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We analyze how the coherence peaks observed in scanning tunneling spectroscopy (STS) of cuprate high-
temperature superconductors are transferred from the cuprate layer to the oxide layers adjacent to the STS
microscope tip. For this purpose, we have carried out a realistic multiband calculation for the superconducting state
of Bi2Sr2CaCu2O8+δ (Bi2212) assuming a short-range d-wave pairing interaction confined to the nearest-neighbor
Cu dx2−y2 orbitals. The resulting anomalous matrix elements of the Green’s function allow us to monitor how
pairing is then induced not only within the cuprate bilayer but also within and across other layers and sites. The
symmetry properties of the various anomalous matrix elements and the related selection rules are delineated.
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I. INTRODUCTION

Scanning tunneling spectra (STS) of the cuprates1–5 clearly
show the presence of superconducting gaps and the associated
coherence peaks. The “leaking” of superconductivity from the
cuprate layers into the oxide layers is a form of proximity
effect.6–8 A recent STS study9 finds that the magnitude of the
superconducting gap or the pseudogap is not solely determined
by the local doping, but is also sensitive to the nearby
nanoscale surroundings, raising the broader question as to how
superconductivity is transferred across various orbitals and/or
sites in the cuprates.10 In this connection, we have recently
developed a Green’s-function-based methodology for carrying
out realistic computation of scanning tunneling microscopy–
scanning tunneling spectroscopy (STM-STS) spectra in the
normal state as well as the superconducting state of complex
materials, where the nature of the tunneling process, i.e., the
effect of the tunneling matrix element is properly taken into
account. In our approach, all relevant orbitals in the material
are included in a multiband framework, and the tunneling
current is computed directly for a specific tip position on the
semi-infinite surface of the solid. An application to the case
of overdoped Bi2212 was reported in Refs. 11 and 12, where
it was shown, for example, that the striking asymmetry of
the STS spectrum between high positive- and negative-bias
voltages arises from the way electronic states in the cuprate
layer couple to the tip: With increasing negative-bias voltage,
new tunneling channels associated with dz2 and other orbitals
begin to open up to yield the large tunneling current. The
asymmetry of the tunneling current at high energies could thus
be understood naturally within the conventional picture, with-
out the need to invoke exotic mechanisms. Results of Refs. 11
and 12 show clearly that the STS spectrum is modified strongly
by matrix-element effects, as has been shown previously

for angle-resolved photoemission,13 resonant inelastic x-ray
scattering,14 and other highly resolved spectroscopies.15–17

The STM-STS modeling in Refs. 11 and 12 is based on
invoking the common assumption that the pairing interaction in
cuprates is d wave, involving nearest-neighbor dx2−y2 orbitals
of Cu atoms. Nevertheless, our computed STS spectrum
reproduces, in accord with experimental observations, the
superconducting gap and coherence peaks at the position
of the tip, even though the tip is not in direct contact with
the cuprate layer. Our STS modeling scheme thus provides
a natural basis for examining how the pairing interaction,
which is limited to nearest-neighbor Cu dx2−y2 orbitals in our
underlying Hamiltonian, gets transferred to other layers and
sites.

This article attempts to address these and related issues with
the example of overdoped Bi2212. Central to our analysis
is the concept of tunneling channels, which allows us to
identify the contribution to the total tunneling current from
individual sites and/or orbitals in the semi-infinite solid.
Moreover, we can distinguish between regular and anomalous
contributions to the tunneling signal, which arise from the
corresponding matrix elements of the Nambu-Gorkov Green’s-
function tensor. The anomalous channels are physically related
to the formation and breaking up of Cooper pairs. In particular,
matrix elements of the anomalous Green’s function can be
used to monitor the contribution to the coherence peaks in
the STS spectrum resulting from specific orbitals and/or sites
in the material. In this way, we delineate how the pairing
amplitude travels from the nearest-neighbor Cu sites to other
sites and orbitals within the cuprate plane as well as outside
to the second cuprate plane and to the BiO/SrO layers. The
symmetry properties of various matrix elements are analyzed
and related selection rules are worked out.

