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Quantum spin Hall, triplet superconductor, and topological liquids on the honeycomb lattice
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We classify the order parameters on the honeycomb lattice using the SO(4) symmetry of the Hubbard model.
We focus on the topologically nontrivial quantum spin Hall order and spin triplet superconductor, which together
belong to the (3,3) representation of the SO(4) symmetry. Depending on the microscopic parameters, this (3,3)
order parameter has two types of ground states with different symmetries: type A, with ground-state manifold
[S2 ⊗ S2]/Z2, and type B, with ground-state manifold SO(3) ⊗ Z2. We demonstrate that phase A is adjacent to
a Z2 ⊗ Z2 topological phase with mutual semion statistics between spin and charge excitations, while phase B is
adjacent to a nonabelian phase described by SU(2) Chern–Simons theory. Connections of our study to the recent
quantum Monte Carlo simulation on the Hubbard model on the honeycomb lattice are also discussed.
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I. INTRODUCTION AND SYMMETRY

We consider a class of (extended) Hubbard models on a
bipartite lattice at half filling, with the following form:

H =
∑

〈i,j〉,σ
−tc

†
i,σ cj,σ + H.c. + Uni,↑ni,↓ + H ′,

H ′ =
∑

i∈sA, j∈sB

tij c
†
i,σ cj,σ + H.c.

(1)
+

∑
i,j

Jij
	Si · 	Sj + Vij

	Ti · 	Tj + · · · ,

	Ti = [(−1)iRe[�]i , (−1)iIm[�]i , ni − 1],

where 	Si = 1
2c

†
i 	σcj is the spin operator and �i = ct

i iσ
yci is the

on-site spin singlet Cooper pair. This extended Hubbard model
has a manifest SU(2) spin symmetry. However, if electrons
only hop between two different sublattices (sublattice A and B,
denoted as sA and sB), after a sublattice-dependent particle-
hole transformation for spin down electrons,

ci,↓ → (−1)ic†i,↓, (2)

the Hamiltonian is almost unchanged except that U changes
sign and Jij switches with Vij . This implies that in addi-
tion to the apparent SU(2)spin symmetry, this model also
has an SU(2)charge symmetry that mixes [ci,↑,(−1)ic†i,↓].
Therefore the full symmetry of this extended Hubbard
model is1,2

SO(4) ∼ [SU(2)spin ⊗ SU(2)charge]/Z2, (3)

for arbitrary parameters in Eq. (1). For instance, this SO(4)
symmetry holds for the simplest Hubbard model with only
on-site Hubbard interaction and nearest-neighbor electron
hopping.

Since the SO(4) symmetry is the full symmetry of the
extended Hubbard model, Eq. (1), on any bipartite lattice,
all the order parameters should be classified in terms of the
representations of the SO(4) Lie algebra. In this work we
take the honeycomb lattice as an example. Using the notation
introduced in Ref. 3, we expand the electron at two Dirac
valleys by d1,2 = ei 	Q1,2·	rc [where 	Q1,2 = ±(4π/3

√
3,0) are

the wave vectors of the valleys] and introduce Pauli matrices

τα and μα which act on the sublattice and valley spaces,
respectively. Then, after introducing real Majorana fermions
ζa as the real and imaginary parts of ei π

4 τ x

ei π
4 μx

(d1,iτ
yd2)t ,

we obtain the continuum Lagrangian for the semimetal
phase:

L0 =
8∑

a=1

ζ̄aγμ∂μζa. (4)

Here μ is a 2 + 1-dimensional space-time index, and the
Dirac γ matrices are (γ0,γ1,γ2) = τ y,τ z,τ x , ζ̄ = ζ tγ 0. Using
this notation, in the low-energy field theory, the SU(2)spin

and SU(2)charge symmetries are generated by the following
matrices:3

Sx = σxρy, Sy = σy, Sz = σ zρy,
(5)

T x = σyρz, T y = σyρx, T z = ρy.

Here σa are spin Pauli matrices, while ρa are Pauli matrices
that mix the real and imaginary parts of the electron. Notice
that SU(2) ⊗ SU(2) is a double covering of SO(4), which leads
to the Z2 in Eq. (3).

Based on the symmetry Eq. (3) and the Lie algebra
Eq. (5), the spin and charge are dual to each other for a
large class of the extended Hubbard model. This spin-charge
duality leads to many interesting results in our paper. The
structure of this paper is as follows: in Sec. II, we show
that the two types of topological orders, the quantum spin
Hall (QSH) order and the triplet superconductor (T-SC) are
unified as one representation of the SO(4) group, and the
Ginzburg–Landau theory gives two types of ground states with
different symmetry breakings. Sections III and IV study the
phase diagrams driven by proliferating the topological defects
in the two types of orders described in Sec. II, respectively. In
both Secs. III and IV, we first give an argument of the phase
diagram based on the quantum numbers of the topological
defects; then a more solid description based on the Majorana
liquid formalism developed in Ref. 3 is presented, and the
results from these two approaches match perfectly with each
other. Section V discusses the situation with SU(2)charge broken
down to U(1)charge symmetry.
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II. SO(4) CLASSIFICATION AND GINZBURG–LANDAU
FORMALISM

Using the SO(4) algebra in Eq. (5), we classify the
order parameters which immediately open up a mass gap
for the Dirac fermion in the semimetal phase. Some simple
Dirac mass gap order parameters can be classified with
these symmetries straightforwardly. For instance, the quantum
Hall order parameter ζ̄ ζ is a (1,1) representation of SO(4);
i.e., it is a singlet of both SU(2) symmetries. The two
sublattice Néel order Na = ζ̄ Saμyζ is a (3,1) representation.
The fermion bilinear Ma = ζ̄ T aμyζ , which belongs to the
(1,3) representation, is a two sublattice charge-density wave
(CDW) and s-wave superconductor: Mz ∼ (−1)i(ni − 1) and
Mx + iMy ∼ ct

i iσ
yci . Ma can be viewed as the spin-charge

dual version of Na . In the simplest Hubbard model, Na and Ma

orders can be realized in the two limits U 
 |t | and −U 
 |t |,
respectively.

