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A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the
t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type
projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is
evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated
in the mode-coupling approximation. The spectrum of spin excitations is studied in a homogeneous phase of
the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic
wave vector Q = π (1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This
is explained by an involvement of spin excitations in the decay process in addition to the particle-hole continuum
usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q
plays a dominant role in limiting the decay in comparison with the superconducting gap, which results in the
observation of the RM even above Tc in the underdoped region. A good agreement with inelastic neutron-scattering
experiments on the RM in YBa2Cu3Oy compounds is found.
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I. INTRODUCTION

In the superconducting state the spin-excitation spectrum
of high-Tc cuprates is dominated by a sharp magnetic peak
at the planar antiferromagnetic (AF) wave vector Q = π (1,1)
which is called the resonance mode (RM). It was discovered in
inelastic neutron scattering (INS) experiments which revealed
a suppression of the spectral weight of low-energy spin
excitations at low temperatures and its transfer to higher
energies, resulting in the RM. There is a vast literature
devoted to experimental and theoretical investigations of spin-
excitation spectra and the RM in cuprates (a list of references
can be found in the reviews1–5 and in a number of publications,
such as, e.g., Refs. 6–9). Here we consider only the main results
of these studies relevant for our purposes.

The RM was discovered first in the optimally doped
YBa2Cu3Oy (YBCOy) crystal at the energy Er ≈ 41 meV,10

but later on, the RM was found in the underdoped YBCOy

crystals, Bi2Sr2CaCu2O8+δ (Bi-2212) compounds, and other
cuprates as well.2 In particular, the RM was observed
in the single-layer cuprate superconductors Tl2Ba2CuO6+x

(Tl-2201) (Ref. 11) and HgBa2CuO4+δ (Hg-1201),12 and in the
electron-doped Pr0.88LaCe0.12CuO4−δ superconductor.13 This
demonstrates that the RM is a generic feature of the cuprate
superconductors and can be related to spin excitations in a
single CuO2 layer. Since the energy of the RM was found to
scale with the superconducting temperature, Er ≈ 5.3kBTc in
YBCO and Bi-2212 compounds and Er ≈ 6kBTc (6.8kBTc) in
Tl-2201 (Hg-1201) systems, it has been argued that it might
constitute the bosonic excitation mediating superconducting
pairing in cuprates, which has motivated an extensive study of
the RM phenomenon (see, e.g., Refs. 4,5).

The spin-excitation dispersion close to the RM exhibits a
peculiar “hourglasslike” shape with upward and downward
dispersions. Whereas the RM energy Er changes with doping,

no essential temperature dependence of Er and of the upward
branch of the dispersion has been found. In the optimal doping
region the RM and both dispersion branches are smeared
out above Tc. In a strongly underdoped YBCO crystal only
the downward branch is suppressed above Tc, whereas the
upward dispersion and the RM are observed in the normal
pseudogap state. In particular, a well-defined resonance peak at
Er ≈ 33 meV was found in the YBCO6.5 crystal in the
oxygen-ordered ortho-II phase with Tc = 59 K at hole doping
p = 0.09 (Refs. 14,15). At low temperature, T ∼ 8 K, the
RM revealed a much higher intensity than in optimally doped
crystals, and it was also seen with less intensity even at
T � 1.4Tc.

The extensive study of the twin-free YBCO6.6 crystal
with Tc = 61 K at hole doping p = 0.12 (Refs. 16,17)
revealed a different origin of the upward and downward
parts of the spin excitations close to the RM energy ωr =
38.5 meV. Specifically, the high-energy excitations do not
show noticeable changes at the superconducting transition and
have the symmetry of the square CuO2 lattice common to all
cuprates. Contrary to this, the low-energy part of the spectrum
is qualitatively different in the superconducting and pseudogap
states. In Ref. 17 the INS data were fitted by a spectral function
of spin excitations in absolute units which was used to calculate
the effective spin-fluctuation-mediated pairing interaction and
to estimate the superconducting temperature Tc ∼ 170 K.18

An hourglass structure of the spin-excitation spectrum
similar to that in YBCO was found in La2−xSrxCuO4

(LSCO-x) crystals (see Refs. 19–21). However, no sharp
RM was found at T < Tc, which may be caused by strong
disorder effects produced by Sr doping close to the CuO2

plane or by dynamically fluctuating stripes. A double-peaked
structure was observed in the local susceptibility χ ′′(ω) of
the optimally doped LSCO-0.16 crystal20 with Tc = 38.5 K.
The lower-energy incommensurate (IC) part of the spectrum
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was found below ω ∼ 20 meV, which may be explained
by electron-hole collective excitations (or fluctuating
stripes), whereas the high-energy upward dispersion,
peaked at ω = 40–50 meV, can be viewed as overdamped
spin-wave-like excitations caused by the residual AF exchange
interaction J ∼ 80 meV. A similar, though less pronounced,
double-peaked structure in χ ′′(ω) was found in the underdoped
LSCO-0.085 crystal with Tc = 22 K in the pseudogap phase.21

Generally, the INS experiments suggest the universality
of the hourglass structure of spin excitations in cuprates,
though with material-dependent details. The high-energy
excitations above the RM can be considered as overdamped
AF spin waves with the exchange interaction decreasing with
doping. Since the characteristic exchange energy, especially
at low doping, is quite large, only a weak temperature
dependence of the spectrum is observed, resulting from the
increase of the damping with temperature that shifts the
maximum of the dynamic spin susceptibility (DSS) to a
lower energy. The low-energy spin dynamics, which reveals
a strong temperature dependence below Tc, may be related to
fluctuating stripe phases with a quasi-one-dimensional order
of spins and charges or to a nematic (liquid crystal) state as
discussed later.

To explain the RM in superconducting cuprates, various
theoretical models have been proposed. In a large number
of studies the Fermi-liquid model of itinerant electrons was
assumed and the DSS was calculated by the random phase
approximation (RPA) for the one-band Hubbard model or
by taking the RPA susceptibility with the AF superexchange
interaction J (q) (see, e.g., Refs. 22–24). In this approach,
the RM is considered as a particle-hole-bound state, usually
referred to as a spin-1 exciton. The state is formed below the
continuum of particle-hole excitations which is gapped at a
threshold energy ωc � 2�(q∗) determined by the supercon-
ducting d-wave gap 2�(q∗) at a particular wave vector q∗
on the Fermi surface (FS). In the Fermi-liquid approach, the
d-wave symmetry of the gap and the shape of the FS which
should cross the AF Brillouin zone are essential in explaining
the q and ω dependence of the DSS and the RM.

More complicated electronic models were also considered,
e.g., in Refs. 6,25–28, where an extensive study of magnetic
interactions was performed for the extended three-band Hub-
bard model with large Cu on-site correlation U . Using the
slave-boson representation and 1/N expansion (N is the spin
degeneracy) the spectrum of spin excitations was calculated
both for the normal state and for the superconducting d-wave
state. It was stressed that a difference of the magnetic neutron
scattering in the LSCO and YBCO compounds could be
explained by fine details of the band structure.26,28 To explain
the peculiarity of the DSS and the RM in the two-layer YBCO
compounds, a bilayer exchange interaction was invoked (see,
e.g., Refs. 27,29). Usually the downward IC dispersion is
well reproduced by fitting the electron interaction while the
intensity of the upward dispersion appears to be too weak.
To describe the underdoped regime close to the insulating
(and AF) state, where a model of itinerant electrons cannot be
justified, a phenomenological spin-fermion model was used
(see, e.g., Ref. 4).

