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Direct numerical confirmation of pinning-induced sign change in the superconducting
Hall effect in type-II superconductors
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Using the time-dependent Ginzburg-Landau equation with the complex relaxation time and the Maxwell
equation, we systematically examine transverse motion of vortex dynamics in the presence of pinning disorders.
Consequently, in the plastic flow phase in which moving and pinned vortices coexist, we find that the Hall voltage
can generally change its sign. The origin of the sign change is ascribed to the fact that moving vortices are caused
to strongly drift by the circular current of pinned vortices and the enforced transverse moving direction becomes
opposite to that of the transport current. This suggests that the Hall sign change is a behavior common in all
disordered type-II superconductors. In this paper, we discuss conditions to observe such an intrinsic effect and
explain experimental results reported in the literature on the basis of this effect.
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I. INTRODUCTION

Since the discovery of cuprate high-Tc superconductors,
much attention has been devoted to vortex dynamics not only
in superconductors but also in various superfluids from liquid
helium to atomic gas. In particular, vortex pinning dynamics
under disorders inevitable in superconducting materials is a
central issue of vortex physics because of its deep relations to
industrial applications. In this paper, we numerically examine
vortex pinning dynamics and give an explanation for a
controversial topic in vortex physics, i.e., sign change in the
superconducting Hall effect (the Hall anomaly).1–4

The Hall anomaly is a long-standing unsolved problem.
From the viewpoint of a single-vortex dynamics, the Hall
effect is related to the nondissipative transverse force (or
the vortex velocity part of the Magnus force) acting on
a vortex.5–10 The equation of motion for a single moving
vortex has been intensively investigated;11 nevertheless the
Hall anomaly is still not fully understood. A controversial
struggle is whether pinning (or disorder) can be an origin of the
Hall anomaly,12–18 where the system may not be described by
a single-vortex dynamics, but by many vortices with different
relative velocities due to vortex pinning.10,14,15 If the Hall
anomaly is caused by vortex pinning, it then indicates that the
sign reversal is not limited in particular superconductors, but is
universal for all type-II superconductors including disorders.
We will prove that the idea is really true by numerically solving
the time-dependent Ginzburg–Landau (TDGL) equation with
complex relaxation time19 and the Maxwell equation. This
is a direct confirmation of the pinning-induced sign change
without simplification and modeling.

The vortex dynamical phases under disorders are roughly
classified into two types, i.e., plastic and collective flow
phases.20 The former phase appears in the vicinity of the
critical current, and moving and pinned stationary vortices
coexist. Then, the moving vortices may be locally drifted
by the circular current of the pinned vortices. At a given
instant the local current determines the local vortex motion.
This local vortex motion produces the local electric field.

The averaging of the local electric field over time and space
provides the average voltage. This average voltage is what is
observed experimentally. The Hall coefficient is determined by
the average voltage and the average current (= the externally
applied current).

In numerical simulations, we find that the average Hall
voltage indeed exhibits the sign change under the existence
of disorders. Here, our presupposition is only threefold:
(i) The system contains randomly distributed point disorders
as vortex pinning sites. (ii) The simulations are based on
the TDGL equation with complex relaxation time.19 (iii) The
imaginary part of the relaxation time is set positive so as to
produce a positive Hall voltage in a uniform system without
disorders. One of the messages of this paper is that just three
assumptions, (i)–(iii), lead to a negative Hall voltage; namely,
just the existence of disorders leads to the Hall anomaly. We
will show simulation results for the longitudinal and the Hall
voltage and then propose a possible interpretation of the sign
change in the Hall voltage.

Before going into the details of the simulations, we outline
our interpretation of the sign change, which is inferred from
simulation results. First, let us consider the dynamics of a
single vortex near a pinned one. The directional reversal of
a moving single vortex can occur as follows. For instance,
when the transverse force intrinsically acts on the moving
vortex in directions upstream and downstream of the local
current, respectively, depending on the electronic structure,2,21

the direction drifted by a pinned vortex is opposite, as shown
schematically in Fig. 1(a). Thus, the directional reversal of
the vortex velocity along the applied current occurs near a
pinned vortex. It is found that a pinned vortex is not just a
symmetric repulsive potential, but an asymmetric one for a
moving vortex. However, it is still not clear whether such
a mechanism really results in Hall sign change as a whole
(i.e., on average). A whole system contains many moving
vortices and pinned ones, which interact with each other. In
the plastic flow phase, the distances and relative directions
between vortices vary over time and space. Therefore, the
velocity direction of each vortex behaves variously and the

024507-11098-0121/2011/83(2)/024507(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.024507


NAKAI, HAYASHI, AND MACHIDA PHYSICAL REVIEW B 83, 024507 (2011)