Now we discuss the following order parameters which
belong to the (3,3) representation of SO(4):

Qab = ζ̄Aabζ,
(6)

Aab = T aSb =

⎛
⎜⎝

−σ zρx ρz σ xρx

σ zρz ρx −σxρz

σ x σ yρy σ z

⎞
⎟⎠ .

This 3 × 3 matrix Qab has SO(3)left and SO(3)right transforma-
tions, which correspond to SU(2)charge and SU(2)spin symmetry,
respectively. Q3b corresponds to the QSH vector,4,5 while
Q2b + iQ1b is the spin triplet pairing between next-nearest-
neighbor sites:

Q3b ∼
∑

j∈sA, a=1,2,3

ic
†
j σ

bcj+ea
+ H.c. − (sA → sB),

Q2b + iQ1b ∼
∑

j∈sA, a=1,2,3

ict
j iσ

yσ bcj+ea
+ (sA → sB).

(7)

e1 = √
3x̂, e2, and e3 = −

√
3

2 x̂ ± 3
2 ŷ are three vectors on

the honeycomb lattice that connect next-nearest-neighbor
sites (Fig. 1). Therefore the two types of topological order
parameters, QSH and T-SC, are unified through the SO(4)
symmetry. Under time-reversal symmetry T , Q3b and Q2b

are even, while Q1b is odd. Under reflection symmetry
Px : y → −y, Q1b and Q2b are even, while Q3b is odd; under
Py : x → −x, all components of Qab are odd.

3

e
e

e

1

2

FIG. 1. (Color online) Honeycomb lattice and the vectors ea .

The low-energy dynamics of Qab can be described by the
following Ginzburg–Landau field theory:

LQ = tr[∂μQt∂μQ] + r(tr[QtQ]) + g(tr[QtQ])2

+u(tr[QtQQtQ]) + · · · . (8)

The first three terms have an enlarged SO(9) symmetry
which corresponds to the rotation between the nine order
parameters in matrix Q; while the last term, u, breaks this
SO(9) symmetry down to the SO(4) symmetry. Another term
Det[Q] is also invariant under SO(4) transformation, but
Det[Q] breaks the time-reversal and reflection symmetry of
the honeycomb lattice; therefore Det[Q] is forbidden in the
Lagrangian equation, Eq. (8). However, if the system already
breaks the time-reversal and reflection symmetry (for instance,
〈ζ̄ ζ 〉 �= 0), Det[Q] would be allowed.

In Eq. (8), when r < 0, Q is ordered, and the SO(4)
symmetry is broken down to its subgroups. Depending on
the sign of u, there are two types of ground states as follows.

Type A, u < 0. One example state of this phase is 〈Q33〉 �= 0,
and all the other components 〈Qab〉 = 0. In this phase the
SO(4) symmetry is broken down to its following subgroup:

[U(1)spin ⊗ U(1)charge ⊗ Z2]/Z2. (9)

The U(1)spin and U(1)charge symmetry are generated by matrices
Sz and T z in Eq. (5). The Z2 in the numerator corresponds to
reversing the direction of Sz and T z simultaneously, while
keeping Q33 invariant. The Z2 in the denominator is the same
Z2 as in Eq. (3), which corresponds to changing the sign of
electron operator. The ground-state manifold (GSM) of this
phase is

GSM ∼ [
S2

spin ⊗ S2
charge

]/
Z2. (10)

The ground state can be described by two independent unit
vectors 	Ns and 	Nc which belong to the (3,1) and (1,3)
representation of SO(4), respectively, and Qab = Na

c Nb
s . This

phase has four independent Goldstone modes. The Z2 in
Eq. (10) is due to the fact that 	Ns and 	Nc can reverse direction
simultaneously, and the ground state remains invariant.

Type B, u > 0. One example state of this phase is 〈Q11〉 =
〈Q22〉 = 〈Q33〉 �= 0. The SO(4) group element Gso(4) can be
written as Gsu(2),spin ⊗ Gsu(2),charge, and the type B phase breaks
the SO(4) down to its subgroup with Gsu(2),spin = ±Gsu(2),charge.
This implies that the residual symmetry group elements
can be parametrized as ±Rs(θs,	ns) with θs ∈ (0,2π ), which
is equivalent to the diagonal subgroup SU(2)+ generated
by operators Ga = Sa + T a . Here Rs(θs,	ns) represents spin
rotation by angle θs about axis 	ns . The GSM of phase B is

GSM = (SO(4) ⊗ T )/SU(2)+ = SO(3) ⊗ Z2, (11)

with three Goldstone modes. T denotes the time-reversal sym-
metry, and type B phase spontaneously breaks T . Therefore
the GSM of phase B contains two disconnected sub-manifolds,
with positive and negative Det[〈Q〉], respectively.