The INS study of the slightly overdoped Bi-2212 crystal30

and of Y1−xCaxB2Cu3O6+x (Y-CaBCO) compounds31 seems

to support the spin-exciton scenario. In particular, the global
momentum shape of the measured magnetic excitations is
quantitatively described within the spin-exciton model with
parameters inferred from angle-resolved photoemission exper-
iments on Bi-2212 or electronic Raman scattering experiments
on Y-CaBCO. However, the temperature dependence of the
RM energy was not studied; this should be observed in the spin-
exciton model due to the temperature dependence of the
superconducting gap.

The strong-correlation limit in the underdoped region in
cuprates is often treated within the t-J model suitable for
consideration of low-energy spin dynamics. To take into
account the projected character of electron operators, the
slave-boson technique was used (for a review see Ref. 32).
In particular, in Ref. 33 the magnetic excitation spectrum
was studied within the t-t ′-J model using the mean-field
slave-particle theory. The DSS was calculated in the RPA
for spinons in the superconducting and spin-gap states. The
RM was revealed as the spin-1 exciton below the threshold
energy, as in the Fermi-liquid models. A qualitative agreement
with INS experiments on YBCO and Bi-2212 compounds was
obtained. In Ref. 9, a comprehensive analysis of the DSS within
the mean-field slave-boson theory for the bilayer t-J model
was performed. A special emphasis was put on the explanation
of an anisotropy of the spectrum in the square CuO2 plane,
which was related to a d-wave-shaped FS deformation (dFSD).
In the case of a strong dFSD a spontaneous breaking of
the orientational symmetry of the FS can occur leading to
its orthorhombic deformation (Pomeranchuk instability). The
DSS was calculated in the RPA with a renormalized in-plane
AF exchange interaction. Within the theory, both the collective
RM and its downward dispersion as well as the high-energy
excitations with the upward dispersion were obtained. It was
also possible to explain the in-plane anisotropy of the DSS
observed in INS experiments by the dFSD effect.

However, in the slave-particle theory one has to introduce
a local constraint at each lattice site to reduce the enlarged
Hilbert space (four states per site) to the physical one of
the projected electronic states (three states per site in the t-J
model). In the mean-field approximation the local constraint
is relaxed and substituted by an averaged one which violates
the constraint and leads to uncontrollable results.

A rigorous approach is based on the Hubbard operators
(HOs) acting in the correct physical space.34 In Ref. 35, a
special diagram technique for the HOs was developed and
used to calculate the DSS. In particular, a generalized RPA
was elaborated by summing up different types of bubble
diagrams. However, the RM excitation was not considered
there. Calculations of the DSS within the HO technique in
the conventional RPA in Ref. 36 revealed a sharp RM, caused
by the opening of the superconducting gap below Tc, and
low-energy collective excitations similar to the results for the
Fermi-liquid models.

Let us make a general remark concerning the spin-1
exciton scenario based on a summation of fermion-bubble-type
diagrams, as in the conventional RPA. In this scenario, a strong
temperature dependence of the RM energy is expected below
Tc due to the temperature dependence of the superconducting
gap 2�(q∗) and, hence, of the threshold energy ωc and Er < ωc.
However, this contradicts the experiments. In theoretical
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calculations, usually only the low-temperature limit, T � Tc,
and the T > Tc region are analyzed. It would be important
to study a region at T � Tc to test the spin-1 exciton
scenario.

To go beyond a simple RPA in the strong-correlation
limit, the Mori projection technique37 in the equation of
motion method for the relaxation function has been used by
several groups (see, e.g., Refs. 38–43). In the t-J model, this
method allows consideration of the magnetic excitations of
localized spins in the undoped case within the AF Heisen-
berg model and a crossover to the itinerant-electron spin
excitations in the overdoped region. These studies and, in
particular, the DSS calculation and the RM analysis in the
superconducting state will be discussed later and compared
with our results. In Refs. 44 and 45, we have formulated
a rigorous theory of the DSS in the normal state within
the projection operator method for the relaxation function in
terms of the HOs. The results obtained, both for the static
properties (like the staggered magnetization at T = 0, the
uniform static susceptibility, and the AF correlation length)
and for the DSS [e.g., the (ω/T )-scaling behavior of the local
DSS] have shown a good agreement with available cluster
calculations and neutron-scattering data. In particular, it was
shown that the kinematical interaction resulting from the HO
commutation relations plays an essential role and gives the
major contribution to the damping of spin excitations induced
by the hopping term t .

In this respect, we mention a calculation of the DSS using
the Mori projection technique for the t-J model.46 In this study,
the projected character of electron operators was neglected by
replacing them with the conventional Fermi operators. As a
result, the kinematical interaction induced by a large hopping
term t � 3J was disregarded and only the exchange interaction
J was considered. The resulting Mori memory function was
represented as a sum of two contributions, one determined by
electrons in the conventional RPA and the second given by the
spin-spin scattering proprotional to J 2. Although the upward
and downward dispersions of the spin-excitation spectrum and
the RM below Tc were reproduced, ignoring the hopping term
contribution to the memory function can give only a qualitative
description.

The discovery of the static IC charge- and spin-density
waves (CDW and SDW), referred to as stripes, in the metallic
phase of La2−xBaxCuO4 (LBCO-x) and LSCO compounds has
attracted much attention in recent years and was used in the
explanation of the IC spin-excitation spectrum in hole-doped
cuprates (for reviews see Refs. 47–49). In particular, in the
stripe phase of the LBCO-0.125 compound an INS study
at T = 12 K (> Tc) revealed high-energy spin excitations
at ω > 40 meV and a low-energy branch similar to spin
waves in the two-leg-ladder spin model.50 Various stripe
models have been proposed to describe the experimental
data. In particular, spin-only models for the bond-centered
stripe with long-range magnetic order in Ref. 51 and a
two-dimensional (2D) model of coupled two-leg spin ladders
in Ref. 52 were proposed, which fitted the experimental
data quite well. In Ref. 53, both bond- and site-centered
stripes were considered within the time-dependent Gutzwiller
approximation for the Hubbard model. Static stripe spin and
charge order coexisting with the d-wave superconductivity was

studied within an extended Hubbard model in the mean-field
approximation and RPA for the DSS in Ref. 54. Using quantum
Monte Carlo simulations a detailed study of magnetic exci-
tations was performed for coupled spin ladders.55 Magnetic
ordering both perpendicular and parallel to the stripe direction
was found in an array of antiferromagnetically coupled doped
and undoped two-leg ladders.56

However, the static stripes have not been detected in
moderately doped YBCO crystals, where only dynamically
fluctuating stripes can be suggested (see, e.g., Refs. 8,14–
16,57). Moreover, instead of a rigid stripe array proposed
in Ref. 58, 2D character of the IC spin fluctuations was
observed in untwinned YBCO6+x crystals with x = 0.6
and 0.85.57 The IC peaks exhibiting in-plane anisotropy
were explained as a result of a possible liquid-crystalline
stripe phase or a nematic state. Therefore, although the
inhomogeneous stripe picture can be applied for LSCO and
LBCO systems, it seems to be not a universal origin of the
hourglass spin-excitation dispersion and the RM in cuprate
superconductors. Inhomogeneous phases of cuprates related
to fluctuating stripes with a quasi-one-dimensional order
of spins and charges or to a liquid-crystal state may be
important only in the explanation of the low-energy collective
spin fluctuations.