An outline of this article is as follows. The introductory
remarks are followed in Sec. II with an overview of the relevant
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methodological details of the underlying Hamiltonian and of
our STS formalism. Section III discusses proximity effects
and is divided into several subsections, which address pairing
amplitudes in various layers. Section IV discusses selection
rules and issues related to the symmetry of the gap through
an analysis of the anomalous matrix elements. It is divided
into consideration of on-site cases where the pairing orbitals
lie at the same horizontal position, and to cases where these
orbitals lie at other sites in the lattice. Finally, Sec. V presents
a concluding discussion and a summary of our results. The
Appendix clarifies the symmetry properties of the regular
matrix elements, which play an important role in the analysis
of the symmetry of the anomalous matrix elements of the
Green’s function.

II. DESCRIPTION OF THE MODEL

The model underlying our analysis is the same as in Ref. 12,
to which we refer for details. An overview is nevertheless
presented for completeness, and to introduce the various
quantities needed for the present study. The Bi2212 sample is
modeled as a slab of seven layers terminated by the BiO layer,
which is followed by layers of SrO, CuO2, Ca, CuO2, SrO,
and BiO.18–20 The tunneling current is computed by using a
2
√

2 × 2
√

2 real-space supercell consisting of eight primitive
surface cells with a total of 120 atoms. The crystal structure
is taken from Ref. 21. The STM tip is modeled as an s orbital
lying at the apex of the tip. The electron and hole orbitals
included in the computations are as follows: (s,px,py,pz) for
Bi, Ca, and O; s for Sr; and (4s,d3z2−r2 ,dxy,dxz,dyz,dx2−y2 )
for Cu atoms. This yields 2 × 58 electron (spin-up) and hole
(spin-down) orbitals in the primitive unit cell, or a total of
2 × 464 orbitals in the simulation supercell. The Green’s
function is computed by using 256 equally distributed k points
in the supercell, which corresponds to 8 × 256 = 2048 k
points in a primitive cell.

The multiband Hamiltonian in which superconductivity is
included by adding a pairing interaction term � is22–24

Ĥ =
∑
αβσ

(εαc†ασ cασ + Vαβc†ασ cβσ )

+
∑
αβσ

(�αβc†ασ c
†
β−σ + �

†
βαcβ−σ cασ ), (1)

with real-space creation (annihilation) operators c†ασ (or cασ ).
Here α is a composite index identifying both the type of orbital
and its site, and σ is the spin index. εα denotes the on-site
energy of the αth orbital, and Vαβ is the hopping integral
between the α and β orbitals. The hopping parameters are
chosen to reproduce the local-density approximation (LDA)
bands.25–29

In the mean-field approximation, the coupling between
electrons and holes is of the form

�αβ =
∑
ab

Uαβab〈ca↓cb↑〉. (2)

Because the interaction U is not known, the standard practice
is to introduce a gap parameter, which gives the correct gap
width and symmetry.30 Specifically, we take � to be nonzero
only between the dx2−y2 orbitals of the nearest-neighbor Cu

atoms, and to possess a d-wave form, i.e., �d(d±x) = +|�| and
�d(d±y) = −|�|, where d denotes the dx2−y2 orbital at a chosen
site, and d ± x (y) is the dx2−y2 orbital of the neighboring

Cu atom in the x-y direction.31 This form allows electrons
of opposite spins to combine to produce superconducting
pairs such that the resulting superconducting gap is zero
along the nodal directions kx = ±ky , and is maximum along
the antinodal directions. The gap parameter value of |�| =
45 meV is chosen to model a typical experimental spectrum2

for our illustrative purposes.32,33

We discuss pairing between different orbitals in terms of
the tensor (Nambu-Gorkov) Green’s function G (see, e.g.,
Ref. 34),

G =
(

Ge F

F † Gh

)
,

where Ge and Gh denote the electron and hole Green’s
function, respectively.

The following expressions for the pairing amplitudes in a
tight-binding basis, which are derived in Ref. 12, are especially
relevant for our analysis:

〈cα↓cβ↑〉 =
∫

dε[1 − 2f (ε)]ρeh
αβ(ε), (3)

where the density matrix is

ρeh
αβ(ε) = − 1

π
Im[F+

αβ(ε)].

Here, F+
αβ(ε) can be solved by using the tensor form of Dyson’s

equation for the retarded Green’s function. Similarly,

〈c†α↑c
†
β↓〉 =

∫
dε[1 − 2f (ε)]ρeh†

βα (ε). (4)

Equations (3) and (4) reveal the relationship between the
anomalous part of the Green’s-function tensor and the pairing
amplitudes between various sites. In particular, symmetry
properties of Fαβ are seen to be related directly to those of
〈cα↓cβ↑〉.