The order of Q can be obtained through the following SO(4)
invariant interacting Lagrangian for Dirac fermions on the
honeycomb lattice:

L =
8∑

a=1

ζ̄aγμ∂μζa − gtr[QtQ]. (12)
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The interaction −gtr[QtQ] can be generated with SO(4)
invariant interaction on the lattice, for instance,

∑
�i,j
 	Si ·

	Sj ∼ −tr[QtQ]/8 + · · ·. A simple mean-field calculation
after the standard Hubbard–Stratonovich transformation of
Eq. (12) shows that the type A phase has more favorable
ground-state energy compared with the type B phase on the
honeycomb lattice. In the following we mainly focus on the
analysis on the type A phase.

III. PHASE DIAGRAM AROUND TYPE A PHASE

Now we hope to understand the topological defects and the
phase transitions driven by the topological defects in phase
A. We first give an argument about the phase diagram and
phase transitions using the quantum numbers carried by the
topological defects, and then a systematic description based
on the Majorana liquid formalism developed in Ref. 3 is
presented. We demonstrate that these two approaches match
very well.

A. Topological defects and phase transitions

In phase A, since the GSM is [S2 ⊗ S2]/Z2, both spin and
charge sectors can have skyrmion-like defects characterized
by the homotopy group π2[S2]. Again, let us assume that Q33

is the only component that acquires a nonzero expectation
value; then 〈Q33〉 breaks the SO(4) symmetry down to residual
symmetries generated by Sz and T z in Eq. (5). According to
Refs. 6–8, under our current assumption that 	Nc ‖ ẑ (Qab is
the QSH vector), a skyrmion of the spin sector manifold S2

spin
carries charge 2e, and a skyrmion current is identified as the
charge current:

Jμ = 2e

8π
εμνρ

∫
d2xεabcN̂

a
s ∂νN̂

b
s ∂ρN̂

c
s . (13)

For the same reason, a skyrmion of the charge sector manifold
will carry spin-1: Sz = 1. For a general state with 〈Qab〉 �= 0,
the spin-skyrmion carries the quantum number of the U(1)charge

residual symmetry, while the charge-skyrmion carries the
U(1)spin quantum number; i.e., spin and charge view each other
as topological defects.

The condensation of skyrmions with nontrivial quantum
numbers can lead to unconventional quantum phase tran-
sitions. For instance, the proposal of deconfined quantum
criticality is based on the observation that the skyrmion of the
Néel order carries lattice momentum;9–11 hence the condensate
of the skyrmion is equivalent to the valence bond solid state.
In our current case, since a charge-skyrmion carries spin-1,
if the charge-skyrmion is condensed, then the SU(2)charge

symmetry is fully restored, which implies that the condensate
of the charge skyrmion is a Mott insulator. Meanwhile, the
residual spin symmetry is further spontaneously broken down
to Z2 ⊗ Z2. One of these Z2 corresponds to changing the
sign of the electron; the other one corresponds to reversing the
direction of 	Ns . The GSM of the charge skyrmion condensate is

GSM = SU(2)spin/[Z2 ⊗ Z2] = SO(3)/Z2. (14)

We mod Z2 from SO(3), because after the proliferation
of charge skyrmion, 	Nc is completely disordered, and 	Ns

becomes a headless vector, due to the Z2 in Eq. (10).

How do we determine the order of the charge-skyrmion
condensate unambiguously? As was pointed out in Ref. 12,
the phase of the O(3) skyrmion condensate can be identified
as order parameters that share an O(5) Wess–Zumino–Witten
(WZW) term with the O(3) order parameter. Therefore, to un-
ambiguously identify the order of spin-skyrmion condensate,
we need to seek for order parameters that have an O(5) WZW
term with vector ϕa = Qab. It turns out that the Néel order
parameter 	N is the only candidate of the charge-skyrmion
condensate. For arbitrary b, we obtain the following WZW
term between ϕa = Qab and 	N ∼ χ̄μy 	Sχ :

L =
5∑

a=1

1

g
(∂μφa)2 − 3i

4π

∫
dud3xεabcdeφ

a∂x

×φb∂yφ
c∂τφ

d∂uφ
e,

φa = ϕa = χ̄T aSbχ, a = 1,2,3, (15)

φ4 = Nc ∼ χ̄μyScχ,

φ5 = Nd ∼ χ̄μySdχ, c,d �= b.

Therefore the charge-skyrmion condensate contains both
headless vector 	Ns and Néel order 	N , and 	Ns ⊥ 	N . Physically
the headless vector 	Ns corresponds to the spin nematic order
Sab = 3Na

s Nb
s − δab( 	Ns)2, which is invariant under reversing

the direction of 	Ns . All these results are confirmed later with
the Majorana liquid formalism.

Notice that manifold SO(3) is equivalent to the pro-
jected manifold S3/Z2, which gives us a convenient way of
parametrizing SO(3). Let us introduce SU(2) spinon zα with
constraint |z1|2 + |z2|2 = 1. This constraint implies that the
SU(2) spinon zα parametrizes S3. Then by coupling zα to a Z2

gauge field, the gauge invariant GSM of the condensate of zα

automatically becomes SO(3).13 The SO(3) manifold can also
be viewed as the manifold of all the configurations of three
perpendicular unit vectors: 	q1, 	q2, and 	q3. These three vectors
can be parametrized as

	q1 = z†σbz, 	q2 + i 	q3 = zt iσ yσ bz, (16)

which automatically guarantees the perpendicularity of these
vectors. In our situation, the three perpendicular vectors that
characterize the GSM are 	Ns , 	N , and 	Ns × 	N . Since 	Ns is
headless, the GSM is, in fact, SO(3)/Z2. And in Sec. III B we
demonstrate that it is most convenient to describe this GSM
by introducing a Z2 ⊗ Z2 gauge field.

