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Single-ion versus two-ion anisotropy in magnetic compounds: A neutron scattering study
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Anisotropy effects can significantly control or modify the ground-state properties of magnetic systems. Yet
the origin and the relative importance of the possible anisotropy terms are difficult to assess experimentally
and often ambiguous. Here we propose a technique that allows a very direct distinction between single-ion
and two-ion anisotropy effects. The method is based on high-resolution neutron spectroscopic investigations of
magnetic cluster excitations. This is exemplified for manganese dimers and tetramers in the mixed compounds
CsMnxMg1−xBr3 (0.05 � x � 0.40). Our experiments provide evidence for a pronounced anisotropy of the order
of 3% of the dominant bilinear exchange interaction, and the anisotropy is dominated by the single-ion term. The
detailed characterization of magnetic cluster excitations offers a convenient way to unravel anisotropy effects in
any magnetic material.
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I. INTRODUCTION

The properties of magnetic systems are commonly in-
terpreted in terms of the Heisenberg Hamiltonian H =
−2

∑
i>j Jij si · sj where si is a spin operator and Jij an

isotropic bilinear exchange parameter which couples the
magnetic ions at sites i and j. The Heisenberg model,
however, represents a simplification of the true situation,
since anisotropy is always present in real materials at some
energy scale, and it can significantly modify the magnetic
ground-state properties.1 Often on account of experimental
findings additional terms have to be added to the Heisenberg
Hamiltonian such as single-ion anisotropy,2 symmetric and
antisymmetric exchange anisotropies,3 and higher-order ex-
change interactions.4 The parameters of the spin Hamiltonian
are usually derived by combining theoretical relations for
various magnetic properties, notably the spin-wave dispersion,
with experimental data on these properties. This strategy is
not always successful, since for three-dimensional systems
exact solutions cannot be obtained. In particular, the commonly
used formula of the spin-wave dispersion is an approximation
based on the linearization of the equation of motion for the
spin operators. Moreover, the spin-wave dispersion does not
allow the separate determination of all the individual coupling
terms, so that, e.g., the relative size of the bilinear exchange
terms with respect to the higher-order coupling terms cannot
be assessed.4 Similarly, the distinction between single-ion
and two-ion anisotropy terms is often ambiguous. These
difficulties can be overcome by studying diluted systems,
in which small clusters of exchange-coupled magnetic ions
occur in isolation, so that the spin Hamiltonian can be solved
exactly, allowing a rigorous comparison between theory and
experiment.

The present work addresses primarily the question of how
relatively weak single-ion and two-ion anisotropies can be
distinguished from each other by studying magnetic cluster
excitations. As model systems we used mixed compounds
of composition CsMnxMg1−xBr3 (0.05 � x � 0.40) for var-
ious reasons. Both CsMnBr3 and CsMgBr3 crystallize in
the hexagonal space group P 63/mmc, and their unit cell

parameters are almost identical: a = b = 7.609(15) Å, c =
6.52(5) Å for CsMnBr3,5 and a = b = 7.610(2) Å, c =
6.502(2) Å for CsMgBr3.6 The structure consists of chains of
face-sharing MBr6 (M = Mn2+,Mg2+) octahedra parallel to
the c axis. Spin-wave experiments on CsMnBr3 gave evidence
for a pronounced one-dimensional magnetic behavior with
the intrachain exchange interaction exceeding the interchain
exchange interaction by three orders of magnitude.7,8 All the
Mn2+ clusters in the mixed compounds CsMnxMg1−xBr3 are
thus linear chain fragments with composition MnnBr3(n+1)

(n = 1,2,3,. . .) oriented parallel to the c axis. Inelastic neutron
scattering experiments on Mn2+ dimers (n = 2) and trimers
(n = 3) showed that the biquadratic exchange interaction
distinctly contributes to the spin coupling of the Mn2+ ions,4,9

but there was no evidence for the presence of an anisotropy
term which resulted from the analysis of the spin-wave
experiments. With increased instrumental resolution used in
the present work, however, we were able to detect anisotropy-
induced splittings of magnetic cluster excitations, and the
combined analysis of some dimer and tetramer transitions
resulted in an unambiguous assessment of the nature of the
underlying anisotropies.