FIG. 1. (Color online) (a) A schematic figure of a moving single vortex driven by an applied current in the case of a complex TDGL
relaxation rate in the presence of a pinned vortex. (b) The contour map of the local transition temperature Tc(r). The closed curves (black)
show the positions of pinning sites, and the shading color indicates the degree of the Tc suppression. (c) The superimposed snapshots of moving
vortices in the time interval 4 × 105 � t/t0 � 6 × 105. The vortices are visualized at each instant by the contour plot (blue) of the order
parameter at �/�0 = 0.2. The positions of pinning sites are marked by black curves. T/Tc0 = 0.69, Ha/H0 = 0.2, and jx/j0 = 5 × 10−5.

above mechanism cannot act directly on an average vortex
motion. Nevertheless, it is inferred from simulation results that
near a pinning site the directional reversal of the vortex velocity
indeed occurs locally at a given instant and the averaging
over time and space results in a sign change in the average
Hall voltage. That is, the mechanism acts on a local vortex
motion and leads to a slight temptation of the velocity reversal
statistically over many vortices.

II. MODELING AND TDGL SIMULATION

Let us present the system setup to confirm the pinning-
induced sign change. We prepare a two-dimensional system
in the xy plane. The external magnetic field Ha is applied
perpendicular to the plane. To simulate vortex dynamics,
we numerically solve the TDGL equation coupled with the
Maxwell one written as22–25
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Here, we introduce local suppressions of the transition temper-
ature Tc(r), which act as vortex pinning sites. The order param-
eter � is normalized by its mean field value at the zero tempera-
ture without the magnetic field, �0, and time t , vector potential
A, and magnetic field H are done by t0 = 4πκ2ξ 2

0 σ/c2,
A0 = φ0/(2πξ0), and H0 = φ0/(2πξ 2

0 ), respectively, where
ξ0, κ , σ , c, and φ0[= 2πh̄c/(2e)] are the zero-temperature co-
herence length, the Ginzburg–Landau parameter, the normal-
state longitudinal conductance, the light velocity, and the
flux quantum, respectively. To keep the gauge invariance of
Eqs. (1) and (2) on numerical grids, we use the

link variable U
ij
μ = exp[−i

∫ rj

ri
(Aμ/A0)dμ/ξ0], where μ

stands for x or y.22–25 The magnetic field H is given
by the Stokes’ theorem

∫
S
(H/H0) · ndS/ξ 2

0 = ∫
c
(A/A0) ·

d l/ξ0, and the electric field is calculated by Eμ =
−(A0/t0)

∫
S̄
∂(Aμ/A0)/∂(t/t0)d2r/S̄, where S̄ is the unit

plaquette surrounded by link variables. We evaluate the
longitudinal and the Hall voltage from Eμ. In order to
concentrate on the vortex contribution to the Hall voltage, we
neglect the normal-state Hall conductivity in Eq. (2) for clarity.
Instead, the dimensionless relaxation rate � in Eq. (1) is set to a
complex number whose magnitude and ratio of the imaginary
part depend on the electronic structure. According to Ref. 26,
1/� is related to the forces acting on each moving vortex. If
we set 1/� pure real, the transverse force and the resulting
Hall voltage are zero. On the other hand, a finite imaginary
part of 1/� brings about a transverse force, and the sign of
the imaginary part controls the sign of the Hall effect.2,21,26–28

We keep the imaginary part positive and never change its
value throughout this study; i.e., the transverse force is always
positive and unchanged. The present condition corresponds
to the case shown in the left panel of Fig. 1(a). Under the
condition of the fixed complex relaxation rate, we find that the
Hall voltage amplitude diminishes and a sign reversal occurs
in the plastic flow regime owing to moving vortices affected
by the circular current around pinned vortices.

In the present simulation, the system size is 200ξ0 × 200ξ0,
which is discretized by the square grid whose unit dimension
is ξ0 × ξ0. The external current is applied along the x direction,
and a periodic boundary condition is imposed in this direction
to eliminate edge boundary effects on the vortex motion. The
remaining boundary edge perpendicular to the y direction
relevant to vortex entry and escape is modeled as an interface
between a superconductor and a normal metal. Around this
interface, Tc(r) is set Tc/Tc0 = 0.1r/ξ0(r < 10ξ0), where r is
the distance from the interface and Tc0 is the bulk value of Tc.
The number of vortex pinning centers is 500 inside the present
system 200ξ0 × 200ξ0. The size of each pinning center is
2ξ0 × 2ξ0, inside of which Tc(r) is randomly suppressed in
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the range 0.8 � Tc/Tc0 � 1. The locations of pinning centers
are randomly distributed, e.g., as shown in Fig. 1(b).