Manifold SO(3) has the homotopy group π1[SO(3)] = Z2;
therefore phase B has a topologically stable half-vortex. Using
the CP(1) spinon description introduced in Eq. (16), this
half-vortex can also be viewed as the vison (a dynamical
π flux) of the Z2 gauge field coupled to zα . Pictorially, a
vison can be viewed as a configuration with (for instance)
	q1 being uniform in space, while 	q2 and 	q3 have a vortex.
Now since 	Ns and 	Ns × 	N are both headless vectors, this
state also supports a “half-vison,” where 	N is uniform, while
	Ns has a half-vortex in space. In fact, this half-vison has a

counterpart in phase A. Since phase A has GSM [S2 ⊗ S2]/Z2,
there exists a “double half-vortex,” and both 	Ns and 	Nc reverse
direction after encircling this double half-vortex. After phase A

is destroyed by proliferating the charge-skyrmion, this double
half-vortex becomes the half-vison of SO(3)/Z2.
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In the spin-charge dual side of the theory, all the conclusions
can be obtained by straightforward generalization. Once the
spin-skyrmion is condensed, the system will also enter a
phase with GSM SO(3)/Z2, and the SU(2)spin symmetry
is fully restored, which implies that the condensate of the
spin-skyrmion is a spin singlet. In Ref. 6, the authors proposed
that after the proliferation of skyrmions of the QSH vector,
the system enters a spin singlet s-wave superconductor. In
our situation, since there is a generic SU(2)charge symmetry,
the s-wave superconductor is promoted to a phase with GSM
SO(3)/Z2. If 	Nc ‖ ẑ (Qab is the QSH vector), the SO(3)/Z2

manifold is characterized with the headless vector 	Nc and an
s-wave superconductor. The order of the headless vector 	Nc

implies that the degeneracy between the CDW and the s-wave
superconductor is spontaneously lifted. In general, the order
after spin-skyrmion proliferation can also be determined with
the same WZW term analysis as in Eq. (15). A full list of order
parameters with WZW terms can be found in Ref. 14.

This skyrmion condensation transition is described by
the same CP(1) field theory as the deconfined quantum
criticality.10,11 How do we see the CP(1) transition directly?
The CP(1) model L = 1

g
|(∂μ − iAμ)z|2 describes a transition

between a condensate of spinon zα and a photon phase. The
spinon condensate has GSM S2, while the photon phase has
GSM S1, as it is a condensate of the U(1) gauge flux. In our
case the skyrmion condensation is a transition between [S2 ⊗
S2]/Z2 and SO(3)/Z2, while SO(3) can be roughly viewed
as S2 ⊗ S1; therefore, effectively the skyrmion condensation
is more or less also a transition between S2 and S1, so it is
equivalent to the CP(1) transition. This hand-waving argument
is made precise in the next subsection by the Majorana liquid
formalism.

Since a spin-skyrmion (charge-skyrmion) carries charge-
2e (spin-1), then the corresponding half-skyrmion (vortex)
will carry charge-e and spin-1/2, respectively. If a charge-e
excitation encircles around a spin-1/2 excitation bound with a
charge-vortex, the charge-e excitation will acquire a π phase
shift; on the other hand, if a spin-1/2 excitation encircles a
charge-e excitation bound with a spin-vortex, the spin-1/2
excitation will also gain a π Berry phase. This implies that in
phase A charge-e and spin-1/2 excitations have mutual semion
statistics.

In phase A, a vortex is not a local excitation, and the gapless
Goldstone mode of phase A makes the adiabatic braiding
between two excitations impossible; therefore the semion
statistics in phase A is not well defined. However, later we
will see that phase A is adjacent to a liquid phase where the
spin-charge mutual semion statistics persists, and it becomes
a well-defined property.

B. Phase diagram with Majorana liquid formalism

From now on we hope to understand the phase diagrams
discussed above with a more solid formalism. In Ref. 3, we
discussed a fractionalized phase of electrons by decomposing
ζ as follows:

ζ = ZsZc χ,

Zs = φs
0 + iφs

1S
x + iφs

2S
y + iφs

3S
z, (17)

Zc = φc
0 + iφc

1T
x + iφc

2T
y + iφc

3T
z.

The electron ζ decomposes into the bosonic fields Zs and
Zc carrying its spin and charge, respectively, and into the
Majorana fermion χ carrying the Fermi statistics. The resulting
theory has a SO(4)g = SU(2)s,g ⊗ SU(2)c,g gauge invariance:
Zs and χ carry SU(2)s,g charges, and Zc and χ carry SU(2)c,g
charges.

After the operator decomposition, when both Zs and Zc

are gapped out, one obtains the parent state, i.e., the algebraic
Majorana liquid (AML) state with Lagrangian

LAML = χ̄γμ

(
∂μ − iAa

s,μSa − iAa
c,μT a

)
χ. (18)

The fractionalized Majorana fermion χ fills the same mean-
field band structure as the physical Majorana fermion ζ .
The gauge fields Aa

s,μ and Aa
c,μ also couple to the spin and

charge SU(2) rotors Zs and Zc as well. Since χ no longer
carries physical spin and charge quantum numbers, the fermion
bilinears of χ can only break the gauge symmetry, but not
physical symmetry. If Zs or Zc condense, the formalism
reduces to the two standard slave particle formalisms, with
fermionic15 or bosonic spinons,9 respectively.