The present work is organized as follows. The experimental
procedure is described in Sec. II, followed in Sec. III by a
summary of the spin Hamiltonians and neutron cross sections
for spin dimers and tetramers. In addition, numerical values
are tabulated for the singlet-triplet transitions as well as for the
anisotropy-induced triplet splittings in antiferromagnetically
coupled dimers and tetramers of transition metal ions with
spin quantum numbers 1/2 � si � 5/2. The experimental
results and their analyses are presented in Sec. IV. Finally,
some conclusions are given in Sec. V. A statistical model
addressing the linewidth of dimer excitations is described in the
Appendix.

II. EXPERIMENT

Polycrystalline samples of CsMnxMg1−xBr3 (x = 0.05,
0.10,0.14,0.28,0.40) were synthesized according to standard
procedures.4 The inelastic neutron scattering experiments were
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carried out with use of the high-resolution time-of-flight
spectrometer FOCUS at the spallation neutron source SINQ
at PSI Villigen. The measurements were performed with
incoming neutron energies of 5.11 and 2.91 meV in the
time-focusing mode, which minimizes the instrumental energy
resolution at the energy transfer of interest. The scattered
neutrons were detected by an array of 3He counters covering
a large range of scattering angles 10◦ � � � 130◦. The
samples were enclosed in Al cylinders (12 mm diameter,
45 mm height) and placed into a He cryostat to achieve
temperatures 1.5 � T � 50 K. Additional experiments were
performed for the empty container as well as for vanadium to
allow the correction of the raw data with respect to background,
detector efficiency, absorption, and detailed balance according
to standard procedures.

III. THEORETICAL BACKGROUND

A. Dimer excitations

We base the analysis of the dimer transitions on the spin
Hamiltonian

H = −2J s1 · s2 − K(s1 · s2)2 − 2J zsz
1s

z
2 − D

[(
sz

1

)2 + (
sz

2

)2]
,

(1)

where si denotes the spin operator of the magnetic ions, J
and K the bilinear and the biquadratic exchange interactions,
respectively, and Jz and D the two-ion and the single-ion
anisotropy parameters, respectively. The particular choice
of the anisotropy terms is dictated by the axial symmetry
of the CsMnxMg1−xBr3 compounds. H commutes with the
total spin S = s1+s2; thus S is a good quantum number to
describe the spin states as |S,M〉 with −S � M � S. For
J z = D = 0 and identical magnetic ions (s1= s2) the eigen-
values of Eq. (1) are degenerate with respect to the quantum
number M:

E(S) = −Jη − 1
4Kη2, η = S(S + 1) − 2si(si + 1),

(2)
0 � S � 2si .

For antiferromagnetic exchange (J < 0) the ground state is
a singlet (S = 0), separated from the excited triplet (S = 1),
quintet (S = 2), etc. states according to the well-known Landé
interval rule which for K = 0 is given by

E(S) − E(S − 1) = −2JS. (3)

Nonzero anisotropy terms (J z �= 0 and/or D �= 0) have the
effect of splitting the spin states |S〉 into the states |S, ± M〉.
For instance, for D > 0 and J z > 0 the excited triplet (S = 1)
is split into a lower-lying doublet |1, ± 1〉 and a higher-lying
singlet |1,0〉, whereas for D < 0 and J z < 0 the energetic
ordering of the two sublevels is reversed. This is exemplified
for dimers with si = 5/2 in Fig. 1, which also includes
the splitting of the excited quintet state (S = 2). From the
observation of the triplet (S = 1) splitting alone the nature of the

FIG. 1. Energy level splittings of dimers with si = 5/2. The
chosen energy scale corresponds to the Mn2+ dimer splittings
observed for CsMnxMg1−xBr3 in the present work. The arrows mark
the transitions allowed by the selection rules.

anisotropy cannot be determined, but the anisotropy-induced
splitting of the quintet (S = 2) is sufficiently detailed to arrive
at a distinction between the parameters D and J z.