The tunneling spectrum is computed by using the Todorov-
Pendry expression35,36 for the differential conductance σ

between orbitals of the tip (t,t ′) and the sample (s,s ′), which
in our case can be written as

σ = dI

dV
= 2πe2

h̄

∑
t t ′ss ′

ρtt ′(EF )Vt ′sρss ′ (EF + eV )V †
s ′t . (5)

Because electrons are not eigenparticles in the presence
of the pairing term, the density matrix can be rewritten by
applying the tensor form of the Dyson equation:12

ρss ′ = − 1

π

∑
α

(G+
sα
′′

αG−
αs ′ + F+

sα
′′
αF−

αs ′ ), (6)

where 
′′
α is the imaginary part of self-energy.37,38 The

left-hand side of Eq. (6) is the ordinary density matrix
for electrons, which is equivalent to the traditional Tersoff-
Hamann approach.39 However, as discussed in Ref. 12, our
decomposition of the spectrum into tunneling channels in
Eq. (6) provides a powerful way to gain insight into the nature
of the STS spectrum, especially in complex materials.40,41 Note
that the right-hand side of Eq. (6) contains terms originating
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FIG. 1. (Color online) Theoretical (green) STS spectrum normal-
ized as shown in the figure is compared with the experimental (dashed
blue) spectrum (Ref. 2) in optimally doped Bi2212. Regular (red) and
anomalous (turquoise) parts of the computed spectrum are shown
separately. All computations are based on Eq. (6). Coherence peaks
arise only from the anomalous component of the Green’s function.

from the anomalous part of the Green’s function. In Ref. 12 we
showed that coherence peaks appear only through the matrix
elements of the anomalous Green’s function. This role of the
anomalous terms is demonstrated in Fig. 1, where we see that
the coherence peaks are absent in the partial spectrum resulting
from the regular terms of the Green’s function (red curve).

III. INTERLAYER AND INTRALAYER
PROXIMITY EFFECTS

In this section, we analyze the induced pairing amplitude
〈cα↓cβ↑〉 for a representative set of orbitals. It will be seen
that despite the short range of the pairing interaction �αβ , the
anomalous Green’s function, Fαβ , possesses a longer range.

TABLE I. Shorthand notation used for the indices α and β in
Fig. 2 is defined. For each of the indices, varying from 0 to 9, the
table gives the atomic site [central (c), nearest neighbor (nn), and
bonding (b)], the orbital, and the layer involved. The order of the
layers is as follows: BiO, SrO, CuO2 (1st) and CuO2 (2nd), where
BiO is the termination layer that lies closest to the STM tip.

Label Orbital Atom Layer

0 dx2−y2 Cu (c) CuO2 (1st)
1 dx2−y2 Cu (nn) CuO2 (2nd)
2 dx2−y2 Cu (nn) CuO2 (2nd)
3 dz2 Cu (c) CuO2 (1st)
4 dz2 Cu (nn) CuO2 (1st)
5 pz O (c) SrO
6 pz O (nn) SrO
7 pz Bi (c) BiO
8 pz Bi (nn) BiO
9 px O (b) CuO2 (1st)

More specifically, we delineate induced pairing effects as
follows: (i) within a CuO2 bilayer [Fig. 2(a)]; (ii) intralayer
pairing in SrO and BiO layers [Fig. 2(b)]; and (iii) interlayer
pairing between CuO2 and SrO/BiO layers [Fig. 2(c)]. We
discuss each of these cases in turn below with reference to
Fig. 2 and Table I.