Now let us assume χ enters a type A phase; i.e., the matrix
field Q̃ab = χ̄Aabχ condenses. For instance let us take

〈Q̃33〉 = 〈χ̄σ zχ〉 �= 0. (19)

Although the fractionalized Majorana fermion χ fills the
same mean-field band structure as ζ , unlike the physical
QSH vector, nonzero 〈Q̃3b〉 breaks no discrete symmetries
(time-reversal, refection) when rotor fields Zs and Zc are
gapped. This is because the gauge symmetry released from
gapping out the rotor fields can always reverse the sign of
〈Q̃3b〉. This condensate of Q̃33 breaks the SU(2)s,g ⊗ SU(2)c,g
gauge invariance down to U(1)s,g ⊗ U(1)c,g gauge symmetry
generated by Sz and T z. Sometimes it will be convenient to
use the following spin and charge CP(1) field:

zs = (
zs

1, zs
2

)t = (
φs

0 + iφs
3, − φs

2 + iφs
1

)t
,

(20)
zc = (

zc
1, zc

2

)t = (
φc

0 + iφc
3, − φc

2 + iφc
1

)t
.

It was discussed in our previous work3 that, after integrating
out χ , we obtain the low-energy theory when 〈Q̃33〉 �= 0, which
is a mutual Chern–Simons theory:

Lcs = 2i

2π
εμνρA

z
c,μ∂νA

z
s,ρ + ∣∣(∂μ − iAz

s,μ

)
zs
α

∣∣2 + rs

∣∣zs
α

∣∣2

+ ∣∣(∂μ − iAz
c,μ

)
zc
α

∣∣2 + rc

∣∣zc
α

∣∣2 + · · · . (21)

The CP(1) fields zs
α and zc

α carry spin and charge, respectively,
and we have chosen the notation to make both spin and charge
SU(2) physical global symmetries manifest. Equation (21)
implies that there is a mutual semion statistics between the
charge and spin CP(1) fields zc

α and zs
α , which verifies the

observation in Sec. III A.
This field theory is similar to the one on the triangular

lattice,16 with mutual semion statistics between charge and
vison, except there the SU(2) symmetry of the vison is broken
down to discrete symmetry by higher-order terms,17 while here
the SU(2) charge symmetry is exact. Based on this analogy, we
can propose a global phase diagram, with tuning parameters
rs and rc (Fig. 2), similar to that in Ref. 16, with a different
interpretation of the phases.
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SO(3)/

Statistics
Mutual spin−charge

A

A2 A3
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22Z    Z  liquidNematic + Neel

Z2

Z

FIG. 2. (Color online) Phase diagram around type A phase with
〈Q33〉 �= 0.

1. Phase A

Phase A is the phase with both zs
α and zc

α condensed, and
the SU(2)s,g and SU(2)c,g gauge fields are both Higgsed and
gapped out from the spectrum. This phase is characterized by
the SU(2) vectors,

Na
s = zs†σazs ∼ tr

[
Zt

sS
aZsS

z
]
,

(22)
Na

c = zc†σazc ∼ tr
[
Zt

cT
aZcT

z
]
,

and the gauge invariant physical order parameter is

Qab = ζ̄Aabζ = χ̄Zt
sZ

t
cAabZsZcχ

∼ tr
[
Zt

cT
aZcT

f
]

tr
[
Zt

sS
bZsS

g
] 〈χ̄Afgχ〉

∼ 〈Q̃33〉Na
s Nb

c ; (23)

therefore the physical GSM is [S2 ⊗ S2]/Z2. This phase is
precisely the phase A obtained in the GL formalism in Sec. II.
The skyrmion of vector 	Ns is equivalent to the flux of gauge
field Az

s,μ, and due to the mutual CS interaction, the gauge flux

of Az
s,μ (skyrmion of 	Ns) carries charge excitation zc

α , which
confirms our analysis in Sec. III A.

2. Phase A2 and A4

Phase A2 has rs < 0 and rc > 0; hence it is a phase with zs
α

condensed while zc
α is gapped. In Sec. III A we conclude that

the GSM of this phase is SO(3)/Z2, and it has both nematic
order and Néel order by directly calculating the WZW term.
How do we understand the physical orders using the Majorana
liquid formalism? Since zc

α is gapped, in phase A2 there are
no charge degrees of freedom; therefore the “QSH” vector
Q̃3b should correspond to a pure spin operator. In fact, since
zc
α is gapped, 〈Qab〉 in Eq. (23) vanishes; hence the only

gauge invariant operator which acquires a nonzero expectation
value is

3Q̃t
cdQ̃de tr

[
Zt

sS
aZsS

c
]

tr
[
Zt

sS
bZsS

e
] ∼ 〈Q̃33〉2Na

s Nb
s . (24)

Therefore we can define the physical order parameter as

Sab ∼ 3Na
s Nb

s − δab( 	Ns)
2 ∼ 3Sa

i Sb
j − δab 	Si · 	Sj . (25)

Hence Sab is the spin-2 nematic order parameter which
breaks the spin rotation symmetry down to U(1) ⊗ Z2, but
preserves the discrete symmetries. Notice that the physical
order parameter is always a bilinear of 	Ns .