For spin dimers the neutron cross section for a tran-
sition from the initial state |S〉 to the final state |S ′〉 is
defined by Ref. 10

d2σ

d�dω
= N

Z
(γ r0)2 k′

k
F 2(Q) exp{−2W (Q)}

× exp

{
−E(S)

kBT

} ∑
α

[
1 −

(
Qα

Q

)2]

× 2

3
[1 − (−1)	S cos(Q · R)]|T1|2

× δ{h̄ω + E(S) − E(S ′)}, (4)

where N is the total number of spin dimers in the sample, Z the
partition function, k and k′ the wave numbers of the incoming
and scattered neutrons, respectively, Q = k − k′ the scattering
vector, F(Q) the magnetic form factor, exp{−2W(Q)} the
Debye-Waller factor, R the vector defining the intradimer
separation, Ti = 〈S ′||Ti ||S〉 (T1 = T2) the reduced transition
matrix element defined in Ref. 10 and h̄ω the energy transfer.
The remaining symbols have their usual meanings. The
transition matrix element carries essential information to
derive the selection rules for spin dimers:

	S = S − S ′ = 0, ± 1; 	M = M − M ′ = 0, ± 1. (5)

Equation (4) is valid as long as the states |S,M〉 are
degenerate with respect to M. For polycrystalline material
Eq. (4) has to be averaged in Q space. By separating the
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	M = 0 and 	M = ±1 transitions we obtain11

d2σ

d�dω

∣∣∣∣
	M=0

∝ F 2(Q)

{
2

3
+ (−1)	S

×
[

2 sin(QR)

(QR)3
− 2 cos(QR)

(QR)2

]} ∣∣T 	M=0
1

∣∣2
,

d2σ

d�dω

∣∣∣∣
	M=±1

∝ F 2(Q)

{
2

3
− (−1)	S

×
[

sin(QR)

(QR)3
− cos(QR)

(QR)2
− sin(QR)

QR

]} ∣∣T 	M=±1
1

∣∣2
.

(6)

For small anisotropy parameters |D|,|J z| � |J |, each matrix
element |T 	M

1 |2 corresponds to one-third of the matrix element
|T1|2 in Eq. (4).

B. Tetramer excitations

We base the analysis of transitions associated with linear
tetramers on the spin Hamiltonian

H = −2J (s1 · s2 + s2 · s3 + s3 · s4)

−K[(s1 · s2)2 + (s2 · s3)2 + (s3 · s4)2]

−2J z
(
sz

1s
z
2 + sz

2s
z
3 + sz

3s
z
4

)
−D

[(
sz

1

)2 + (
sz

2

)2 + (
sz

3

)2 + (
sz

4

)2]
. (7)

To solve Eq. (7) the total spin S defined by S = s1 + s2 +
s3 + s4 is still a good quantum number, but for a complete
characterization of the tetramer states additional spin quantum
numbers are needed, e.g., S12 = s1 + s2 and S34 = s3 +
s4 with 0 � S12 � 2si and 0 � S34 � 2si , respectively. The
total spin is then defined by |S12 − S34| � S � (S12 + S34),
and the basis states are given by the wave function |S12,S34,S〉.
There is no spin coupling scheme which results in a diagonal
energy matrix, so that the eigenvalues of Eq. (7) have to
be calculated by conventional spin operator techniques.12

For antiferromagnetic exchange (J < 0) the ground state
is a singlet (S = 0) defined by the wave function |�0〉 =∑

i αi |S12(i),S34(i),0〉 with
∑

i (αi)2 = 1. It can be shown
that for any spin quantum number si the first excited state
is always a triplet (S = 1) defined by the wave function
|�1〉 = ∑

i βi |S12(i),S34(i),1〉 with
∑

i (βi)2 = 1, which for
nonzero anisotropy terms (J z �= 0 and/or D �= 0) is split into

a doublet (M = ±1) and a singlet (M = 0) as for the dimer
case discussed in Sec. III A.