A. Pairing within the CuO2 bilayer

The most important anomalous matrix elements within the
CuO2 bilayer are shown in Fig. 2(a). The red curve gives
the contribution F01 from dx2−y2 orbitals of two neighboring
Cu atoms in the x direction, i.e., the matrix element between
a spin-up electron orbital at a Cu site and a spin-down hole
orbital at the neighboring Cu site. This is the principal pairing

FIG. 2. (Color online) Imaginary part of the matrix elements of the anomalous Green’s function Fαβ for various (αβ) pairs. (Recall that α

and β are composite indices denoting both the site and the orbital.) The meaning of values of α and β, which range from 0 to 9, is explained in
Table I. For example, index 0 refers to the dx2−y2 orbital on the central Cu atom in the cuprate plane nearest to the STM tip, and index 1 refers
to the dx2−y2 orbital on the nearest-neighbor Cu atom in the same cuprate plane. The main matrix element between the two preceding orbitals,
i.e., the (01) element, is shown by red lines for reference in all panels. Other matrix elements are shown scaled by factors ranging from 2 to 20,
as indicated in the legends. Symmetries of the orbitals involved in various cases are shown schematically in the upper right-hand-side portions
of the figures. Matrix elements compared with (01) (red curve) are as follows: (a) (02) (green curve), (34) (dashed blue curve), and (99) (dotted
black curve) for pairing within a CuO2 bilayer; (b) (56) (green curve) and (78) (dashed blue curve) for intralayer pairing in SrO and BiO layers;
and (c) (03) (dotted black curve), (05) (green curve), and (07) (dashed blue curve) for pairing of CuO2 along the line connecting the central Cu
and the surface Bi.
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matrix element because in our model �αβ is nonzero only
between two such orbitals.

The matrix element between the dx2−y2 orbitals of two
Cu atoms at the same horizontal position within the CuO2

bilayer is zero by symmetry. However, the matrix element F02

between a Cu atom in the upper layer and each of the four
neighboring Cu atoms of the lower layer (and vice versa) is
seen from Fig. 2(a) to be substantial with an amplitude that is
∼0.25 of F01. This result shows that pairing is not restricted
to dx2−y2 orbitals within a single CuO2 layer, i.e., it is not two
dimensional but extends vertically within the bilayer.

The dz2 orbital of Cu also plays an important role. In fact,
this orbital serves as a kind of gate for passing tunneling current
from the cuprate layers to the SrO and BiO layers. Figure 2(a)
shows that the amplitude F34 is ∼0.2 of F01 and comparable to
F02. There is also a smaller (∼0.2 of F34) rotationally invariant
matrix element F04 (not shown in Fig. 2) between the dz2 of a
central Cu and the dx2−y2 orbitals of the four neighboring Cu
atoms. At first glance this seems to break the d-wave symmetry,
but we will show below that the combined symmetry of the
orbitals involved remains d wave.42

The role of O atoms in the cuprate layers can be delineated
through the matrix elements F99 and F09. In Fig. 2(a) we
show the on-site matrix element F99, which is ∼0.25 of the
F01 term. We observe that in real-space rotations of π/2 around
the central Cu, F99 changes its sign. A smaller contribution is
found for F09 (not shown in Fig. 2). Its symmetry properties
are consistent with the symmetry of the Zhang-Rice singlet,
where a local orbital is constructed as a linear combination of
the four oxygen atoms around the central Cu. The symmetry
analysis of Sec. IV below shows that both F99 and F09 are also
consistent with the d-wave symmetry.

Finally, we note that there is a substantial term, F03,
between the dz2 and dx2−y2 orbitals of the same Cu atom,
which is perhaps surprising. Figure 2(c) shows that this pairing
amplitude is about half of F01. Because this is an on-site
term, the d-wave symmetry again follows from the combined
symmetry of the two orbitals, as discussed in Sec. IV below.

B. Intralayer pairing within SrO and BiO layers

In considering intralayer pairing in the SrO/BiO layers, we
find that for Bi or apical O atoms, the most important nonzero
anomalous matrix elements occur between pz orbitals of the
central atom and its four neighbours, i.e., F56 and F78. These
matrix elements possess the same d-wave symmetry as F01.

While all matrix elements have the same energy dependence in
Fig. 2(b), F01 is ∼30× larger than F56 or F78. The coherence
peaks lie at exactly the same energy in each layer, i.e., the
gap width is the same in all layers. The scaling factor for
the amplitude seems to roughly follow the spectral weight of
the orbitals. Hence, the pairing of electrons within the oxide
layers seems to be a direct consequence of the tail of the
CuO2 electron-wave function within the various layers. This
kind of pairing is in the spirit of the original idea of proximity
effect,6–8 where superconductivity is viewed as “leaking” from
the superconducting part of the sample to the normal state
material. Although the aformentioned orbitals are the most
important ones, nonzero pairing is not restricted to just these
orbitals. On the other hand, certain terms are strictly zero owing

to symmetry. In particular, all the on-site Fss , Fpxpx
, Fpypy

, and
Fpzpz

from Bi and O(Sr) are zero, as are many Bi-O(Bi) and
O(Sr)-Sr terms. However, Fpxpy

of two neighboring Bi atoms
is nonzero, as is Fpxpy

on the same Bi atom.