When zs
α is condensed, the SU(2)s,g gauge field is Higgsed;

then the SU(2)s,g gauge charge of χ becomes equivalent to the
physical spin quantum number of ζ after a SU(2) gauge
transformation. If we take 〈Q̃33〉 �= 0, the low-energy field
theory for fermions in phase A2 reads

L = ψ̄γμ

(
∂μ − iAz

c,μ

)
ψ + m〈Q̃33〉 · ψ̄σ zψ, (26)

where ψ = χ1 + iχ2. Based on the QSH physics, the flux of
gauge field Az

c,μ carries spin:

∇ × 	Az
c ∼ ψ†σ zψ tr

[
Zt

sS
aZsS

z
]
. (27)

This equivalence between the flux and spin implies that the
photon phase of gauge field Az

c,μ, which is the condensate of
the flux, is a spin XY order. This effect was studied in Refs. 18
and 19 with a projected wave-function calculation, and the
photon phase of the U(1) gauge field is precisely the Néel
order:

Na ∼ χ̄μyScχ tr
[
Zt

sS
aZsS

c
]
. (28)

Based on these analyses, we conclude that phase A2 is a phase
with both nematic vector 	Ns in Eq. (22) and AF Néel order 	N
in Eq. (28). Equations (22) and (28) guarantee that 	Ns ⊥ 	N :

	Ns · 	N ∼
∑

a

tr
[
Zt

sS
aZsS

z
]

tr
[
Zt

sS
aZsS

x
] = 0. (29)

As we mentioned before, since the nematic vector is headless,
the GSM should be SO(3)/Z2. This analysis again confirms
our prediction in Sec. III A with the WZW term.

Phase A4 is the spin-charge dual phase of phase A2, the
GSM is also SO(3)/Z2 with three branches of Goldstone
modes. The spin-charge dual of the in-plane Néel order is
precisely an s-wave superconductor. The spin-charge dual of
the nematic order Sab will break the SU(2)charge; for instance,

Szz ∼ 2T z
i T z

j − T x
i T x

j − T
y

i T
y

j , (30)

with 	Ti given by Eq. (1). Therefore, if we turn on an
extra density repulsion between next-nearest-neighbor sites
in Eq. (1), it corresponds to turning on Szz and breaks the
SU(2)charge down to U(1) ⊗ Z2. This U(1) corresponds to the
ordinary electron charge conservation, and Z2 corresponds to
the discrete particle-hole symmetry.

3. Phase A3

Phase A3 is a liquid state with rs > 0 and rc > 0; both
zs
α and zc

α are gapped out. When zc
α is gapped, Az

c,μ is in the
photon phase. Since the photon phase of 2 + 1-dimensional
U(1) gauge field is also the condensate of gauge flux based on
the standard QED-superfluid duality, the mutual CS coupling
in Eq. (21) implies that the photon phase of Az

c,μ breaks the
U(1)s,g down to Z2 gauge symmetry. For the same reason,
U(1)c,g is also broken down to Z2. The mutual CS theory in
Eq. (21) has the same topological degeneracy as the standard
Z2 gauge field on the torus,16,20 and the mutual statistics
between charge and spin is an analog of the mutual statistics
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between charge and vison of the well-known toric code
model.21

In addition to the Z2 gauge field coming from the mutual
CS coupling, there is one extra residual Z2 gauge symmetry
which corresponds to reversing the sign of gauge symmetry
generators Sz and T z simultaneously, while leaving Q̃33

invariant. This extra discrete Z2 gauge symmetry contains
group elements:

G(z2) = I4×4, or SxT x. (31)

This Z2 gauge field couples to both spin and charge SU(2)
rotors Zs and Zc, but it was not explicit in our continuum
limit field theory. Therefore phase A3 is characterized by
Z2 ⊗ Z2 gauge fields. Under Z2 gauge symmetry G(z2), the
fractionalized particles transform as

Zs,j → Zs,j
1
2 [(1 + μj )I4×4 + (1 − μj )iSx],

Zc,j → Zc,j
1
2 [(1 + μj )I4×4 + (1 − μj )iT x],

(32)
χj → 1

2 [(1 + μj )I4×4 + (1 − μj )SxT x]χj ,

μj = ±1.

If the matter fields are ignored, these two Z2 gauge fields
are similar to a Z4 gauge field with group elements G(z4) =
exp[iθSxT x], θ = 0, π/2, π, 3π/2.

These two Z2 gauge fields being together again implies
that the GSM of A2 (the condensate of zs

α) is SO(3)/Z2, as
we already concluded. If we approach phase A2 from phase
A3, we can interpret phase A2 as the condensate of SU(2) spin
rotor Zs which couples to the two Z2 gauge groups discussed
above. With the condensate of Zs we can again define three
perpendicular vectors:

	Ns = tr
[
Zt

s
	SZsS

z
] ∼ zs† 	σzs,

	N1 = tr
[
Zt

s
	SZsS

x
] ∼ Re

[
(zs)t iσ y 	σzs

]
, (33)

	N2 = tr
[
Zt

s
	SZsS

y
] ∼ Im

[
(zs)t iσ y 	σzs

]
.

	Ns and 	N2 change sign under gauge transformation Zs →
ZsiS

x (i.e., μj = −1), while 	N1 never changes sign; therefore,
	Ns and 	N2 become headless nematic vectors by coupling to the
Z2 ⊗ Z2 gauge group. Hence the manifold formed with 	Ns ,
	N1, and 	N2 is SO(3)/Z2. This is completely consistent with

our description of phase A2 in Secs. III A and III B 2.
In addition to the mutual statistics between Zs and Zc, there

is one more topological defect in phase A3 with∏
C

G(z2) = SxT x, (34)

where C is a closed loop on the lattice. This defect carries
a gauge flux SxT s . After encircling this defect, Zs → ZsiS

x

and Zc → ZciT
x . The vectors 	Ns and 	N2 always acquire a

minus sign after encircling this defect. Therefore this defect
is a counterpart of the “double half-vortex” and “half-vison”
discussed in Sec. III A.