The cross section for the tetramer transition |S12,S34,S〉 →
|S ′

12,S
′
34,S

′〉| takes the form13

d2σ

d�dω
= N

Z
(γ r0)2F 2(Q) exp{−2W (Q)}

× exp

{
−E (S12,S34,S)

kBT

} ∑
α

[
1 −

(
Qα

Q

)2]

×2

3
{δ(S34,S

′
34)[1 − (−1)S12−S ′

12 cos(Q · R12)]|T1|2

+ δ(S12,S
′
12)[1 − (−1)S34−S ′

34 cos(Q · R34)]|T3|2
+ δ(S12,S

′
12)δ(S34,S

′
34)[cos(Q · R13)

+ cos(Q · R14) + cos(Q · R23) + cos(Q · R24)]T1T3}
× δ{h̄ω + E(S12,S34,S) − E(S ′

12,S
′
34,S

′)}, (8)

where N is the total number of tetramers, Rij the dis-
tance vector between the magnetic ions at sites i and j,
Ti = 〈S ′

12,S
′
34,S

′‖Ti‖S12,S34,S〉 the reduced transition matrix
element (T1 = T2,T3 = T4), and the remaining symbols are as
in Eq. (4). From the reduced matrix elements the following
selection rules are obtained:

	S12 = 0, ± 1; 	S34 = 0, ± 1;
(9)

	S = 0, ± 1; 	M = 0, ± 1.

C. Properties of the dimer and linear tetramer excitations

Both magnetic dimer and linear tetramer systems have a
singlet (S = 0) ground state for antiferromagnetic exchange
coupling (J < 0) in Eqs. (1) and (7), respectively, and the
first excited state is always a triplet (S = 1). For dimers the
separation between the singlet and the triplet is 	d = −2J

independent of the spin quantum number si of the individ-
ual magnetic ions. The singlet-triplet splitting 	t of linear
tetramers is always smaller than 	d , but its size depends on
si as listed in Table I. As mentioned in Secs. III A and III B,
the doublet |1, ± 1〉 lies below the singlet |1,0〉 for D > 0 and
J z > 0. For both dimers and tetramers, the triplet splittings δ

are additive, i.e., anisotropy parameters D and J z with different
signs can largely compensate each other.

TABLE I. Singlet-triplet splittings 	d and 	t for dimers and linear tetramers, respectively, in which the spins si are antiferromagnetically
coupled by a nearest-neighbor exchange parameter J < 0 (with vanishing biquadratic exchange parameter K = 0). δd,single ion,δt,single ion, and
δd,two ion,δt,two iondenote the splittings of the first-excited triplet state |1〉 due to the anisotropy parameters D and J z, respectively. The δ values listed
in the table are calculated for very small anisotropy parameters |D| = |J z| = 0.01|J |, but they can be extrapolated up to |D|,|J z| < 0.05|J |
with a precision of at least 1%.

si 	d δd,single ion δd,two ion 	t δt,single ion δt,two ion

1/2 −2J 1.00|J z/J | −1.318J – 1.56|J z/J |
1 −2J 1.00|D/J| 2.00|J z/J | −1.018J 0.95|D/J| 3.52|J z/J |

3/2 −2J 2.40|D/J| 3.40|J z/J | −0.952J 2.76|D/J| 6.77|J z/J |
2 −2J 4.20|D/J| 5.20|J z/J | −0.946J 5.44|D/J| 11.3|J z/J |

5/2 −2J 6.39|D/J| 7.39|J z/J | −0.950J 8.90|D/J| 17.0|J z/J |
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FIG. 2. (Color online) Energy spectra of neutrons scattered from
CsMnxMg1−xBr3 at T = 1.5 K. The incoming neutron energy was
2.91 meV. For clarity, the data for x = 0.14 and 0.28 are enhanced
by 10 and 20 intensity units, respectively. The dashed lines refer to
Gaussian peak fits with equal linewidths for both transitions. The
arrows mark the transitions according to Fig. 1.