To clarify some of the open problems in describing the
RM phenomenon, such as the appearance of the RM above
Tc and its weak temperature dependence, in the present paper
we extend our microscopic theory (Refs. 44 and 45) to the
superconducting state. Although our general formulation for
the DSS is similar to the original Mori memory function
approach used in other publications, as in Ref. 38, in the
previous studies of the t-J model only the bubble-type
diagrams similar to the RPA were considered, which ignores
the important role of spin excitations in the decay process.
The energy gap at the AF wave vector Q of the order of
the RM energy Er in the spin-excitation spectrum strongly
reduces the damping at low temperatures, T � Er � 5 kBTc,
which results in the emergence of a sharp peak in the spectral
function. In the low-doping region, where the damping is
extremely small, the RM is found even above Tc. In the
overdoped region, at hole concentration δ ∼ 0.2 and high Tc,
the spin-excitation damping becomes large and the opening of
the superconducting gap enhances the intensity of the RM,so
that it becomes observable only below Tc. So, as compared
with the spin-exciton scenario, we propose an alternative
explanation of the RM and the upper branch of the dispersion:
that they are driven by the spin gap at Q instead of the
superconducting gap 2�. A good agreement of our results for
the temperature and doping dependence of the spin-excitation
spectrum and the RM with INS experiments provides strong
support for the proposed theory. We have not found a lower
branch of the hourglass spectrum, which may be related to
inhomogeneous states in the CuO2 plane neglected in our
analysis.

In the next section we present the basic formulas for the DSS
and the self-energy, which are a generalization of our theory
in Ref. 45 to the superconducting state. Numerical results for
the spin-excitation spectra are given in Sec. III, where the
temperature and doping dependence of the damping and the
RM are discussed. The conclusion is given in Sec. IV. Details
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of the calculations within the mode-coupling approximation
(MCA) are presented in the Appendix.

II. RELAXATION-FUNCTION THEORY

A. Dynamic spin susceptibility

It is convenient to consider the t-J model in the Hubbard
operator representation

H = −
∑
i �=j,σ

tijX
σ0
i X0σ

j − μ
∑
iσ

Xσσ
i

+ 1

4

∑
i �=j,σ

Jij

(
Xσσ̄

i Xσ̄σ
j − Xσσ

i Xσ̄ σ̄
j

)
, (1)

where tij is the hopping integral and Jij is the exchange inter-
action. The Hubbard operators X

αβ

i = |i,α〉〈i,β| describe
transitions between three possible states at a site i on a square
lattice: an empty state |i,α〉 = |i,0〉 and a singly occupied state
|i,α〉 = |i,σ 〉 with spin σ = ±(1/2) (σ̄ = −σ ). The number
and spin operators in terms of the Hubbard operators read

Ni =
∑

σ

Xσσ
i , Sσ

i = Xσσ̄
i , Sz

i =
∑

σ

σXσσ
i . (2)

The Hubbard operators obey the completeness relation X00
i +∑

σ Xσσ
i = 1 which preserves rigorously, contrary to the slave-

boson approach, the constraint of no double occupancy of
any lattice site. The Hubbard operators have the commutation
relations [Xαβ

i ,X
γδ

j ]± = δij (δβγ Xαδ
i ± δδαX

γβ

i ) which results
in a kinematical interaction. Here, the upper sign pertains
to Fermi-type operators like X0σ

i changing the number of
electrons, and the lower sign pertains to Bose-type operators,
such as the number operator or the spin operators, Eq. (2). The
chemical potential μ is determined from the equation for the
average electron density n = 〈Ni〉 = 1 − δ, where δ = 〈X00

i 〉
is the hole concentration.

In Ref. 44, applying the Mori-type projection technique,37

elaborated for the relaxation function, we have derived an exact
representation for the DSS χ (q,ω) related to the retarded
commutator Green function (GF) (see Ref. 59),

χ (q,ω) = −〈〈S+
q |S−

−q〉〉ω = m(q)

ω2
q + ω �(q,ω) − ω2

, (3)

where m(q) = 〈[iṠ+
q ,S−

−q]〉 = 〈[ [S+
q ,H ], S−

−q]〉, and ωq is the
spin-excitation spectrum in a generalized mean-field approxi-
mation (GMFA). The self-energy is given by the many-particle
Kubo-Mori relaxation function

�(q,ω) = [1/m(q)] ((−S̈+
q | − S̈−

−q))(proper)
ω , (4)

where −S̈±
q = [ [S±

q ,H ],H ] (for details see Ref. 44). The
Kubo-Mori relaxation function and the scalar product are
defined as (see, e.g., Ref. 60)

((A|B))ω = −i

∫ ∞

0
dteiωt (A(t),B) (5)

and

(A(t),B) =
∫ β

0
dλ〈A(t − iλ)B〉, β = 1/kBT , (6)

respectively. The “proper” part of the relaxation function (4)
does not contain parts connected by a single zero-order
relaxation function which corresponds to the projected time
evolution in the original Mori projection technique.37 The
spin-excitation spectrum is given by the spectral function
defined by the imaginary part of the DSS (3),

χ ′′(q,ω) = −ω �′′(q,ω) m(q)[
ω2 − ω2

q − ω �′(q,ω)
]2 + [ω �′′(q,ω)]2

, (7)

where �(q,ω + i0+) = �′(q,ω) + i�′′(q,ω), and �′(q,ω)
= −�′(q, − ω) and �′′(q,ω) = �′′(q, − ω) < 0 are the real
and imaginary parts of the self-energy, respectively.

B. Static susceptibility

The general representation of the DSS (3) determines the
static susceptibility χq = χ (q,0) by the equation

χq = (S+
q ,S−

−q) = m(q)/ω2
q . (8)

To calculate the spin-excitation spectrum ωq the equality

m(q) = (−S̈+
q ,S−

−q) = ω2
q (S+

q ,S−
−q) (9)

is used, where the correlation function (−S̈+
q ,S−

−q) is evaluated
in the GMFA by a decoupling procedure in the site represen-
tation as described in Ref. 45. This procedure is equivalent to
the MCA for the two-time correlation functions. This results
in the spin-excitation spectrum

ω2
q = 8t2λ1(1 − γq)(1 − n − F2,0 − 2F1,1)

+ 4J 2(1 − γq)

[
λ2

n

2
− α1C1,0(4γq + 1)

+α2(2C1,1 + C2,0)

]
, (10)

where t and J are the hopping integral and the exchange
interaction for the nearest neighbors, respectively, and γq =
(1/2)(cos qx + cos qy) (we take the lattice spacing a to be
unity). The static electron and spin correlation functions are
defined as

Fn,m ≡ FR = 〈
Xσ0

0 X0σ
R

〉 = 1

N

∑
q

Fqe
iqR, (11)

Cn,m ≡ CR = 〈S−
0 S+

R 〉 = 1

N

∑
q

Cqe
iqR, (12)

where R = nax + may . The GMFA spectrum (10) is calcu-
lated self-consistently by using the GMFA approximation for
the static correlation function (12),

Cq = m(q)

2 ωq
coth

β ωq

2
. (13)

The decoupling parameters α1,α2 and λ1,λ2 in Eq. (10) take
into account the vertex renormalization for the spin-spin
and electron-spin interaction, respectively, as explained in
Ref. 45. In particular, the parameters α1,α2 are evaluated
from the results for the Heisenberg model at δ = 0 and are
kept fixed for δ �= 0. The parameters λ1,λ2 are calculated
from the sum rule C0,0 = 〈S+

0 S−
0 〉 = (1/2)(1 − δ) with a fixed

ratio λ1/λ2 = 0.378. In the superconducting state, the electron
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correlation function FR is calculated by the spectral function
for electrons in the superconducting state [see Eq. (22)]. The
variation of the parameters λ1,λ2 below the superconducting
transition is negligibly small and has essentially no influence
on the spectrum ωq.