In the TDGL dynamical simulation, we prepare an initial
state in the absence of both the applied current and the
external field and then start to apply a current jx and a target
external field Ha at t = 0. The applied current density is
always set as jx/j0 = 5 × 10−5, where j0[= φ0/(2πξ 3

0 )] is
the depairing current. The GL parameter is κ = 2.83, and
the minimal time step is 3 × 10−3t0. We fix 1/� = 1 + 0.3i,
which leads to a substantial ratio of the Hall voltage Vy to the
longitudinal one Vx , i.e., Vy/Vx ∼ 0.2, in the uniform current
under no pinnings. Such a large imaginary value can give a
striking contrast in the sign change of the Hall voltage. To
avoid counting an interface influence on the voltage, e.g., an
effect of the diamagnetic current, we take an average of the
electric field within the region −85 � rx(y)/ξ0 � 85. The time
average of the Hall voltage is taken over the time interval
4 × 105 � t/t0 � 6 × 105, during which vortex motions are
fully steady.

III. SIMULATION RESULTS

Let us present simulation results. First, the temperature
(T ) dependencies of the longitudinal and Hall voltages under
the applied fields Ha/H0 = 0.15 and 0.2 are displayed in
Figs. 2(a) and 2(b), respectively. The longitudinal voltage
Vx monotonically decreases with decreasing T in both cases.
Although the Hall voltage Vy exhibits nonmonotonic behavior,
both the signs become negative in the region of the small
longitudinal voltage Vx . Here, one might imagine that this
negative transverse voltage occurs because of guided vortex
flow lines16 formed accidentally by clustering of pinned sites.
However, it is not always the case, although such a happening
actually occurs. In order to confirm it, we just reverse the
magnetic field direction only and repeat the same simulation.
Then, since the pinning-site distribution is the same as in
the previous simulation, the same guiding line principally
develops even on the field reversal. This is the case in disorders
composed of rather strong pinning sites as in the present
simulation. Thus, we can never expect the sign reversal on
the field reversal if the guiding is only an origin of the

TABLE I. Yes/no table in terms of the sign reversal of the Hall
voltage for different random pinning distributions (I)–(IV) and their
field inversion cases (I)–(IV). “Y(N)” means that the sign reversal is
observable (or not).

I I II II III III IV IV

Ha/H0 = 0.15 Y N Y N N Y Y Y
Ha/H0 = 0.2 Y Y Y N N Y Y Y

sign reversal. While the sign reversal actually disappears
for the field Ha/H0 = 0.15 [Fig. 2(c)], it is surprisingly
kept on for another field Ha/H0 = 0.2 [Fig. 2(d)]. This
suggests that there is an intrinsic origin of the sign reversal
beyond the guiding effects. We further perform simulations
(not shown) under other random vortex-pinning distributions,
(II)–(IV), and repeat the same simulations with the field
direction reversal, (II)–(IV). These results are summarized in
Table I. In the results, we notice that there are some cases where
the vortex guiding seems to mainly cause the sign change
as the distributions II and III, in which the Hall sign differs
on the field inversion. However, the sign reversal is preserved
on the field direction reversal for the other distributions I and
IV. Thus, we can draw a conclusion that the sign reversal
occurs as an intrinsic effect although the guiding effect is also
non-negligible in plastic flow phases. In particular, we point
out that the guiding effect is never non-negligible in small-
sample-size simulations. Indeed, in smaller scale simulations,
we frequently confirm such cases; i.e., strong guiding masks
the intrinsic effect. Therefore, one naturally expects that
the intrinsic mechanism fully dominates in sufficiently large
samples as experiments. But, such conclusive confirmation is
a future task for a present heavy simulation such as the TDGL
equation, since the plastic flow simulation basically requires
a very long time calculation and the disorder averaging also
demands much more CPU time.

We have shown so far that the Hall voltage as a whole,
i.e., the averaged transverse motion of vortices, can indeed
exhibit the sign change under the influence of random pinning
distributions. Here, we pay attention to its origin again. To
elucidate it, let us focus on detailed vortex dynamics around
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FIG. 2. Temperature dependencies of the longitudinal (Vx) and Hall (Vy) voltages in units of A0ξ0/t0. The solid (open) circles indicate the
longitudinal (Hall) voltage. Note that the Hall voltage is plotted in the ten times larger scale. The voltages are calculated from the electric field
averaged over −85 � rx(y)/ξ0 � 85 and 4 × 105 � t/t0 � 6 × 105. The applied current is jx/j0 = 5 × 10−5. The applied field is Ha/H0 = 0.15
for panels (a) and (c) and Ha/H0 = 0.2 for panels (b) and (d). The results in panels (a) and (b) are obtained for the distribution of pinning sites
shown in Fig. 1(b), while the same distribution is used but the bottom is inverted into the top for moving vortices to obtain the results in panels
(c) and (d) (see text).
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FIG. 3. (Color online) (a) The distribution of pinning sites in the focused area, whose location is marked by the small box in Fig. 1(b).
(b) The transverse electric field in the area for T/Tc = 0.69, Ha/H0 = 0.2, and jx/j0 = 5 × 10−5. The data are averaged over 5.8 × 105 �
t/t0 � 5.84 × 105. (c)The vortex positions at t/t0 = 5.8 × 105 and 5.84 × 105 through the contour plot of the order parameter amplitude. The
arrows indicate the moving directions. (d) The schematic representation of moving vortices around stationary vortices.