IV. RESULTS AND DATA ANALYSIS

Energy spectra of neutrons scattered from CsMnxMg1−xBr3

at T = 1.5 K are shown for different Mn concentrations
x in Fig. 2. The spectrometer parameters were chosen to
achieve an optimal instrumental resolution of 55 μeV at an
energy transfer of 	d ≈ 1.8 meV where the dimer |0〉 → |1〉
excitation is expected to occur. There are two well-defined
lines at 1.80 and 1.93 meV, which we attribute to the dimer
excitations |0,0〉 → |1, ± 1〉 and |0,0〉 → |1,0〉, respectively.
This identification is supported by the Q dependence of the
intensities displayed in Fig. 3, which compares the observed
intensities with those calculated from the cross sections (6).
The splitting of the excited dimer triplet due to anisotropy
effects turns out to be independent of x (indicated by the
dash-dotted lines in Fig. 2) and amounts to δd = 0.135(3) meV,
which can be rationalized either with a single-ion anisotropy
parameter D = 0.0211(5) meV or with a two-ion anisotropic
exchange parameter J z = 0.0183(4) meV or with a linear
combination yD + (1 − y)J z where y can take any value.
These parameters were obtained from a least-squares fitting
procedure in which the bilinear exchange parameter J was also
allowed to vary, whereas the biquadratic exchange parameter

FIG. 3. (Color online) Q dependence of the neutron cross section
for the 	M = 0 and 	M = ±1 dimer transitions of CsMnxMg1−xBr3.
The symbols denote the intensities observed at T = 1.5 K. The dashed
and full lines correspond to the cross sections (6).

was held constant at the temperature-independent value K =
8.6(2) μeV.9 We found J = −0.852(3) meV (at T = 1.5 K),
which slightly exceeds the values J = −0.838(5) meV (for
2 � T � 70 K) (Ref. 4) and J = −0.823(1) meV (at T
= 50 K) (Ref. 9) determined from the dimer excitations
taken at higher temperatures and in the absence of anisotropy
terms.

FIG. 4. (Color online) Intrinsic linewidths of the dimer transitions
|0,0〉 → |1, ± 1〉 and |0,0〉 → |1,0〉 observed for CsMnxMg1−xBr3.
The line corresponds to a σ 2 law as explained in the Appendix.

024404-4



SINGLE-ION VERSUS TWO-ION ANISOTROPY IN . . . PHYSICAL REVIEW B 83, 024404 (2011)

The linewidth of the excitations considerably depends
on the concentration x as demonstrated in Fig. 4, which
shows the intrinsic linewidths corrected for the instrumental
resolution. With increasing x the linewidth is enhanced due to
inhomogeneities along the mixed MnxMg1−x chains resulting
from the different ionic radii of the Mn2+ and Mg2+ ions. The
x dependence of the linewidth nicely follows a σ 2 law where
σ is the variance of the probabilities pm(x) (m = 0,1,2, . . .)
for having m Mn2+ ions on both sides of the central Mn2+
pair in a mixed MnxMg1−x chain, as outlined in detail in the
Appendix.

The instrumental setting used to collect the data of Fig. 2
also provided data at lower energy transfers around 	t ≈
0.9 meV where the tetramer transition |0〉 → |1〉 is expected to
occur, with an instrumental resolution of about 110 μeV. For
Mn concentrations x = 0.05, 0.10, and 0.14, the probabilty for
Mn2+ tetramer formation is less than 0.23%, so that no relevant
signal could be detected. For x = 0.28 and 0.40, however, the
probability for tetramer formation is very much enhanced to
1.58% and 3.84%, respectively. Figure 5 shows energy spectra
taken for x = 0.28 and 0.40 with subtraction of the x =
0.14 data, which has the advantage that uncertainties about
the background are automatically eliminated. The observed
overall intensity ratio I(x = 0.40)/I(x = 0.28) = 2.8(3)
is in agreement with the corresponding probabilities for
tetramer formation whose ratio is 2.43. There are two bands
at 0.79 and 0.98 meV, which we attribute to the tetramer
excitations |0,0〉 → |1, ± 1〉 and |0,0〉 → |1,0〉, respectively.
This identification is supported by comparing the intensities

