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Functional renormalization group for the anisotropic triangular antiferromagnet
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We present a functional renormalization group scheme that allows us to calculate frustrated magnetic systems
of arbitrary lattice geometry beyond O(200) sites from first principles. We study the magnetic susceptibility of the
antiferromagnetic (AFM) spin-1/2 Heisenberg model ground state on the spatially anisotropic triangular lattice,
where J ′ denotes the coupling strength of the intrachain bonds along one lattice direction and J the coupling
strength of the interchain bonds. We identify three distinct phases of the Heisenberg model. Increasing ξ = J ′/J
from the effective square lattice ξ = 0, we find an AFM Néel order to spiral order transition at ξc1 ∼ 0.6–0.7,
with an indication that it is of second order. In addition, above the isotropic point at ξc2 ∼ 1.1, we find a first-order
transition to a magnetically disordered phase with collinear AFM stripe fluctuations.
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I. INTRODUCTION

Frustration induced by lattice geometry and interaction
in two-dimensional quantum antiferromagnets constitutes a
considerable challenge beyond mean-field theory.1 This is the
main reason why the question of distinguishing systems with
magnetic long-range order and spin liquid behavior has been
one of the most difficult and long-standing problems in the field
of quantum magnetism. A plethora of different methods has
been developed to address this problem in the context of many
different lattices and magnetic Hamiltonians. Analytical per-
turbative and semiclassical approaches all share the deficiency
that they generally tend to underestimate quantum fluctuations
affecting magnetic order. This is essentially because, at zero
temperature in two dimensions, only magnetically ordered
quantum phases possess classical analogues, while the notion
of a magnetically disordered system is a pure quantum effect.
Various numerical methods have been applied to this type of
problem, most of which, however, have severe drawbacks of
very different kinds. Quantum Monte Carlo (QMC) methods2

may suffer from the sign problem often encountered for frus-
trated systems, while exact diagonalization (ED) studies are
constrained to small system sizes. Conventional density matrix
renormalization group (DMRG) methods3,4 partly resolve
the latter problem, but they are constrained to (effectively)
one-dimensional systems. Coupled cluster methods (CCM)5

and variational QMC methods6 are valuable approaches to
treat frustrated two-dimensional systems. However, while they
do not suffer from insufficient system size, they are limited
in the sense that, generally, only trial state energies can be
tested against each other, and no unbiased treatment from first
principles is possible.

Promising lines of improvement have been undertaken
recently. In special cases where it is applicable, dimer
projection schemes allow the treatment of larger systems
at a similar level of precision and completeness to ED.7

From a perturbative expansion perspective, continuous unitary
transformation (CUT) methods provide a helpful tool to
compute the energies of the ground state and excitation
modes of small quasiparticle sectors.8,9 Adapted DMRG
algorithms have also been extended to two-dimensional

geometries, in applications to both bipartite and nonbipartite
lattices.10 However, in particular in the strongly frustrated
cases, the finite size and discarded entropy weight scalings
are very challenging, limiting its application to larger system
sizes.

Furthermore, the generalized notion of matrix product
states, in certain cases, leads to an efficient treatment of
two-dimensional magnetic systems by projected entangled
pair states (PEPS).11 In particular, the multiscale entanglement
renormalization ansatz (MERA) provides a new tool to
compute energies and scaling behavior of certain magnetic
systems and has been most recently applied to frustrated
systems.12,13 Still, even in the optimal cases where the
approximations made within these methods are controlled, it
is mainly suited to determine certain ground-state properties
only. For frustrated magnetic systems and actual comparison
to experiment, however, it would be most desirable to compute
complementary thermodynamic quantities that allow us to
resolve the competition and classification of magnetic ordering
and quantum fluctuations. The most suitable quantity in
this respect is the magnetic susceptibility. Interpreted as the
magnon spectral function, it provides detailed information
about the qualitative and quantitative type of magnetic
fluctuations, and it is the canonic quantity measured in
experiment. In this paper, we employ the pseudofermion
functional renormalization group (PFFRG)14 as a method to
tackle systems of frustrated magnetism. Applying the method
to the anisotropic triangular lattice, we demonstrate that the
PFFRG (i) is able to treat large system sizes of O(200) sites,
(ii) is applicable to arbitrary frustrated lattice geometries and
two-body bare interactions, (iii) naturally allows us to compute
the magnetic susceptibility as the canonical outcome of the
renormalization group (RG), and (iv) hence provides an unbi-
ased calculation from first principles that allows comparison to
experiment.