The direct calculation of m(q) yields

m(q) = −8 (1 − γq) [tF1,0 + JC1,0]. (14)

Thus, the static susceptibility (8) is explicitly determined by
Eqs. (10) and (14).

C. Self-energy

In what follows, we consider the t-J model at a finite hole
doping δ > 0.05 when, as discussed in Ref. 45, the largest
contribution to the self-energy (4) is �t (q,ω) coming from
the spin-electron scattering. It is determined by the hopping
term Ht in the t-J model according to the equation for the
spin-density operators: −S̈±

q = [ [S±
q ,Ht ],Ht ]. As described

in the Appendix, in the MCA this contribution reads

�′′
t (q,ω) = −π (2t)4(eβω − 1)

m(q) ω

×
∫ ∫ ∫ ∞

−∞
dω1dω2dω3

1

N2

∑
q1,q2

N (ω2)

×[1 − n(ω1)]n(ω3)δ(ω + ω1 − ω2 − ω3)Bq2 (ω2)

×[(

2

q1,q2,q3
+ 
2

q3,q2,q1

)
AN

q1
(ω1) AN

q3
(ω3)

− 2
q1,q2,q3
q3,q2,q1 AS
q1σ

(ω1) AS
q3σ

(ω3)
]
, (15)

where q3 = q − q1 − q2. The Fermi and Bose functions are
denoted by n(ω) = (eβω + 1)−1 and N (ω) = (eβω − 1)−1. The
vertex function 
q1,q2,q3 is defined by Eq. (A5). Here we
introduced the spectral functions

AN
q (ω) = −(1/π )Im

〈〈
X0σ

q

∣∣Xσ0
q

〉〉
ω
, (16)

AS
qσ (ω) = −(1/π )Im

〈〈
X0σ

q

∣∣X0σ̄
−q

〉〉
ω
, (17)

Bq(ω) = (1/π ) χ ′′(q,ω), (18)

where AN,S
q (ω) are determined by the retarded anticommutator

GFs for electrons (see Ref. 59). In comparison with the
expression for the self-energy in the normal state considered
in Ref 45, in Eq. (15) there is a contribution proportional to
the anomalous GF 〈〈X0σ

q |X0σ̄
−q〉〉ω which is nonzero in the

superconducting state only.
It should be emphasized that the self-energy (15) is

determined by the decay of a spin excitation with the energy
ω and wave vector q into three excitations: a particle-hole pair
and a spin excitation. This process is controlled by the energy
and momentum conservation laws ω = (ω3 − ω1) + ω2 and
q = q1 + q2 + q3, respectively. In previous studies of the t-J
model the contribution of the additional spin excitation has
been neglected (see, e.g., Ref. 36) or approximated by static or
mean-field-type expressions (see, e.g., Refs. 38 and 42). That
is, in these approximations the spin-excitation contribution
was “decoupled” from the particle-hole pair. We can derive
the particle-hole bubble approximation from Eq. (15), if
we ignore the spin-energy contribution ω2 in comparison
with the electron-hole pair energy, or, equivalently, if in the
MCA, Eqs. (A6) and (A7), the time-dependent spin-correlation

function is approximated by its static value: 〈S−
−qS

+
q (t)〉 �

〈S−
−qS

+
q 〉 = Cq. Moreover, excluding the spin-excitation wave

vector q2 from the wave-vector conservation law, we have
q = q1 + q3. As a result of these approximations in Eq. (15),
we obtain the self-energy in the form of the particle-hole
bubble approximation:

�̃′′
t (q,ω) = −π (2t)4

m(q) ω

∫ ∞

−∞
dω1[n(ω1) − n(ω1 + ω)]

× 1

N

∑
q1

[

̃N

q1,q−q1
AN

q1
(ω1) AN

q−q1
(ω1 + ω)

− 
̃S
q1,q−q1

AS
q1σ

(ω1) AS
q−q1σ

(ω1 + ω)
]
, (19)

where the vertices averaged over the spin-excitation wave
vector q2 are introduced,


̃N
q1,q3

= 1

N

∑
q2

Cq2

[

2

q1,q2,q3
+ 
2

q3,q2,q1

]
, (20)


̃S
q1,q3

= 2

N

∑
q2

Cq2
q1,q2,q3
q3,q2,q1 . (21)

In the approximation (19) only the opening of a supercon-
ducting gap in the particle-hole excitation can suppress the
damping of spin excitations due to the decay into particle-hole
pairs which may result in the RM. Below we discuss in
more detail why a particle-hole bubble approximation for
the self-energy, Eq. (19), leads to a different behavior of
the spin-excitation damping in comparison with the results
obtained for the full self-energy (15).

III. RESULTS AND DISCUSSION

A. Self-energy approximation

In the calculation of the self-energy (15) we adopt the mean-
field approximation (MFA) for the electron spectral func-
tions (16) and (17), which in the superconducting state can be
written as

AN
q (ω) = Q

∑
ω1=±Eq

ω1 + εq

2ω1
δ(ω − ω1), (22)

AS
qσ (ω) = Q

∑
ω1=±Eq

�qσ

2ω1
δ(ω − ω1). (23)

Here Q = 1 − n/2 is the Hubbard weighting factor and
the superconducting gap function �qσ = (sgnσ ) �q. In the
electron spectrum εq we take into account only the nearest-
neighbor hopping t and consider the energy dispersion in the
Hubbard-I approximation: εq = −4tQγq − μ. The spectrum
of quasiparticles in the superconducting state is given by the
conventional formula Eq = √

ε2
q + �2

q. For the spin-excitation
spectral function (18) we take the form

Bq(ω) = m(q)
∑

ω1=±ω̃q

1

2ω1
δ(ω − ω1), (24)

where the spectrum of spin excitations ω̃q is determined by the
pole of the DSS, ω̃q = [ω2

q + ω̃q �′(q,ω̃q)]1/2 . Here, the real
part of the self-energy �′(q,ω) is calculated perturbationally
by taking the spectral function (24) with the GMFA spectrum
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ω1 = ±ωq. Using these spectral functions, after integration
over the energies in Eq. (15) we write the imaginary part of the
self-energy in the following form convenient for calculation in
the limit T → 0:

�′′
t (q,ω) = π (2t)4

ωm(q)

Q2

N2

∑
q1,q2

∑
ω1=±Eq1

∑
ω2=±ω̃q2

∑
ω3=±Eq3

m(q2)

×N (ω2)n(−ω1)n(ω3) + N (−ω2)n(ω1)n(−ω3)

8ω1ω2ω3

×[(

2

q1,q2,q3
+ 
2

q3,q2,q1

)
(ω1 + εq1 )(ω3 + εq3 )

− 2
q1,q2,q3
q3,q2,q1�q1�q3

]
×δ(ω + ω1 − ω2 − ω3). (25)

Similar calculations for the self-energy (19) in the particle-hole
bubble approximation yield

�̃′′
t (q,ω) = −π (2t)4

m(q)ω

Q2

N

∑
q1

∑
ω1=±Eq1

∑
ω2=±Eq−q1

×n(ω1) − n(ω2)

4ω1ω2

[

̃N

q1,q−q1
(ω1 + εq1 )(ω2 + εq−q1

)