FIG. 5. (Color online) Energy spectra of neutrons scattered from
CsMnxMg1−xBr3 for x = 0.28 and 0.40 at T = 1.5 K, with
subtraction of the x = 0.14 data. The incoming neutron energy
was 2.91 meV. For clarity, the data for x = 0.40 are enhanced by 6
intensity units. The arrows marked by At and Bt denote the tetramer
transitions |0,0〉 → |1, ± 1〉 and |0,0〉 → |1,0〉, respectively. The
dashed lines refer to Gaussian peak fits with equal linewidths for both
transitions.

with the cross section (8). The tetramer |0〉 → |1〉 transitions
are governed by the selection rules 	S12 = 0,	S34 = ±1
or 	S12 = ±1,	S34 = 0, but in no case do transitions with
both 	S12 = ±1 and 	S34 = ±1 occur, so that the cross
section (8) reduces to the form displayed for dimers in
Fig. 3. The calculated intensity ratio I(	M = ±1)/I(	M =
0) = 3.0 is in good agreement with the observed ratio of
3.2(4). We therefore conclude that the splitting of the excited
tetramer triplet due to anisotropy effects is δt = 0.196(9) meV,
which can be rationalized either with a single-ion anisotropy
parameter D = 0.0224(10) meV or with a two-ion anisotropic
exchange parameter J z = 0.0116(5) meV or with a lin-
ear combination yD + (1 − y)J z. The above anisotropy
parameters were obtained by keeping J = −0.852 meV
and K = 8.6 μeV fixed at the corresponding dimer
values.

The linewidth of the tetramer transitions is increasing with
the concentration x, giving intrinsic linewidths of 60(20)
and 90(10) μeV for x = 0.28 and 0.40, respectively. The
intrinsic linewidths of the tetramer transitions are found to
be considerably smaller than those of the dimer transitions
displayed in Fig. 4. Obviously the spin tetramers are more
stable against structural inhomogeneities along the MnxMg1−x

chain.
The joint analysis of the dimer and tetramer data allows

us now to determine the nature of the observed anisotropy.
Figure 6 shows a plot of the parameter values D and J z which
are compatible with the observed triplet splittings δd and δt on
the basis of the data for si = 5/2 listed in Table I. The two
lines cross at the parameter values

D = 0.0193(23) meV, J z = 0.0015(19) meV,

FIG. 6. (Color online) Plot of the anisotropy parameters D and
J z compatible with the observed triplet splittings δd and δt . The
dashed and dash-dotted lines indicate the experimental uncertainties
associated with δd and δt , respectively.
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FIG. 7. (Color online) Energy spectrum of neutrons scattered
from CsMn0.14Mg0.86Br3 at T = 25 K. The incoming neutron
energy was 5.11 meV. The dashed line refers to the superposition
of five Gaussians corresponding to the five allowed triplet-quintet
transitions whose energies and intensities (calculated from the model
parameters) are indicated as vertical bars and numbered according
to Fig. 1. The linewidth of the individual Gaussians was set at the
instrumental resolution of 120 μeV.

i.e., the single-ion anisotropy is to a large extent the origin of
the observed triplet splittings.

The observation of the dimer quintet (S = 2) splitting offers
an alternative way to determine the anisotropy parameters D
and J z separately. Experimentally, the quintet state can be
accessed by transitions out of the excited triplet (S = 1)
state. According to Eq. (3) the transition energy is around
−4J ≈ 3.6 meV. Figure 7 shows an energy spectrum of
neutrons scattered from CsMn0.14Mg0.86Br3 at T = 25 K
corresponding to the excited dimer |1〉 → |2〉 transition, which
has a maximum around 3.6 meV and a slight asymmetry on the
high-energy side. The optimal instrumental resolution of about
120 μeV, which can be achieved on the spectrometer FOCUS,
is not sufficient to resolve the five allowed triplet-quintet
transitions displayed in Fig. 1, but the skewness of the observed
peak offers a convenient means to distinguish between D and
J z. The skewness s is defined by the third moment of an energy
distribution:

s =
∑

i

Ii

(
Ei − 〈E〉

σ

)3

, (10)

where Ii is the intensity at the energy transfer Ei , 〈E〉 the
mean energy, and σ the variance. Zero skewness corresponds
to a symmetric peak, whereas negative and positive values
of the skewness indicate asymmetries on the low-energy and
high-energy side, respectively. The data displayed in Fig. 7
result in a skewness s = 0.155(19) with 〈E〉 = 3.635(2) meV
and σ = 0.084(2) meV. In Fig. 8 we calculate the skewness
of the dimer |1〉 → |2〉 transition for the same (D,J z) pairs
as in Fig. 6, which are compatible with the observed splitting
δd = 0.135 meV of the dimer triplet state. For s = 0.155(19)

FIG. 8. (Color online) Skewness of the dimer excitation
|1〉 → |2〉 of CsMnxMg1−xBr3 calculated for (D,J z) pairs compatible
with the observed splitting δd = 0.135 meV of the dimer triplet state
according to Fig. 6. The calculation is based on a convolution of the
five allowed transitions a–e indicated in Fig. 1 with an instrumental
resolution of 120 μeV. The dumbbell marks the (D,J z) pair derived
from the energy spectrum of Fig. 7 which gave a skewness of s =
0.155(19).

we derive the following anisotropy parameters from Fig. 8:

D = 0.0173(24) meV, J z = 0.0030(20) meV,

which are in good agreement with those derived independently
from the joint analysis of the dimer and tetramer triplet split-
tings δd and δt , respectively. The present neutron spectroscopic
data are thus best described by the parameters

J = −0.852(3) meV, K = 0.0086(2) meV,

D = 0.0183(16) meV, J z = 0.0022(14) meV

V. CONCLUSIONS

The anisotropy of the magnetic interactions in
CsMnxMg1−xBr3 was unraveled in a comprehensive neutron
spectroscopic study of low-lying Mn2+ dimer and tetramer
excitations. The observed anisotropy was shown to be pre-
dominantly of a single-ion origin due to the axial ligand field,
with an anisotropy parameter D = 0.0183(16) meV, which
is considerably larger than the value D = 0.012(1) meV
determined from the analysis of the spin-wave dispersion.8

We consider our anisotropy parameter D to be more reliable,
since it results directly from the observed splitting energies,
independent of the other parameters of the spin Hamiltonian,
whereas in the spin-wave formalism the parameters D and
J enter as products.8 Likewise, electron spin resonance
experiments, which are considered to be a powerful method
to determine anisotropy effects, can only detect splittings
of individual spin multiplets (	S = 0),1 whereas neutron
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spectroscopy offers in addition the observation of splittings
produced by the magnetic interactions (	S = ±1).

In real magnets, the dipole-dipole interaction is always
present in addition to the exchange interaction. The corre-
sponding Hamiltonian for a spin dimer is composed of an
isotropic and an anisotropic term:

H = g2μ2
B

R3

[
s1 · s2 − 3

(s1 · R)(s2 · R)

R2

]
, (11)

where g is the Landé splitting factor and μB the Bohr
magneton. For Mn2+ dimers in CsMnxMg1−xBr3 with g = 2
and R = 3.25 Å, the isotropic dipole-dipole coupling parameter
amounts to −(gμB)2/2R3 = −0.0063 meV, which is more
than two orders of magnitude smaller than the isotropic
exchange parameter J = −0.852(3) meV. The exchange
coupling J is sufficiently strong to keep the spins s1 and
s2 antiferromagnetically aligned at low temperatures T �
|J |/kB , but their direction with respect to R ‖ c is free
to rotate. Therefore, the second part of Eq. (11) has to
be averaged in space, giving rise to an anisotropic dipole-
dipole coupling parameter 3(gμB/π )2/2R3 = 0.0019 meV,
which is presumably the origin of the anisotropic ex-
change parameter J z = 0.0022(14) meV determined in the
present work.