The paper is organized as follows. In Sec. II, we introduce
the Heisenberg model on the anisotropic triangular lattice and
elaborate on previous works and experimental realizations
associated with it. In Sec. III, we give a brief introduction to a
functional renormalization group formulation of spin systems
reported on previously.14 In particular, we classify which
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diagrammatic subsets summed over within our method account
for magnetic ordering and disordering tendencies, assuring
that our method treats all fluctuations on the same footing. In
Sec. IV, we report our results on the magnetic susceptibility for
the anisotropic triangular lattice. For the anisotropy parameter
ξ < 1 we specifically discuss the antiferromagnetic (AFM)
Néel to 120◦ Néel order transition, which we find to be
of second order with no magnetically disordered phases in
between and with a transition value ξ ∼ 0.6–0.7 which is
shifted upward as compared to the classical solution due
to quantum fluctuations. For weak anisotropy ξ ∼ 1.1, we
observe a first-order transition into a magnetically disordered
phase. From the magnetic susceptibility, however, we can
still obtain the magnetic fluctuation properties of this phase,
which we find to smoothly evolve into collinear AFM type. In
Sec. V, we conclude that our slave particle (pseudofermion)
functional renormalization group method establishes a promis-
ing approach to adequately describe the interplay of magnetic
order and disorder in frustrated magnets.

II. MODEL

The Heisenberg model on the anisotropic triangular lattice
(ATLHM) attracted considerable attention in recent years
as an experimentally accessible testing ground for quantum
magnetism disorder phenomena. The Hamiltonian is given as

HATLHM = J
∑

〈i,j〉v

�Si
�Sj + J ′ ∑

〈i,j〉−
�Si

�Sj , (1)

where the coupling J ′ applies to the bonds along (horizontal)
one-dimensional chains and J is the coupling between them,
forming a triangular lattice altogether [Fig. 1(a)]. We define
ξ = J ′/J as a parameter to interpolate between the effective
square lattice limit ξ = 0 and the disordered isolated chain
limit ξ → ∞. Experiments on Cs2CuCl4 (ξ ∼ 2.94) provide
an excellent testing ground of discussing various features of
spin liquid behavior.15 (Influences such as Dzyaloshinskij-
Moriya interactions complicate the experimental picture.) The
formation of a magnetically ordered state for smaller ξ op-
posed to disorder tendencies for larger ξ can be nicely studied
for the organic κ − (BEDT − TTF)2X family. While X =
Cu2N(CN)2]Cl shows an AFM transition of TN = 27 K with

C−AFM
AFM

Γ

J’

J

(a)

120−Neel 120−Neel

C−AFM

ky
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FIG. 1. (Color online) (a) Triangular lattice structure. The hori-
zontal bonds correspond to coupling J ′ and the others to coupling
J . (b) Schematic plot of the hexagonal Brillouin zone. Different
magnetic order resides at different points [AFM Néel order, 120◦

Néel order, collinear AFM order (c-AFM)]. The open circles relate
to the filled circles by reciprocal lattice vectors, i.e., AFM order
corresponds to two points in the Brillouin zone, collinear AFM to
four points, and 120◦ Néel order to six points.

estimated ξ = 0.55, the X = Cu2(CN)3 compound, estimated
to be nearby the symmetric triangular regime ξ = 1.15, does
not show magnetic order down to very low temperatures.16