vortex-pinning sites. Figure 3(a) is an enlarged figure of
a small area whose location is marked in Fig. 1(b). The
distribution of the transverse electric field averaged over
5.8 × 105 � t/t0 � 5.84 × 105 is shown in Fig. 3(b), where
the sign of the transverse field is always negative near the
vortex-pinning sites. In addition, by monitoring the vortex
position at 5.8 × 105 t0 and 5.84 × 105 t0 in the displayed
area, the focused vortices approaching the pinned ones are
found to flow against the applied transport current [Fig. 3(c)].
These observed results support our scenario. The pinned vortex
has a circular current flow around its core. The flow direction
is opposite to that of the applied current in its top half as
schematically shown in Fig. 3(d), where the transverse force
direction of the moving vortex is opposite to that of the
free flow case. That is, the moving vortex penetrating into
the circular-current flow range is drifted into the opposite
direction to the applied current. This is because the positive
imaginary part of � fixed in this paper always drives the
moving vortex into the downstream side of the local current
flow. In addition, we notice that the mechanism demands the
presence of sufficiently dense pinned vortices. In other words,
moving vortices should be scattered at sufficiently frequent
intervals by pinned vortices from an entry at sample edge to an
exit. The repeatedly scattered vortices show opposite-direction
motion, which occurs at many locations in Fig. 1(c). Of course,
depending on the instantaneous position and velocity of each
vortex relative to pinned vortices, one part of vortices move
in the downstream direction of the applied current flow and
the other part move in the upstream direction at each instant.
It appears that a slight temptation of the upstream-direction
motion occurs statistically over many vortices because each
pinned vortex is not just a symmetric repulsive potential, but
an asymmetric one with the circular current around it. This
is the mechanism of the Hall sign change observed from
the numerical simulations, which we outline schematically
in Figs. 1(a) (left panel) and 3(d).

IV. DISCUSSION AND CONCLUSION

Finally, let us discuss the present results through a
comparison with experiments. The present calculations have

revealed that, when the vortex dynamics change from the
collective flow to the plastic flow phase, the moving vortex
frequently reverses its transverse moving direction. This direc-
tional reversal principally requires the plastic flow phase as a
vortex dynamical phase. In other words, this effect is universal
for all type-II superconductors as long as disorders or pinning
sites sufficient to keep the plastic flow phase are introduced
inside the sample. In high-Tc cuprate superconductors, double
sign changes in addition to single ones have been frequently
observed depending on the sample.29 These experimental
results can be explained on the basis of the present result
as follows. When the current carrying phase changes from
the normal to the flux flow phase, the first sign change
occurs. This can be interpreted by the idea that there is a
difference between the Hall effect in the normal phase and
the fluctuation Hall effect near the superconducting transition
via the relaxation of the order parameter.2,21,26–28 This is
a microscopic sign change mechanism depending on the
electronic structure. On the other hand, it has been observed
that the final reversals strongly depend on the sample quality
or the rate of artificial damage to enrich pinning centers.30

Thus, the final sign change is attributed to the pinning-
induced one as confirmed by the present simulation. Moreover,
such a sign change is also well known to be sensitively
dependent on the sample quality in conventional type-II
superconductors.

In conclusion, we performed TDGL simulations with the
complex relaxation time to confirm the pinning induced sign
reversal of the superconducting Hall effect. Consequently,
the simulation revealed that the sign change can occur
when the current carrying state enters the plastic flow phase
from the collective flux flow one. Moreover, the detailed
analysis on the vortex motions successfully explained that,
when the circular current of the pinned vortex strongly drifts
the moving vortex in the plastic flow phase, the moving
vortex feels the transverse force causing the Hall sign change.
Our numerical simulations elucidate that the averaged vortex
motion as a whole indeed leads to the Hall sign change
under the influence of such circular currents around randomly
distributed vortex pinnings. These results suggest that the Hall
sign change is an indicator of vortex dynamical phases in
disordered type-II superconductors.
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