− 
̃S
q1,q−q1

�q1�q−q1

]
δ(ω + ω1 − ω2). (26)

We consider both the d-wave and s-wave symmetry
of the superconducting gap, which we write as �

(d)
q =

(�/2)(cos qx − cos qy) and �(s) = � with the temperature-
dependent amplitude �(T ). In numerical calculations we
assume that �(T ) follows the conventional Bardeen-
Cooper-Schrieffer (BCS) theory. In particular, �(T )/kBTc =
1.76,1.72,1.6,1.24 for T/Tc = 0,0.4,0.6,0.8, respectively. By
taking, instead of the BCS ratio 2�0/kBTc = 3.52,�0 =
�(T = 0), the ratio 2�0/kBTc = 4.3 for a pure d-wave
superconductor (see, e.g., Ref. 61), we have found that the
results do not change noticeably, i.e., by less than 5% at T = 0
and even less at finite temperatures. We mainly consider two
doping values, δ = 0.2, which is larger than optimal doping,
and δ = 0.09 for the underdoped case. For δ = 0.2 we fix
the superconducting transition temperature as kBTc = 0.025t ,
while for δ = 0.09 we take kBTc = 0.016t . For the hopping
parameter t = 0.313 eV these values are close to Tc = 91 K in
the nearly optimally doped YBCO6.92 single crystal in Ref. 1
and Tc = 59 K in the underdoped (δ = 0.09) YBCO6.5 crystal
studied in Ref. 14. We take the exchange interaction J = 0.3t

and measure all energies in units of t .

B. Spin-excitation damping

To elucidate the role of spin excitations in the damping
and their relevance to the shape of the spectral function
Eq. (7), we consider the temperature dependence of the
spin-excitation damping at the AF wave vector �(Q,ω) =
−(1/2) �′′

t (Q,ω). Figure 1 shows the damping for δ = 0.2 at
various temperatures in the case of the d-wave (a) and s-wave
(b) pairing. The difference of the damping appears only at
low ω and T . In particular, the damping for the s-wave gap at
T = 0 disappears at ω < 2�0 � 4kBTc = 0.1t , while for the
d-wave gap it vanishes at ω � �0 � 0.05t . A weak damping
was obtained also for the normal state shown in Fig. 1(c) when
the contribution from the superconducting gap functions in

FIG. 1. Spin-excitation damping �(Q,ω) for δ = 0.2 at T � Tc

for (a) the d-wave and (b) the s-wave pairing, and (c) in the normal
state.

the self-energy �′′
t (Q,ω), Eq. (25), is omitted. The similar

smooth variation of the damping with energy in all three cases
below Tc, contrary to the steplike dependence obtained in the
particle-hole bubble approximation (see below), demonstrates
that the superconducting gap plays a minor role in suppressing
the damping, and the gap ω̃Q in the spin-excitation spectrum
is responsible for such peculiar behavior.

For lower doping, the damping becomes an order of
magnitude weaker, as shown in Fig. 2 at δ = 0.09, even
above Tc (T = 1.4Tc). For comparison with results obtained in
the fermion-bubble approximation, we calculate the damping
also for a more general electron dispersion, εq = −4t γq +
4t ′ γ ′

q − 4t ′′ γ ′′
q − μ, taking into account hopping between

next- and third-nearest neighbors, t ′ and t ′′, respectively,
where γ ′

q = cos qx cos qy and γ ′′
q = (1/2)(cos 2qx + cos 2qy).

In Fig. 2 the damping at T = 0 for the parameters t ′/t = 0.37
and t ′′/t = 0.1, proposed in Ref. 18 for the electron dispersion
in the antibonding band in YBCO6.6, is shown by the dashed
line. The difference between the damping calculated for the
electron dispersion εq = −4t Q γq − μ in Eqs. (22) and (23)
and the more general one with nonzero parameters t ′ and t ′′
is negligible. This proves that the shape of the FS and the
electron dispersion are unessential factors in our theory. To
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FIG. 2. Spin-excitation damping �(Q,ω) for δ = 0.09 for the
d-wave pairing at T = 0 (solid line), T = Tc (dotted line), and
T = 1.4Tc (dash-dotted line). The damping at T = 0 for the electron
dispersion with t ′/t = 0.37 and t ′′/t = 0.1 is shown by the dashed
line.

describe the electron-doped cuprates within the t-J model,
we should change the signs of the hopping parameters tij in
Eq. (1), in particular, −t → t > 0. This replacement does not
change the obtained results and, therefore, the theory can be
also applied to the electron-doped cuprates with a proper fit of
model parameters.

Sometimes, the RM observed above Tc in the underdoped
cuprates is related to a pseudogap in the electronic spectrum
(see, e.g., Ref. 4). We propose another explanation: The
RM above Tc is the result of the gapped spin excitations in
the self-energy (25) leading to a very weak damping in the
underdoped region, which is outlined in more detail below.
This explanation is supported by studies of the spin-excitation
damping �q = −(1/2) �′′

t (q,ω = ω̃q) at T = 0 shown in
Fig. 3. The small difference between the damping in the

FIG. 3. Spin-excitation damping �q for (a) δ = 0.2 and
(b) δ = 0.09 at T = 0 for the d-wave pairing (solid line) and in the
normal state (dashed line).

FIG. 4. Spectral function χ ′′(Q,ω) for the d-wave and s-wave
pairing in comparison with the normal state at T = 0.4Tc for δ = 0.2.

d-wave superconducting state and the normal state observed
for the full self-energy, Eq. (25) confirms that the supercon-
ducting gap does not play an essential role in suppressing the
damping �Q, in particular in the underdoped region. At the
same time, the sharp increase of �q away from the AF wave
vector Q explains the resonance character of spin excitations
at Q.

Although the damping in Fig. 1 looks similar, the spectral
functions shown in Fig. 4 for δ = 0.2 at T = 0.4Tc reveal
a strong enhancement of the intensity of the RM in the
superconducting state. In comparison to the normal state,
where the contribution from the superconducting gap is
omitted, the peak intensity is about two (five) times larger
for the d- (s-) wave symmetry of the gap.

Quite a different behavior of the damping and the spectral
function is obtained for the reduced self-energy, Eq. (26),
with a contribution only from a particle-hole bubble. Figure 5
shows our results for the spectral function χ ′′(q,ω) and for
the damping �(Q,ω). To compare these functions with those
calculated in Ref. 38, we adopt the electron dispersion used in
Ref. 38, εeff

q = −4 teffγq − 4 t ′eff cos qx cos qy with teff = 0.3t

and t ′eff = −0.1t , and take the gap parameter �0 = 0.1t . The
obtained results are quite close to those shown in Fig. 1 of
Ref. 38 [where χ ′′

zz(q,ω) = (1/2)χ ′′(q,ω) is plotted]. At T =
0, we observe a much narrower RM, but with a lower intensity
in comparison with the RM calculated with the full self-energy,
Eq. (25), as shown in Fig. 6. The energy Er of the RM shown
in Fig. 5(a) noticeably decreases with increasing temperature,
in contrast to the negligible shift of the RM shown in Fig. 6 for
T = 0.4Tc. This comparison demonstrates that in the particle-
hole bubble approximation the superconducting gap plays a
crucial role in the occurrence of the RM with Er(T ) < 2�(T ),
while in the full self-energy (25) the superconducting gap
and details of the electron dispersion are less important. In
particular, for the underdoped case δ = 0.09 we have not found
visible changes of the damping function shown in Fig. 2 for
the electron dispersion with t ′ = 0 and t ′ = −0.1t . For the
reduced self-energy, Eq. (26), the damping vanishes for both
types of dispersion in the underdoped region, and in order to
obtain a finite damping at δ = 0.1 in Ref. 38 (see Fig. 2), the
authors have to use the electron density of states in the damping
function [see their Eq. (20)] instead of the q-dependent electron
spectral functions.