4. Discussion

The universality class of the phase transitions in Fig. 2 can
also be analyzed with field theory Eq. (21), in the same way
as in Ref. 16. Quoting the results in Ref. 16, the transition

between phases A3 and A2, and the transition between phases
A3 and A4 are three-dimensional O(4) transitions, because
spinon zs

α and zc
α are O(4) vectors, and the fully gapped discrete

gauge fields coupled to the O(4) vector do not change the O(4)
universality class.13 The transition (A, A3) and the transition
(A, A4) are CP(1) transitions, which become manifest with
the CP(1) fields zs

α and zc
α and the U(1) gauge fields Az

s,μ and
Az

c,μ.
A recent quantum Monte Carlo simulation of the Hubbard

model on the honeycomb lattice suggests that there is a fully
gapped spin liquid phase22 sandwiched between the ordinary
Néel order and semimetal phase, which has motivated spin
liquid analysis on the honeycomb lattice using either slave
boson or slave fermion techniques.23,24 In our formalism, phase
A3 in phase diagram Fig. 2 is a candidate of this gapped
spin liquid. However, based on our analysis, phase A3 is not
directly adjacent to a pure Néel order; instead phase A3 is
adjacent to phase A2 with both Néel order and nematic order.
Starting with phase A2, we need to go through one more
transition which suppresses the nematic order and enters the
final Néel order in the large Hubbard U limit. If our proposal
is correct, then topological order parameters are indeed crucial
for correctly understanding the phase diagram of the Hubbard
model.

The spin-2 nematic order is a natural candidate of the
ground state of spin-1 systems, with biquadratic interactions.25

For spin-1/2 models, nematic order can exist when there
is a considerable ring exchange or multi-spin interaction,
which can be generated in the weak Mott insulator phase
of the simplest Hubbard model with high-order perturbation
of t/U . Our prediction of a phase with coexistence of
nematic and Néel order can be checked numerically in the
future. We will present a general classification about nematic
orders and their adjacent spin liquid phases in a future
presentation.26

A similar analysis can be applied to the Z2 liquid phase
obtained from the standard Schwinger boson formalism.
Since the spinon zα always couples to a Z2 gauge field,
the condensate of zα is not an ordinary Néel order, because
there always exists three perpendicular gauge invariant vectors
like Eq. (16). In Ref. 27, the authors proposed that there
is an intermediate chiral antiferromagnetic order between
a fully gapped Z2 liquid phase and a Néel order. This
chiral AF state has GSM SO(3), which is different from the
phase predicted in our paper with both nematic and Néel
order.

IV. PHASE DIAGRAM AROUND TYPE B PHASE

Now let us move on to the phase B with GSM SO(3) ⊗ Z2.
All the phases discussed in this section break time-reversal
symmetry T ; therefore we only focus on one of the two
disconnected submanifolds SO(3). Phases with GSM SO(3)
have been studied extensively with noncollinear spin den-
sity wave.13 After disordering the state, both SU(2)spin and
SU(2)charge are restored, while the vison of the SO(3) manifold
is still locally conserved, and the system most naturally enters
a Z2 liquid phase.

Again, we hope to understand the phase diagram with the
Majorana liquid formalism. Let us assume χ in the parent
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SO(3)

3d O(4)

QSH+ triplet SC

3d O(4)

Nonabelian

rs

rc

Z  liquid

Z  liquid2

2

Z2

B

B2 B3

B4

FIG. 3. (Color online) Phase diagram around type B phase with
〈Q11〉 = 〈Q22〉 = 〈Q33〉 �= 0.

state Eq. (18) enters the type B phase, for instance, 〈Q̃11〉 =
〈Q̃22〉 = 〈Q̃33〉 �= 0. It would be convenient to introduce the
following CP(1) fields:

zs = (
zs

1, zs
2

)t = (
φs

0 − iφs
3, φs

2 − iφs
1

)t
,

(35)
zc = (

zc
1, zc

2

)t = (
φc

0 − iφc
3, φc

2 − iφc
1

)t
.

The phase diagram around type B order is depicted in Fig. 3.
Phase B in Fig. 3 with both zs

α and zc
α condensed is precisely

the phase B in the Ginzburg-Landau description in Sec. II, with
GSM SO(3) ⊗ Z2. In phase B2, the SU(2)s,g gauge symmetry
is Higgsed by the condensation of zs

α , while the SU(2)c,g is
broken down to Z2 gauge symmetry by 〈Q̃ab〉; this is the Z2

liquid phase we discussed previously. The residual Z2 gauge
symmetry is the subgroup of SU(2)c,g that changes the sign of
χ . Phase B4 is the same Z2 liquid phase as phase B2.

Now we turn to phase B3 in Fig. 2. In this phase both zs
α and

zc
α are gapped, while 〈Q̃ab〉 breaks the SO(4) gauge symmetry

down to SU(2)+ = SU(2)s,g + SU(2)c,g; hence in this phase
there is only one SU(2) gauge field Aa

μGa , with Ga = Sa +
T a . After integrating out the fermion χ , the following Chern–
Simons term is induced for the residual SU(2)+ gauge field:

L = 2

4π
tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)

+
∣∣∣∣
(

∂μ −
∑

a

Aa
μσ a

)
zs

∣∣∣∣
2

+ rs |zs |2

+
∣∣∣∣
(

∂μ −
∑

a

Aa
μσ a

)
zc

∣∣∣∣
2

+ rc|zc|2 + · · · , (36)

A = Aa
μσadxμ.