Similar findings are obtained17 for EtMe3Sb[Pd(dmit)2]2,
which is located around ξ = 1.1. Details of the phase diagram
of (1) are still currently debated. It is an established fact
that the system is AFM Néel-ordered for small ξ , changing
to 120◦ Néel order as the isotropic triangular limit ξ = 1 is
reached.18–24 However, different methods provide differing
indication about the nature and position of the transition
between those phases: An intermediate disordered phase has
been proposed in the literature,25 while in other works a direct
transition is assumed, but the transition cannot be classified to
be of second or first order.22,23 For larger ξ > 1, some works
indicate a disordered phase extending to the ξ → ∞ limit,20,26

whereas others indicate collinear antiferromagnetic (c-AFM)
ordering.23,24,27

III. PSEUDOFERMION FUNCTIONAL
RENORMALIZATION GROUP

We now address this problem with PFFRG, which is
explained in more detail in Ref. 14. Unlike conventional
functional renormalization group (FRG) studies, our starting
point is not given by the bare excitations of the system. Instead
we use the pseudofermion representation of spin-1/2 operators
Sμ = 1/2

∑
αβ f †

ασ
μ
αβfβ , (α,β = ↑,↓, μ = x,y,z) with the

fermionic operators f↑ and f↓ and the Pauli matrices σμ. This
representation enables us to apply the methods of quantum
field theory (Wick’s theorem), leading to standard Feynman
many-body techniques. The introduction of pseudofermions
comes along with an artificial enlargement of the Hilbert
space and therefore requires the fulfillment of an occupancy
constraint (exclusion of empty and doubly occupied states).
Since an unphysical occupation acts as a vacancy in the spin
lattice associated with an excitation energy of order J , particle
number fluctuations are suppressed at zero temperature and
the constraint is naturally fulfilled. Quantum spin models
are inherently strong coupling models, requiring infinite
self-consistent resummations of perturbation theory. In this
context FRG28–31 provides a systematic summation in different
interaction channels by generating equations for the evolution
of all one-particle irreducible m-particle vertex functions under
the flow of an infrared (IR) frequency cutoff � [see Figs. 2(a)
and 2(b) for the flow of the self-energy and the two-particle
vertex]. In order to reduce the infinite hierarchy of equations
to a closed set, some truncation scheme has to be applied.
As an important difference in the PFFRG as compared to
conventional FRG schemes, we still include certain two-loop
contributions that are shown by Katanin32 to be essential
for a better fulfillment of Ward identities [see Fig. 2(c)]. In
particular, in this way the random-phase approximation (RPA)
is recovered as a diagram subset generated by the RG flow.33 It
is important to emphasize that the RPA diagrams play a crucial
role in our scheme as they are responsible for the collective
ordering phenomena. These graphs can be understood as
the leading contribution of a 1/S expansion34,35 (where S

is the spin length), favoring magnetic order. In addition, our
approximation includes the full particle-particle ladder as well
as the particle-hole ladder which presents the leading term in a
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FIG. 2. Graphic representation of the FRG differential equations.
Bare lines denote the (renormalized and scale-dependent) Green’s
functions and slashed lines the single scale propagators. Equations (a)
and (b) are the FRG equations for the self-energy and the two-particle
vertex, respectively [without distinguishing between the different
pairing channels on the right side of (b)]. The Katanin scheme is given
by the replacement (c). By fusing the external legs of the two-particle
vertex, the magnetic susceptibility is obtained, as shown in (d).

1/N expansion [where N is the dimension of the generalized
symmetry group SU(N )]. Paramagnetic quantum phases have
been previously described within such an expansion.36,37 Gen-
erally, these graphs favor disorder tendencies. Including both
contributions from the 1/S and 1/N expansion hence enables
us to adequately treat the competition of magnetic order and
disorder in an unbiased fashion. The magnetic susceptibility
can be conveniently computed from the two-particle vertex
[Fig. 2(d)]. Due to the local nature of the auxiliary fermions of