This difference can be explained as follows. Whereas in
the particle-hole bubble approximation given by Eq. (26) the
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FIG. 5. (a) Spectral function χ ′′(Q,ω) and (b) spin-excitation
damping �(Q,ω) calculated in the particle-hole bubble approxima-
tion, Eq. (19), at δ = 0.2 for the d-wave pairing (�0 = 0.1t taken
from Ref. 38) at T = 0 (solid line) and T = 0.4Tc (dotted line), and
for the normal state at T = 0 (dashed line) and T = Tc (dash-dotted
line).

spin excitation with the energy ω at the wave vector Q can
decay only into a particle-hole pair with the energy ω(Q) =
EQ+q + Eq, in the more general process described by Eq. (25)
an additional spin excitation participates in the scattering. In
the limit T → 0, the decay process is governed by another
energy-conservation law, ω(Q) = Eq3 + Eq1 + ω̃q2 , where the
largest contribution from the spin excitation comes from
ω̃q2 � ω̃Q due to the factor m(q2), Eq. (14), in Eq. (25).
This energy-momentum conservation law strongly reduces
the phase space for the decay and suppresses the damping
of the initial spin excitation with energy ω(Q). In fact, the
occurrence of an additional spin excitation in the scattering
process with the finite energy ω̃Q plays a role similar to
the superconducting gap in the excitation of the particle-hole
pair in Eq. (26). Therefore, the damping at low temperatures

FIG. 6. Temperature dependence of the spectral function
χ ′′(Q,ω) at δ = 0.2.

(kBT � ω̃Q ∼ Er) appears to be small even in the normal
state as demonstrated in Fig. 1(c). In the case of particle-hole
relaxation, the condition for the occurrence of the RM,
ω(Q) = Eq+Q + Eq � 2�(q∗), imposes a strong restriction
on the shape of the FS, which should cross the AF Brillouin
zone to accommodate the scattering vector Q and the vector
q∗ on the FS. In the case of the full self-energy, Eq. (25), the
energy-momentum conservation law for three quasiparticles
does not impose such strong limitations.

C. Resonance mode

Experimentally, the RM energy Er decreases with under-
doping following the superconducting transition temperature,
Er � 5.3kBTc, but only weakly depends on temperature (see,
e.g., Refs. 2 and 4). Now we discuss the temperature and
doping dependence of the RM and its dispersion within our
theory for the d-wave pairing.

The temperature dependence of the spectral function in the
overdoped case δ = 0.2 is shown in Fig. 6. It has high intensity
at low temperatures, but strongly decreases with temperature
and becomes very broad at T ∼ Tc as found in experiments (see
Ref. 1). In Fig. 7 the temperature dependence of the spectral
function for the underdoped case δ = 0.09 is plotted. Whereas
the resonance energy decreases with underdoping, the intensity
of the RM greatly increases in accordance with experiments.
The RM energy weakly depends on temperature and is still
quite visible at T = Tc and even at T = 1.4Tc.

The dispersion of the spectral function for δ = 0.2 is shown
in Figs. 8 and 9. A strong suppression of the spectral-function
intensity away from Q = π (1,1) even at T = 0 explains the
resonance-type behavior of the function at low temperatures.
This suppression of the intensity is in accord with the sharp
increase of the damping away from Q shown in Fig. 3. As can
be seen from Figs. 8 and 9, we obtain an upward dispersion
of the resonance energy �(Q + q). Our numerical results may
be well fitted by the quadratic dispersion law for small wave
vectors, (qx,qy) � 0.2π ,

�(Q + q) = [
E2

r + c2
(
q2

x + q2
y

)]1/2
, (27)

where Er/t = 0.12 (0.09) and c/at = 0.36 (0.45) for δ =
0.2 (0.09). In the conventional units we obtain Er =
38 meV, c = 425 meV Å for δ = 0.2 and Er = 28 meV,
c = 545 meV Å for δ = 0.09, where we take a = 3.82 Å and
t = 313 meV. Note that the quadratic dispersion was reported

FIG. 7. Temperature dependence of the spectral function
χ ′′(Q,ω) at δ = 0.09.
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FIG. 8. Spectral function χ ′′(q,ω) for the wave vectors (a) q =
π (1,ξ ) and (b) q = π (ξ,ξ ) at T = 0 for δ = 0.2.

in several papers. For example, the dispersion (27) was found
in Ref. 15 for the acoustic mode in YBCO6.5 (δ = 0.09)
with the parameters Er = 33 meV and c � 360 meV Å which
qualitatively agrees with our results.

We have not found the downward dispersion at energies
below the RM detected in neutron-scattering experiments, for
example, on YBCO6.5 (Ref. 15) and on YBCO6.6 (Refs. 16
and 17). However, as argued in Ref. 15, two distinct regions
of spin excitations may be suggested: a low-energy part below
Er ≈ 33 meV, which can be described as incommensurate
stripelike collective spin excitations for the acoustic mode,
and a high-energy part, which has a spin-wave character.
The high-energy part of the spin excitations has an isotropic
in-plane dispersion while the low-energy excitations show a
one-dimensional character. The different nature of the two
parts of the spectrum is also revealed in their temperature
dependence: the low-energy acoustic part of the spectrum
is strongly influenced by the superconducting transition,

FIG. 9. Spectral function χ ′′(q,ω) near the wave vector Q =
π (1,1) at T = 0 for δ = 0.2.

FIG. 10. Real part of the self-energy �′(Q,ω) for the d-wave
pairing in comparison with the normal state at T = 0 for δ = 0.2.

while the high-energy part of the spectrum does not change
appreciably with temperature up to 85 K. Similar differences
between the upward and downward dispersions were found in
Refs. 16 and 17.

The downward dispersion of the lower-energy part of
the spectrum was explained within the stripelike models, as
discussed in the Introduction. It was also found for a Fermi-
liquid model in the RPA approach (see, e.g., Ref. 24) or, for
the t-J model, within the particle-hole bubble approximation
(see Refs. 36,40,42). The dispersion was explained by a
special wave-vector dependence of the particle-hole bubble
diagram related to the wave-vector dependence of the dx2−y2

superconducting gap and to a 2D FS that is specific to cuprates.
Since in our theory beyond the RPA the RM energy does
not critically depend on specific properties of the FS and
the superconducting gap, the downward dispersion cannot
be found. To discuss this problem in detail, the role of
stripe excitations in the spin-excitation spectrum should be
elucidated.