C. Interlayer pairing between CuO2 and SrO/BiO layers

Pairing on BiO and SrO layers is not restricted to the
intralayer terms discussed above. The interlayer terms F05 and
F07 between the pz orbitals of the central Bi [or O(Sr)] and
dx2−y2 of Cu right below these atoms is, in fact, significant,
while the anomalous term to the neighboring Cu atoms is
rather small. The existence of these matrix elements might
be surprising, because the regular matrix elements are zero
by symmetry between dx2−y2 and the rotationally symmetric
orbitals of the atoms above the central Cu (see the Appendix).
But we will show in the following section that these matrix
elements are not symmetry forbidden. From Fig. 2(c), the
scaling factor between these elements and F01 is of the
order of 4. Notably, this interlayer pairing would appear as
kz dependence in the gap function. If we make a reflection
of the slab with respect to the Ca plane lying between
the two CuO2 layers, the corresponding anomalous matrix
elements change their sign, indicating that this term has a
node at kz = 0, and thus deviations from d-wave symmetry
should be found for nonzero kz. The kz dependence is also
seen in the rather small terms between pz orbitals of the
Bi atoms of the surface layer, and the nearest-neighbor
Bi atoms of the BiO layer with half the primitive cell below
the surface.

IV. SYMMETRY AND SELECTION RULES
FOR INDUCED PAIRING

We now discuss the symmetry properties and the related
selection rules for the anomalous matrix elements of the
Green’s function in terms of the d-wave symmetry of the
pairing matrix.

A. Symmetry properties of the anomalous matrix elements

Note first that the symmetry of the pair wave function
depends on the relative motion of the pairing electrons, i.e.,
only on the relative coordinate Ri−Rj . The analysis of the
symmetry properties, however, becomes more transparent in
k space. Accordingly, we transform the real-space matrix
elements Fiαjβ(ε) into k space as

Fαβ(k,ε) =
∑

j

〈k|0 α〉F0αjβ(ε)〈jβ|k〉

=
∑

j

F0αjβ(ε)e−ik·Rjϕ∗
α(k)ϕβ(k). (7)

Here, we have set Ri = 0 and ϕα(k) is the orbital wave function
in k space. The site indices i and j and the orbital indices α and
β are shown explicitly for all matrix elements. The summation
is taken over the site index j . The orbital indices are obviously
not involved in the transformation. For simplicity, we will
restrict the analysis below such that j is either on site or one
of the nearest neighbors of the central site. The generalization
to further out neighbors is straightforward.
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We need to take into account not only the phase difference
between the sites, but also the form of the tight-binding orbitals
ϕα(k). These orbitals have the same symmetry in real space
and k space. In particular,

ϕ∗
x (k) = 〈k|px〉 ∝ kx

k
,

ϕ∗
y (k) = 〈k|py〉 ∝ ky

k
,

(8)

ϕ∗
x2−y2 (k) = 〈k|dx2−y2〉 ∝ k2

x − k2
y

k2
,

ϕ∗
3z2−r2 (k) = 〈k|d3z2−r2〉 ∝ 3k2

z − k2

k2
.

The symmetry of the matrix elements is now readily
analyzed. We give two examples to illustrate the procedure:
(i) F01 between the dx2−y2 orbitals of the central Cu and its
neighbors, and (ii) F03 between dz2 and dx2−y2 at the central
site. In the case of F01 the product of the orbital functions is
even under rotations by π/2:

ϕ∗
α(k)ϕα(k) = |ϕα(k)|2.

In fact, this applies to all cases where α = β. Summing over
the four sites around the central Cu and applying the odd parity
with respect to π/2 rotation of the real-space matrix elements
F0 αjα ∼ �0j , we obtain

Fαα(k,ε) = 2|F0 αjα(ε)|[cos (kxa) − cos (kya)]|ϕα(k)|2, (9)

which is obviously d wave. This is easy to see for the dx2−y2

orbitals, but Eq. (9) leads to the same conclusion for any set
of four neighboring orbitals similar to the central one, as long
as the real-space element is odd under rotations by π/2.