Therefore phase B3 is characterized by SU(2) CS theory at
level 2, which is a nonabelian theory.28

A different way of obtaining the same theory is by turning
on another order parameter χ̄χ in addition to Q̃ab. The order
parameter χ̄χ will drive the system into a quantum Hall state
and lead to the SU(2)1 CS theory for both Aa

s,μ and Aa
c,μ,

which is similar to the CS effective theory of the chiral spin
liquid state.15 The order 〈Q̃ab〉 requires Aa

s,μ = Aa
c,μ = Aa

μ;

therefore the final theory becomes the SU(2) CS theory
at level 2 in Eq. (36). Now by reducing the order 〈χ̄χ〉
to zero, the SU(2) CS theory is unchanged. More detailed
properties of this phase will be further discussed in a future
presentation.26

In phase B3, the residual gauge symmetry Gs,g is either
Gc,g or −Gc,g . This Z2 structure does not show up in the Lie
algebra of the gauge group, but it implies that there is one
extra Z2 gauge field that couples to χ and either one of zs

α

or zc
α . Hence when zs

α or zc
α condenses, the gauge field Aa

μ is
Higgsed, but the system still has a Z2 gauge symmetry, which
characterizes the Z2 liquid phases B2 and B4.

The transition (B2, B3) and the transition (B3, B4) are
Higgs transitions, described by spinon zs

α or zc
α coupled with

SU(2) CS theory in Eq. (36). The universality class of these
transitions is not understood yet.

V. SITUATION WITH SU(2)charge BROKEN TO U(1)charge ⊗ Z2

When the SU(2)charge symmetry is broken down to
U(1)charge ⊗ Z2 symmetry, which corresponds to charge con-
servation and particle-hole transformation, the degeneracy
between Q3b and Q1b, Q2b is lifted. For instance, if an extra
repulsive next-nearest-neighbor density interaction [linear
with Szz in Eq. (30)] is turned on,29 the system favors
developing Q3b; i.e., the system only has QSH order with
GSM S2. Then according to Ref. 6, the skyrmion of the
QSH vector carries charge-2e, and skyrmion condensate is
an s-wave superconductor.

If the system favors having T-SC Q1b, Q2b rather than Q3b,
then depending on the microscopic parameters the T-SC can
have orders with either Q1b ‖ Q2b (type A) or Q1b ⊥ Q2b

(type B). The type A phase has a fully gapped fermion
spectrum, with GSM∼ [S2 ⊗ S1]/Z2. Here S2 corresponds
to the spin direction of the triplet Cooper pair, while S1

corresponds to the pairing phase angle. Again, there are spin
and charge topological defects. For instance, the charge vortex
(defect of the S1 part of the GSM) carries spin-1/2 quantum
number (quantum number of the residual U(1)spin symmetry).
The proliferation of the charge vortex leads to the phase A2 in
phase diagram Fig. 2, and the transition is a CP(1) theory with
easy plane anisotropy on the charge CP(1) field zc

α introduced
in Eq. (20), which is consistent with the conclusion in
Ref. 19.

The proliferation of the spin-skyrmion restores the
SU(2)spin symmetry, but the U(1)charge symmetry is still broken.
However, since the spin and charge sectors can change sign
simultaneously without modifying the ground state, after
the proliferation of the spin-skyrmion there is still a Z2

gauge symmetry for the charge manifold. Therefore the GSM
of this phase is S1/Z2, which corresponds to a charge-4e

superconductor, instead of a charge-2e superconductor. A
similar scenario was discussed for the polar state of the
ultracold spin-1 spinor condensate,30 which also has the GSM
[S2 ⊗ S1]/Z2.

Unlike the type A order, the type B phase with Q1b ⊥
Q2b does not have a fully gapped fermion spectrum. For
instance, with 〈Q11〉 = 〈Q22〉 �= 0, only spin-up is paired and
gapped out, while spin-down is not gapped. Since the fermion
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spectrum is gapless, the quantum number of defects is no
longer topologically stable.

VI. SUMMARY AND DISCUSSION

In this work we have classified the QSH and T-SC states
on the honeycomb lattice using the SO(4) symmetry for a
large class of extended Hubbard models. By analyzing the
quantum numbers of topological defects, we obtained two
different phase diagrams, which were also confirmed by the
Majorana liquid formalism. The results of this paper can be
straightforwardly generalized to other bipartite lattices. Our
formalism also predicts a phase with both spin nematic and
Néel order, sandwiched between a fully gapped Z2 ⊗ Z2 liquid
phase and the ordinary Néel order, which can be checked in
the future using a method similar to that in Ref. 22.

The results we obtained in this work explicitly demonstrates
the spin-charge duality of the Hubbard model. For instance, in
the phase diagram in Fig. 2, spin and charge view each other as
topological defects. A similar spin-charge duality was applied
to the cuprates high-temperature superconductor,31,32 and a
global phase diagram with both spin and charge excitations was
studied recently in Ref. 33. We also note that other authors19,27

have also studied the duality between spin and charge with

the presence of QSH order parameters; for instance, an easy
plane version of spin-charge duality was identified as the
self-duality of the easy plane noncompact CP(1) theory, in a
model with inplane spin anisotropy. This duality led to a direct
transition between the in-plane Néel order and the d-wave
superconductor. In our current work we have shown that
the generic symmetry of the Hubbard model and the conden-
sate of matrix order parameter Q in Eq. (6) give us a complete
and explicit duality between spin and charge in interacting
electrons.

In both Figs. 2 and 3 there is a multicritical point with
rs = rc = 0. The multicritical point in Fig. 2 was analyzed in
Ref. 16, and for large enough spinon number this multicritical
point is stable. Also, it has been proposed that a similar
multicritical point is responsible for the spin liquid behavior
in material κ − (ET)2Cu2(CN)3 on the triangular lattice.34 The
multicritical point in Fig. 3 is more complicated, we will leave
this multicritical point to future study.
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