a bare spin model, a real-space representation of all vertices is
much more suitable than the usual momentum-space scheme.
Furthermore, since we operate in the strong coupling limit,
the proper regularization of Green’s functions requires the
self-consistent back coupling of the self-energy [Fig. 2(a)]
into the propagators in Fig. 2(b). In order to account for the
dynamic fluctuations, it is also necessary to keep all frequency
dependencies of the vertex functions. The numerical solution
requires the discretization of all frequency dependencies.
Similarly, the spatial dependence is approximated by keeping
correlation functions of an infinite system up to a maximal
length. In our calculations, this length extends over seven
lattice spacings, leading to a correlation area of 169 lattice
sites (which constrains resolvable incommensurable order to
vector sizes within that range). An ordering instability is
initially signalled by a strong rise of the vertex couplings
associated with this order at some finite scale of � (Figs. 3
and 5). Since in the present formulation rotational invariance
is conserved during the flow, we should not find stable
solutions down to � = 0 in magnetically ordered regimes.
Indeed, the onset of spontaneous long-range order is signalled
by a sudden breakdown of the smooth flow. In contrast,
the existence of a stable solution indicates the absence of
long-range order.

IV. MAGNETICALLY ORDERED
AND DISORDERED PHASES

A. Néel order to spiral order transition

We sweep through the parameter space of ξ from the
square lattice to the isotropic triangular lattice and compute
the static magnetic susceptibility shown in Fig. 3. [The peak
positions for different types of long-range order are depicted
in Fig. 1(b).] Throughout this parameter regime, we observe
a characteristic breakdown of the flow, indicating ordering
instabilities rather than a disordered phase. One can nicely
observe how the susceptibility evolves as we increase ξ .
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FIG. 3. (Color online) Static magnetic susceptibility resolved for the whole Brillouin zone, by varying ξ = J ′/J from the effective square
lattice ξ = 0.0 close to the triangular lattice ξ = 0.9. Bottom Left: Two-particle vertex flow for the AFM Néel channel (blue) versus the 120◦

Néel channel (red) at ξ = 0 with respect to the IR cutoff flow parameter �. We observe that the AFM vertices start to diverge, signaling a
magnetic instability. Susceptibilities are always given in units of 1/J . The respective types of order for the distinct peaks positions are shown
in Fig. 1(b).
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FIG. 4. (Color online) Static magnetic susceptibility, by varying ξ from the AFM Néel side ξ = 0.55 across the phase transition to spiral
ordering. The already broadened AFM Néel peak splits into two incommensurate peaks that successively shift toward the edges of the Brillouin
zone where the 120◦ Néel order peaks reside.

As shown in Fig. 3, we find a broadening and subsequent
splitting of the Néel peak. The split peaks evolve along
the Brillouin-zone edge and the weight at the corners of
the hexagon increases until in the isotropic case the peak
symmetrically resides at the corner position. From the splitting
of the Néel peak, we estimate the transition to be at ξc1 ∼
0.6–0.7, i.e., the regime above which the order becomes in-
commensurate. Apparently, the system influenced by quantum
fluctuation favors AFM fluctuations over spiral fluctuations,
since the classical transition point at ξ = 0.5 is shifted to
higher ξ .

We have resolved the Néel order to spiral order transition
in higher resolution by varying the anisotropy parameter ξ

in small step widths (see Fig. 4). We find that the previous
Néel peak first broadens along kx and then smoothly splits
into two peaks, which then evolve along the Brillouin-zone
boundary. This comes along with increasing spectral weight at
the corners of the Brillouin zone. Note that, as a consequence
of the periodicity in momentum space, the emerging peak

