence of A [Eq. (3a)]. Consequently, xopt can also
be estimated by setting ∂Tc,0

∂x
= 0, which gives xopt =

1
2 (

√
(b/c)2 + (2bxc/c) − (b/c)).

If one includes the term FQ [Eq. (6)], the self-consistency
condition for Tc in Eq. (A3) gets modified in the following

manner57:(
4C〈�2〉P0

∫ β

0
dτ 〈cos φm(τ ) cos φm(0)〉FQ

)
T =Tc

= 1, (A6)

where the average 〈. . .〉FQ
is calculated using the eigenstates

of FQ, and the imaginary-time on-site phase-phase correlator
in Eq. (A6) is given by57

〈cos φm(τ ) cos φm(0)〉FQ
= 1

2
e−4τV0(1−τ/β), (A7)

where V0 is the on-site Cooper pair interaction strength.

APPENDIX B: ELECTRON SELF-ENERGY
IN STATIC APPROXIMATION

The self-energy depicted in Fig. 15 can be written in
the following form using G0(−k + 2q, − iνn + izm) for the
internal electron propagator:

�(k,iνn) = T 2

N

∑
q,m

D(2q,izm)P(k,q)

iνn − izm + ξk−2q
, (B1)

where D(2q,izm) = (1/T )
∫ β

0 dτ
∑

R D(R,τ )e−i2q.R+izmτ is
the Fourier transform of the time-dependent propagator and
P(k,q) = [cos (kxa − qxa) − cos (kya − qya)]2. If the pairs
acquire a finite lifetime τp, the pair correlator can be
represented in terms of the product of the static propagator
[Eq. (14)] and a time-dependent part as D(R,t) = D(R)e−t/τp ,
so D(2q,izm) = (1/T )(eiβ/τp − 1)D(2q)/(izm + i/τp). This
form indicates that pair correlations decay temporally with
a lifetime τp [one can instead take an oscillatory form,
i.e., D(R,t) ∼ cos (t/τp), but this does not change our main
conclusion]. One can perform the summation over the bosonic
Matsubara frequencies (zm) in Eq. (B1) with the aforemen-
tioned form of D(2q,izm) and obtain

�(k,izm)

= 1

T

∑
q

D(2q)P(k,q)[(1 − eiβ/τp )f (ξk−2q) + eiβ/τp ]

i(νn + 1/τp) + ξk−2q
.

(B2)

Here, f (ω) = 1/(eβω + 1) is the Fermi function. When T �
(1/τp) [also, νn � (1/τp) since νn ∝ T ], i.e., inverse pair
lifetime is much smaller than T , the self-energy given above
would effectively reduce to the form given in Eq. (13).

APPENDIX C: ESTIMATION OF CORRELATION
LENGTH ξ

We estimate η = T/(2πρs) (below Tc) and ξ (above
Tc) that appear in Eq. (17). As already discussed, we
calculated ρs below Tc from our functional in Sec. IV by
performing MC simulation. Correlation length ξ can be
estimated by fitting obtained ρs(x,T ) below Tc with the
BKT form ρs(x,T ) = ρs[T −

c (x)][1 + b(x)
√

Tc(x) − T ] with
ρs(T −

c )/T −
c = 2/π , and b(x) and Tc(x) as fitting parameters.

The BKT RG relates96 b(x) to the temperature dependence
of ξ above Tc through ξ (x,T ) 
 a0 exp [b′(x)/

√
T − Tc(x)],

where bb′ = π/2 and a0 is a microscopic length scale of the
order of the lattice spacing.
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