Turning to the case of F03, here the sum in Eq. (7) consists
of a single term (central site), so that there is no site-related
phase factor. We only need to consider the product of orbitals:

ϕ∗
3z2−r2 (k)ϕx2−y2 (k) ∝ 3k2

z − k2

k4

(
k2
x − k2

y

)
. (10)

This is the only term through which angular dependence enters
in Eq. (7). This again is d wave, keeping in mind that only
the in-plane symmetry is relevant. These considerations apply
more generally to any case where the two orbitals involved lie
at the same horizontal position, with one of the orbitals being
rotationally invariant and the other is d wave.

B. Selection rules for anomalous matrix elements

Selection rules for the matrix elements Fiαjβ of the
anomalous Green’s function do not follow directly from those
for the corresponding regular matrix elements discussed in the
Appendix. For this purpose, we write Fiαjβ as12

Fiαjβ(ε) = −G+
iαkγ (ε)�kγ lδG

0−
lδjβ(−ε), (11)

where the Einstein summation convention is implicit, and both
the Green’s functions on the right-hand side of the equation
are regular. The first term is the renormalized Green’s function
for the superconducting state, while the second term with a
superscript zero is the bare Green’s function for the normal
state. However, as shown in the Appendix, the symmetry

properties of these two Green’s functions are the same because
both are regular.

Equation (11) highlights the central role of the pairing
matrix �kγ lδ in determining the symmetry properties of
Fiαjβ . However, summation over the intermediate states is
cumbersome. Therefore, we convert Eq. (11) to k space first:

F (k,ε) = −G(k,ε)�kG
0∗(k,−ε), (12)

where orbital indices are suppressed. Equation (12) makes
it clear that F (k,ε) possesses the d-wave symmetry of
�k because the regular Green’s functions are rotationally
invariant, as shown in the Appendix.

Converting F (k,ε) to the real space yields

Fiαjβ(ε) =
∑

k

〈iα|k〉F (k,ε)〈k|jβ〉 (13)

or

F0 αjβ(ε) =
∑

k

ei(kzzj +k‖·R‖j )ϕ∗
α(k)ϕβ(k)F (k,ε), (14)

where we have fixed the first site index to Ri = 0, and made
a separation into perpendicular (kzzj ) and parallel directions
(kxxj + kyyj = k‖ · R‖j ).

We first consider the case where orbitals α and β are at the
same horizontal site, i.e., R‖j = 0. The necessary condition
for the matrix element F0 αjβ to be nonzero is that

ϕ∗
α(k)ϕβ(k)F (k,ε) (15)

is rotationally invariant. Because F (k,ε) is d wave, the product
of wave functions on the right-hand side of Eq. (14) must have
d-wave symmetry. For example, one of the orbitals could be
d-wave symmetric and the other could be rotationally invariant.
In particular, the anomalous matrix element between dx2−y2

and one of the set {s,pz,dz2} satisfies this condition.
Furthermore, if zj = 0, i.e., the orbitals are at the same site,

the term in Eq. (15) must also have an even parity in the z
direction for a nonzero matrix element, and hence pz would
not be a possible pair with dx2−y2 . However, in the case of
zj �= 0, pz is allowed, because the phase factor eikzzj does not
have a well-defined parity. Note also that the anomalous matrix
element between dx2−y2 orbitals at the same horizontal position
(R‖j = 0) is necessarily zero, because the term in Eq. (15) is
odd under rotations of π/2.