Our study was focused on the investigation of Mn2+ dimers
and tetramers. This choice is motivated by the nature of the
ground state, which for antiferromagnetically coupled dimers
and tetramers is always a singlet (S = 0). Antiferromagneti-
cally coupled spin trimers are formed in mixed compounds as
well, with a larger probability than tetramers, but their ground
state is never a singlet. In fact, for the present case the ground
state of Mn2+ trimers is a sextet (S = 5/2),4 giving rise to a
large number of transitions to the higher-lying states which can
hardly be separated from each other in neutron spectroscopic
experiments.

The cluster method introduced in the present work can
easily be adapted to anisotropy terms different from those used
in the spin Hamiltonians (1) and (7). Each anisotropy term pro-
duces its specific splitting pattern of the spin states |S〉 which
allows a rigorous distinction. For instance, a planar single-ion
anisotropy of the form E[(sx

i )2 + (sy

i )2] or an antisymmetric
two-ion interaction described by the vector product si × sj

(Refs. 14–15) is often relevant in currently studied materials,
notably in quantum spin systems like spin-ladder materials,1 in
giant magnetoresistance manganates,16 in cobaltates,17 and in
single-molecule magnets.18 The only requirement to apply the
cluster method is the existence of mixed compounds in which
the magnetic ions are partially substituted by nonmagnetic
ions; however, chemistry richly provides such materials, as
demonstrated, e.g., for the mixed manganese compounds
LaMnxGa1−xO3 (0 � x � 1) (Ref. 19).
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FIG. 9. Sketch of the atomic configurations along a mixed
MnxMg1−x chain. 2n denotes the chain length outside the central
Mn2+ pair, and m is the number of peripheral Mn2+ ions in the chain.

APPENDIX: LINEWIDTH OF DIMER EXCITATIONS

The intrinsic linewidth of the dimer excitations results
from structural inhomogeneities along the mixed MnxMg1−x

chain, since the ionic radii of the Mn2+ and Mg2+ ions are
different with rMn = 83 pm > rMg = 72 pm.20 In Fig. 9 we
consider different configurations along the chain, where m
is the number of Mn2+ ions replacing the Mg2+ ions. The
introduction of additional Mn2+ ions exerts some internal
pressure within the chain, so that the atomic positions have
to rearrange. In particular, the Mn-Mn bond distance R of the
central Mn2+ pair will be gradually shortened with increasing
number m of Mn2+ ions as compared to the case m = 0. The
intradimer exchange interaction J was shown to vary with R
according to d|J |/dR = −3.6(3) meV/Å;9 thus any change
of R results in a corresponding change of J and thereby in a line
broadening.

FIG. 10. (Color online) Distribution of the probabilities pm(x)
for a mixed MnxMg1−x chain of length 2n = 24. The arrows mark
the mean values 〈pm(x)〉, and the square of the variance σ is also
indicated.
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Assuming a statistical distribution of Mn2+ ions, the
probabilities pm(x) for having m Mn2+ ions on both sides
of the central Mn2+ pair in a chain of length 2n are given by

p0(x) = (1 − x)2n,

p1(x) = 2

(
n

1

)
x(1 − x)2n−1,

p2(x) =
[

2

(
n

2

)
+

(
n

1

) (
n

1

)]
x2 (1 − x)2n−2 ,

p3(x) = 2

[(
n

3

)
+

(
n

2

) (
n

1

)]
x3(1 − x)2n−3,

etc.

(A1)

In principle we are free to choose the chain length 2n as
long as the sum rule

∑
m pm(x) = 1 and the condition 2n �

m are satisfied. Figure 10 displays the probabilities pm(x)
for a chain of length 2n = 24. The mean values 〈pm(x)〉 of
the probability distribution indicated by arrows scale linearly
with the Mn2+ concentration x as expected. It is tempting to
assume that the linewidth of the dimer excitations also scales
with 〈pm(x)〉. Indeed, for small concentrations x � 0.14 the
linewidth increases linearly with x as shown in Fig. 4. For
larger linewidths, however, this linear relationship no longer
holds. We find empirically that the linewidth follows a σ 2

law where σ is the variance of the probability distributions
indicated in Fig. 10.
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