Now we discuss the doping dependence of the RM energy
Er(δ). At low temperatures, the real part of the self-energy
�′(Q,ω) < 0 is quite large as shown in Fig. 10. This
considerably softens the energy of spin excitations ωQ in the
GMFA, Eq. (10), shifting the pole of the spectral function
χ ′′(Q,ω) to a lower energy: ω̃Q = [ω2

Q − ω̃Q |�′(Q,ω̃Q)|]1/2 .
Experimentally, the RM energy is measured by the posi-
tion Er of the maximum in the spectral function χ ′′(Q,ω)
which deviates from ω̃Q due to the finite width of the
excitations. In Fig. 11 the doping dependence Er(δ) in the
superconducting state at T = 0 determined by the maximum
of the spectral function is plotted. Thereby, for the doping
dependence of �0(δ) = 1.76 Tc(δ) we used the universal
empirical formula Tc(δ) = Tc,max [1 − β (δ − δopt)2],62 where
δopt = 0.16, Tc,max = 93 K, and the value of β = 75 was
fitted to obtain Tc = 59 K for δ = 0.09 in YBCO6.5.14 With
decreasing δ, Er decreases, which qualitatively agrees with the
experimental data. The energy of the RM tends to zero at the
critical doping δc = 0.038, below which the long-range AF
order emerges at T = 0, as we have shown in Ref. 45. So, in
our scenario the RM is just the soft mode which brings about
the long-range AF order below the critical doping.

Experimentally, in the overdoped region the RM energy
decreases with increasing doping (see Fig. 11 and, e.g.,
Ref. 31), while in our theory Er tends to increase due to
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FIG. 11. Energy of the resonance mode Er at T = 0 as a function
of hole doping δ in comparison with experimental data for YBCO
from Ref. 2 (open circles), Ref. 4 (full squares), and Refs. 1 and 14
(full circles).

the increasing energy ω̃Q. The agreement with experiments
in Fig. 11 can be improved in the optimally doped region,
δ � 0.2, if we change the parameter t to t = 0.4 eV instead
of the adopted value t = 0.313 eV. We also note that in the
approach of Ref. 38 a too large superconducting gap �0 ∼ 0.1t

(in comparison with our value �0 ∼ 0.044t) has to be taken
to fit the RM energy to the experimentally observed one.

In Fig. 12 we compare our results with the neutron-
scattering data for the nearly optimally doped YBCO6.92 single
crystal1 at T = 5 and 100 K. In this sample, Tc = 91 K
and the RM energy Er � 40 meV= 5.1kBTc > 2 �0 [taking
2�0(δ) = 3.52 kBTc(δ) we have Er � 2.9�0]. For δ = 0.2, our
calculations yield Er = 0.12t = 38 meV= 4.8kBTc = 2.7�0

(t = 0.313 eV, kBTc = 0.025t ; see Sec. III A). Concerning the
heights of the peaks, the scale of the experimental data, given
in arbitrary units, was adjusted by fitting only the peak height
at T = 5 K to our result at the same temperature.

In Fig. 13 our results are compared with the experimental
data for the underdoped ortho-II YBCO6.5 single crystal with
Er = 33 meV= 6.5 kBTc = 3.7�0 at T = 8 and 85 K (see
Fig. 14 in Ref. 14). For δ = 0.09, our theory gives Er =
0.09t = 28 meV= 5.6 kBTc = 3.2�0. Here, the experimental
peak heights were also scaled by fitting only the peak height
at T = 8 K to our result at the same temperature. We note a
weak temperature dependence of the RM energy observed
experimentally and obtained in our calculation. In both

FIG. 12. Spectral function χ ′′(Q,ω) for doping δ = 0.2 compared
to experimental data for YBCO6.92, Ref. 1, at T = 5 K (squares) and
T = 100 K (circles).

FIG. 13. Spectral function χ ′′(Q,ω) for doping δ = 0.09 com-
pared to experimental data for YBCO6.5, Ref. 14, at T = 8 K (squares)
and T = 85 K (circles).

compounds the RM energy is larger than the superconducting
excitation energy, 2�0, while in the spin-1 exciton scenario the
RM energy Er has to be less than 2�0. So we obtain a good
agreement of our theory with neutron-scattering experiments
on YBCO crystals both near the optimal doping and in the
underdoped region.

It is also interesting to compare our results with the recent
detailed experimental study of the spin-excitation spectrum
reported in Refs. 16 and 17 for the twin-free YBCO6.6 crystal
with Tc = 61 K at hole doping δ = 0.12. For that, we calculate
the spectral function χ ′′(q,ω) for the same hole doping and

FIG. 14. Spectral function χ ′′(q,ω) for q = π (qx,1) at doping
δ = 0.12 and energies ω/Er = 1 (bold line), 1.24 (dashed line), and
1.58 (dotted line) at (a) T = 0 and (b) T = 70 K (in units of t =
0.4 eV).

024411-10



DYNAMIC SPIN SUSCEPTIBILITY OF . . . PHYSICAL REVIEW B 83, 024411 (2011)

Tc. From the experimental value ωr = 38 meV and damping
� = 11 meV we calculate Er = 36.4 meV.63 To get agreement
with the theoretical value Er = 0.091t we adopt t = 0.4 eV,
as also inferred from the angle-resolved photoemission spec-
troscopy data in YBCO6.6.18 For the upper branch of spin exci-
tations above the RM we obtain a quadratic dispersion given by
Eq. (27), whereas in Ref. 17, Eq. (11), the dispersion was fitted
by a quartic power law.

For a more detailed comparison of the RM dispersion with
the experimental data in Ref. 17 for the upper branch, in
Fig. 14 we present the spectral function χ ′′(q,ω) at T = 0
and T = 70 K for the wave vectors q = π (qx,1) at energies
ω/Er = 1, 1.24, and 1.58 which, putting Er = ωr, corresponds
to ω = 38, 47, and 60 meV in Ref. 17. The damping of the RM
in our theory strongly depends on q as shown in Fig. 3, whereas
in Ref. 17 the damping was taken to be q independent, � =
11 meV. In our calculations we get a much smaller damping:
�Q = 0.0034t � 1.4 meV at T = 0. These differences result
in much sharper spectral functions in our theory in comparison
with the experimental data.17 In particular, the half width at
half maximum at q = Q = π (1,1) equals �q = 0.021π in
Fig. 14(a) and �q = 0.038π in Fig. 14(b), in comparison
with the values �q ≈ 0.2π at T = 5 K and �q ≈ 0.24π at
T = 70 K in Fig. 3 of Ref. 17, which are about 7–8 times larger
than our results. We believe that the difference in the damping
may be explained by impurity scattering due to a disorder in
the chains in the YBCO6.6 sample or by an inhomogeneity
produced by dynamical stripe fluctuations. The latter may
be also the reason that we have not found a change of the
dispersion topology above Tc as observed in Ref. 17, which was
related to the appearance of an electronic liquid-crystal state.

IV. CONCLUSION

A detailed study of the DSS in the superconducting state has
revealed the important role of the spin-excitation damping in
the RM phenomenon. We have found that the low-temperature
damping essentially depends on the gap ω̃Q � Er in the
spin-excitation spectrum at the AF wave vector Q, while the
opening of a superconducting gap 2�(T ) below Tc is less
important. Since the energy of the RM Er ∼ 5 kBTc does not
show temperature dependence, at T � Tc, the spin gap at Er

plays the dominant role in the suppression of damping, since
the superconducting energy 2�(T � Tc) � Er. This follows
from Eq. (25) for the self-energy, where in the decay of a spin
excitation, besides a particle-hole pair, the contribution from
an additional spin excitation is taken into account. This is in
contrast to the particle-hole bubble approximation in Eq. (26)
which is used in the RPA (see, e.g., Refs. 24,36) and in similar
approximations in memory-function theories.38,40,42 In those
approximations, the spin-excitation damping is much larger
in the normal state and reveals a spin gap only at T � Tc,
where the RM appears (see Fig. 5). The gapped spin-excitation
spectrum in the full self-energy (25) greatly suppresses the
damping at T = 0, which results in a comparable damping
both in the superconducting state (either of d-wave or s-wave
symmetry) and in the normal state, as demonstrated in Figs. 1
and 3. The damping is strongly decreasing in the underdoped
region (see Figs. 2 and 3), bringing about a much stronger RM
seen also above Tc (Fig. 7).