We next consider matrix elements between orbitals at
neighboring sites where R‖j = xj = ±a or R‖j = yj = ±a.
In this case, we will see that there will always be a nonzero
matrix element with a properly symmetrized combination of
neighboring wave functions, and the selection rules determine
the correct choice of phase factors between sites. We discuss
a particular case in detail as an example. Specifically, let
us compare sites Rj = (a,0,c) and Rl = (0,a,c) and check
whether or not the sign of the sum in Eq. (14) changes. For the
first site we get

F0 αjβ =
∑

k

ei(kxa+kzc)ϕ∗
α(kx,ky)ϕβ(kx,ky)F (k,ε) (16)

and for the second site we get

F0 αlβ =
∑

k

ei(kya+kzc)ϕ∗
α(kx,ky)ϕβ(kx,ky)F (k,ε). (17)
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A rotation of π/2 is equivalent to the transformation ky → kx

and kx → −ky . Applying this to Eq. (17) yields

F0 αlβ =
∑

k

ei(kxa+kzc)ϕ∗
α(−ky,kx)ϕβ(−ky,kx)F (k,ε). (18)

Thus the product ϕ∗
α(−ky,kx)ϕβ(−ky,kx) determines what

happens under rotations of π/2 around the site i = 0. There
are two cases: (1) This product is equal to ϕ∗

α(kx,ky)ϕβ(kx,ky),
so that these terms are invariant, and the total effect of rotation
on F0 αjβ in Eq. (14) follows the d-wave symmetry of F (k,ε);
and (2) the products of the orbitals in k space have the opposite
sign, and the matrix element F0 αjβ is invariant under in-plane
rotation by π/2. In either case there will be pairing between
the central orbital α and a properly symmetrized orbital φ, as
defined in Eq. (A6) of the Appendix. For case (1), an invariant
ϕ∗

α(kx,ky)ϕβ(kx,ky) linear combination of coefficients must
be chosen with d-wave symmetry. For case (2), i.e., d-wave-
symmetric ϕ∗

α(kx,ky)ϕβ(kx,ky), the correct linear combination
has all positive expansion coefficients. Notably, for α = β,
the product of orbitals is invariant, so that any pair involving
the same orbitals at neighboring sites must involve a linear
combination of neighbors, which is odd in rotations by π/2.

For example, in the anomalous matrix element F78 between
the pz orbitals of two Bi neighbors, the coefficient in the x

direction has an opposite sign to that in the y direction.

V. DISCUSSION AND CONCLUSIONS

We emphasize that the logic of symmetry rules for the
anomalous matrix elements is more complicated than that of
the regular matrix elements. In particular, the nonvanishing
tunneling channels can be determined through group theoretic
considerations.11,12 For example, because the rotational sym-
metry of the pz orbitals of Bi and apical oxygen atoms differs
from that of the dx2−y2 orbital of the Cu at the same horizontal
position, the corresponding off-diagonal term of the regular
Green’s function vanishes, inhibiting the corresponding tun-
neling channel. In contrast, coupling between electron and hole
degrees of freedom via the gap matrix �αβ leads to less obvious
symmetry rules for the anomalous matrix elements: Now the
quasiparticles are linear combinations of spin-up electrons and
spin-down holes, and there is no simple rule for selecting the
orbitals contributing to a chosen quasiparticle state. Hence, the
pz or dz2 orbitals of Bi, O, or Cu atoms may couple to a dx2−y2

orbital of a Cu atom at the same horizontal position, and the
possibility of this coupling must be checked by considering the
tensor form of Dyson’s equation, as written out in Eq. (12),
together with the transformation into the tight-binding basis of
Eq. (14).

In summary, we have presented a comprehensive study of
anomalous matrix elements of the Green’s function derived
from a realistic multiband model of Bi2212. The imaginary
parts of these matrix elements describe the contributions of
different orbitals to the coherence peaks involving the form-
ation and breaking up of Cooper pairs. Although the pair-
ing interaction is modeled by a local d-wave term in the
Hamiltonian connecting only the dx2−y2 orbitals of neighboring
Cu atoms, the anomalous matrix elements display a longer
range with induced superconductivity appearing at other sites
and/or orbitals, including the second cuprate layer and the

BiO/SrO overlayers. Our analysis delineates the precise routes
through which the induced superconductivity in a complex
cuprate system is transferred between various orbitals and
sites.
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for financial support. This work benefited from resources of
the Institute of Advanced Computing, Tampere.

APPENDIX: SYMMETRY PROPERTIES OF REGULAR
MATRIX ELEMENTS OF THE GREEN’S FUNCTION

This Appendix delineates the symmetry properties of the
regular matrix elements of the normal and superconducting
(SC) state Green’s functions G0(ε) and G(ε), respectively,
which were seen in connection with Eq. (14) above to be
important for understanding the nature of anomalous matrix
elements. Taking the origin at the position of the zeroth atom,
G0

0 αjβ(ε) can be written as

G0
0 αjβ(ε) =

∑
k

〈0 α|k〉G0(k,ε)〈k|jβ〉

=
∑

k

eik·Rjϕ∗
α(k)ϕβ(k)G0(k,ε), (A1)

where

G0(k,ε) = 1

ε − εk − 
(ε)
. (A2)

Because the Hamiltonian is invariant under rotations of π/2,
the dispersion εk and G0(k,ε) are also invariant. This is true as
well for the SC state regular Green’s function because the self-
energy in Eq. (A2) is augmented by an additional term 
BCS =
�kG

0
h(k,ε)�†

k, which is rotationally invariant.12 Because G0

and G possess the same symmetry properties, in the following
we only consider the symmetry properties of G0(k,ε).

Consider first the case where Rj = (0,0,c). Then, G0
0 αjβ �=

0 only if ϕ∗
α(k)ϕβ(k) in Eq. (A1) is invariant under the in-plane

operations of the symmetry group of the Hamiltonian. For
example, a pz orbital can have nonzero matrix elements with
s, pz, or dz2 of an atom at the same horizontal position. But the
matrix element between pz and dx2−y2 of atoms at the same
horizontal position is zero. For c = 0, the matrix element is
nonzero only if the orbitals are similar.

We next consider the case where there are four atoms
around a central atom at the distance of the horizontal lattice
constant a: R1 = (a,0,c), R2 = (0,a,c), R3 = (−a,0,c), and
R4 = (0, − a,c). Changing the indices according to 1 → 2 →
3 → 4 → 1 corresponds to rotations by π/2 in real space.
The transformation ky → kx and kx → −ky represents the
same rotation in k space. Now the phase factor eik·Rj has a
fundamental effect on the symmetry behavior. Let us compare
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cases R1 = (a,0,c) and R2 = (0,a,c) and check whether the
sign of the sum changes. In the first instance we get

G0
0 α1β (ε) =

∑
k

ei(kxa+kzc)ϕ∗
α(kx,ky)ϕβ(kx,ky)G0(k,ε), (A3)

while the second case gives

G0
0 α2β (ε) =

∑
k

ei(kya+kzc)ϕ∗
α(kx,ky)ϕβ(kx,ky)G0(k,ε). (A4)

Applying the transformation ky → kx and kx → −ky to
Eq. (A4) yields

G0
0 α2β(ε) =

∑
k

ei(kxa+kzc)ϕ∗
α(−ky,kx)ϕβ(−ky,kx)G0(k,ε).

(A5)

Thus, it is the product ϕ∗
α(−ky,kx)ϕβ(−ky,kx) that deter-

mines what happens under rotations of π/2. If this is equal to
ϕ∗

α(kx,ky)ϕβ(kx,ky), the matrix element does not change sign
under rotations, otherwise G0

0 αjβ changes sign under in-plane
rotation of π/2. In particular, for α = β, this term is invariant,
but for α = pz or dz2 and β = dx2−y2 , there is a change of sign
under rotation.

An equivalent approach is to consider a linear combination
of orbitals jβ,

|φ〉 =
4∑

j=1

cj |jβ〉. (A6)

There is a nonzero regular matrix element G0
0α,φ only if

|φ〉 belongs to the same representation of the symmetry
group of the Hamiltonian as orbital |0 α〉. The transformation
of the expansion coefficients cj follows directly from the
transformation of G0

0 αjβ . For example, it is obvious that

G0
0 α,φ =

4∑
j=1

cjG
0
0 αjβ . (A7)

Hence, if α = β = dx2−y2 and j = 1, . . . ,4 are defined as
above, cj must be a constant in order to keep the full symmetry
of the group of the Hamiltonian, leading to

G0
0 α,φ ∝ c1e

ikzc[cos (kxa) + cos (kya)]
(
k2
x − k2

y

)2
.

If, however, α = dz2 and β = dx2−y2 , one must have c2 = c4 =
−c1 = −c3, and then

G0
0 α,φ ∝ c1e

ikzc[cos (kxa) − cos (kya)]
(
k2
x − k2

y

)(
3k2

z − k2),
which requires a change of sign of cj ’s under rotations of π/2
in order to obtain an invariant matrix element.
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