The weak temperature dependence of the RM in cuprates
can be contrasted with the magnetic RM in iron arsenide
superconductors. In particular, a perfect scaling of the RM
energy with the superconducting gap below Tc = 25 K
observed in the BaFe1.85Co0.15As2 crystal64 supports the spin-1
exciton scenario expected in AF metals where the SDW
instability determines the spin-excitation spectrum. In contrast
to iron arsenides, strong electron correlations in cuprates lead
to a large AF exchange interaction between localized copper
spins that results in temperature-independent spin-wave-like
excitations. A scenario of preformed Cooper pairs in cuprates,
which may also explain a weak RM temperature dependence,
seems to contradict experiments (for discussions, see Ref. 5).

With decreasing hole concentration the energy of the RM
decreases and shows a dependence close to that observed
in neutron-scattering experiments, Er ∼ 5kBTc (see Fig. 11).
Due to the important role of gapped spin excitations in the
damping of the RM, its energy Er does not critically depend
on the superconducting gap energy 2�(T ) and hence on
temperature and peculiarities of the electronic spectrum in
cuprates, contrary to the theories based on the RPA (see, e.g.,
Refs. 24 and 36). In particular, Er is found to be larger than
2�0 as observed in experiments (see Figs. 12 and 13).

It should be stressed that the damping of the RM in our
microscopic theory within the t-J model is determined by the
kinematical interaction induced by the kinetic energy t of
electrons moving in a singly occupied Hubbard subband. This
interaction is absent in conventional fermion models in which
strong electron correlations are neglected and the spin-electron
scattering is determined by a phenomenological interaction
with a coupling constant as a fit parameter.

Finally, let us note that our approach, using the MFA for
the electronic spectral functions, Eqs. (22) and (23), in the
computation of the self-energy (25), has to be considered as
a first step toward a fully self-consistent theory of the DSS
in the t-J model. However, we believe that the consideration
of more accurate fermionic GFs in Eqs. (16) and (17) beyond
the Hubbard-I approximation (see, e.g., Ref. 65) should not
change our main conclusions, since the electron dispersion, as
shown in Fig. 2, does not play an essential role in our theory
in contrast to the spin-exciton scenario.
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APPENDIX: MODE-COUPLING APPROXIMATION

To calculate the self-energy (4) we use the MCA for
the time-dependent multiparticle correlation function which
appears in the spectral representation of the relaxation function

�′′(q,ω) = − 1

2ω m(q)
[I (q, − ω) − I (q,ω)],

(A1)

I (q,ω) =
∫ ∞

−∞
dt eiωt 〈 S̈−

q |S̈+
−q(t)〉proper,
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where

−S̈+
i = [[S+

i ,(Ht + HJ )] ,(Ht + HJ )] ≡
∑

α

F α
i (A2)

determines the force correlation functions of the force opera-
tors Fα

i denoted by the index α = t t,tJ,J t,JJ . As discussed
in Ref. 45, at the sizable doping δ ∼ 0.1 considered in this
paper, only the term F tt

i can be taken into account, since all
other terms give negligible contributions. For this term we have

F tt
i =

∑
j,n

tij {tjn[H−
ijn + H+

nji] − tin[H−
jin + H+

nij ]},
(A3)

Hσ
ijn = Xσ0

i X+−
j X0σ

n + X+0
i

(
X00

j + Xσσ
j

)
X0−

n .

Following the reasoning of Ref. 45, in Eq. (A3) only products
of operators on different sites are taken into account. After
Fourier transformation to the q space we obtain the force-force
correlation function〈[

F tt
q

]†∣∣F tt
q (t)

〉 = (2t)4
∑
q1,q2

∑
q′

1,q
′
2

〈[

q′

1,q
′
2,q

′
3
H−

q′
1,q

′
2,q

′
3

+
q′
3,q

′
2,q

′
1
H+

q′
1,q

′
2,q

′
3

]†∣∣[
q1,q2,q3 H−
q1,q2,q3

(t)

+
q3,q2,q1 H+
q1,q2,q3

(t)]
〉
, (A4)

where q3 = q − q1 − q2 and q′
3 = q − q′

1 − q′
2. Here we

introduce the vertex function


q1q2q3 = 4(γq3+q2 − γq1 ) γq3 + γq2 − γq1+q3 , (A5)

where the terms linear in γq reflect the exclusion of terms in
F tt

i with coinciding sites.
In the MCA we assume that the propagation of electronic-

and bosonic-type excitations at different lattice sites in
Eq. (A3) occurs independently, which results in the decoupling
of the correlation function (A4) into the corresponding single-
particle time-dependent correlation functions. As it turned out
by numerical evaluations (see also Ref. 45), the contribution
from the charge excitations given by (X00

j + Xσσ
j ) in Eq. (A3)

can be neglected in comparison with the spin-excitation

contribution given by X+−
j = S+

j . In this approximation we
obtain the spin-diagonal correlation functions for the normal
state 〈[

Hσ
q′

1,q
′
2,q

′
3

]† ∣∣ Hσ
q1,q2,q3

(t)
〉

= 〈
Xσ0

q′
3
S−

−q′
2
X0σ

q′
1

∣∣ Xσ0
q1

(t)S+
q2

(t)X0σ
q3

(t)
〉

= 〈
X0σ

q1
Xσ0

q1
(t)

〉 〈S−
−q2

S+
q2

(t)〉 〈
Xσ0

q3
X0σ

q3
(t)

〉
× δq1,q′

1
δq2,q′

2
δq3,q′

3
. (A6)

In the superconducting state we additionally take into account
pair correlation functions which appear in the spin off-diagonal
terms, 〈[

Hσ̄
q′

1,q
′
2,q

′
3

]† | Hσ
q1,q2,q3

(t)
〉

= 〈
Xσ̄0

q′
3
S−

−q′
2
X0σ̄

q′
1

∣∣Xσ0
q1

(t)S+
q2

(t)X0σ
q3

(t)
〉

= −〈
X0σ̄

−q3
X0σ

q3
(t)

〉 〈S−
−q2

S+
q2

(t)〉 〈
Xσ̄0

−q1
Xσ0

q1
(t)

〉
× δq1,−q′

3
δq2,q′

2
δq3,−q′

1
. (A7)

By substituting the MCA correlation functions (A6) and
(A7) in Eq. (A1) we obtain the multiparticle correlation
function

I (q,ω)=
∫ ∞

−∞
dteiωt 1

N2

∑
q1,q2

〈S−
−q2

S+
q2

(t)〉

×[(

2

q1,q2,q3
+ 
2

q3,q2,q1

)〈
X0σ

q1
Xσ0

q1
(t)

〉〈
Xσ0

q3
X0σ

q3
(t)

〉
−
q1,q2,q3
q3,q2,q1

∑
σ

〈
Xσ̄0

−q1
Xσ0

q1
(t)

〉〈
X0σ̄

−q3
X0σ

q3
(t)

〉]
.

(A8)

Using the spectral representation for the time-dependent
correlation functions (see, e.g., Ref. 59)

〈BA(t)〉 =
∫ ∞

−∞
dω e−iωtf (ω)[−(1/π )]Im〈〈A|B〉〉ω, (A9)

where f (ω) is the Fermi (Bose) function n(ω) [N (ω)], after
integration over time t we derive Eq. (15).
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