structure at ky = 0 presents the tails of the broadened Néel
peak. By increasing ξ further toward the isotropic triangular
point the split peaks move toward the corner position until at
ξ = 1 the hexagonal symmetry of the susceptibility is reached.
As the susceptibility evolves completely smoothly through the
transition, we find it to be of second order, while an extremely
weak first-order transition (corresponding to a slight kink in the
leading susceptibility channel) cannot be excluded as a matter
of principle. We identify the wave vector of the corresponding
long-range-ordered phases with the position of the maximal
susceptibility. From this we locate the transition point at such
ξ where the peak splits and above which the order becomes
incommensurate. From Fig. 4 a transition at ξ ≈ 0.61 can be
read off. In the calculations for this figure we kept correlations
up to a length of five lattice spacings (as compared to seven
lattice spacings in Figs. 3 and 5). In addition, the number of
discrete frequencies has been slightly reduced in Fig. 4. These
reductions generally result in lower and broader peaks, which
demonstrates that (according to the fact that the phases in
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FIG. 5. (Color online) Static magnetic susceptibility, by varying ξ from the isotropic triangular lattice ξ = 1.0 toward the one-dimensional
chain limit ξ → ∞. Bottom left: Vertex flow at the ξ = 1 point. The rise of the 120◦ Néel channel shows the ordering instability at the isotropic
triangle point. Compared to the flow at ξ = 0 (Fig. 3), the rise takes place at a much lower scale of �, indicating a lower ordering scale for the
triangular lattice.
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FIG. 6. (Color online) Static magnetic susceptibility, by varying ξ in the strongly anisotropic regime from ξ = 2 to ξ = 4. While the
spectral structure remains rather invariant of c-AFM type, which is strongly smeared along the ky direction, the total spectral weight slightly
decreases with increasing ξ .

this parameter regime are long-range-ordered) there are still
finite-size effects in the susceptibility. Another effect seen in a
finite-size scaling is that with increasing length of correlations
(and also increasing number of discrete frequencies), the
transition point moves toward slightly higher ξ . Therefore,
from a finite-size scaling we estimate the transition to be
approximately centered between ξ = 0.6 and ξ = 0.7. At
the isotropic triangular point ξ = 1 where additional lattice
symmetries enable us even to consider systems beyond 250
sites, we also obtain higher and sharper peaks with increasing
system size.

B. Magnetic disorder transition and collinear
antiferromagnetic fluctuations

In a recent work, Starykh and Balents have found that,
for ξ > 1, the quantum system enters a collinear antiferro-
magnetic stripe phase.27 This is interesting since the classical
estimate would be spiral order in that regime, so the quantum
fluctuations lead to a different ordering.24 However, finite-size
numerical studies have revealed a disordered phase in that
regime.22 Our results for the magnetic susceptibility for ξ � 1
are shown in Fig. 5. As depicted, we observe a strong drop in
the magnetic susceptibility above the isotropic point, i.e., in the
regime ξc2 � 1.1. From here, no ordering instability is found
in the RG flow and the susceptibility rapidly loses the 120◦
Néel order signature. While the 120◦ Néel order peaks die out
quickly, AFM stripe fluctuation signatures emerge (at points of
the Brillouin zone according to Fig. 1). The transition appears
to be of first order according to a pronounced kink in the
maximal susceptibility upon varying ξ . While we do not find a
breakdown of the flow that would indicate magnetic ordering,
we still obtain strong collinear AFM stripe fluctuations (in
agreement with Ref. 27) signalled by an unstable RG flow that
develops oscillations sensitively depending on the frequency
discretization. These fluctuation tendencies are also seen at
higher ξ where the peak structure is still visible along the kx

direction. However, these peaks are strongly broadened along
the ky axis, i.e., smeared between the two c-AFM ordering
vector positions. This indicates a fast exponential decay of
spin correlations between the J ′ chains. There are proposals
in the literature that the (supposedly) disordered regime splits
into two (gapped or gapless) different spin liquid phases.26

In principle this would correspond to a change of diffuse
spectral weight in the magnetic susceptibility going from an
ungapped to a gapped system. In general, as also applies to the
high-anisotropy regime described in the following, we do not
find a clear indication for this scenario.

C. High-anisotropy regime

We have obtained detailed susceptibility data in the
strong-anisotropy regime as the system evolves toward the
weakly coupled one-dimensional limit (Fig. 6). As found
there, the strong decay of correlations between the effectively
weakly coupled one-dimensional chains is already dominant,
which manifests itself in a strong smearing of the magnetic
susceptibility along ky . As ξ is increased, the spectral weight
of the susceptibility gets more and more reduced, while the
fluctuation structure remains rather stable. We only observe
reminiscences of c-AFM fluctuations smeared along ky . From
there, we do not find clear indication for a bi-spin liquid
scenario suggested in the literature for that regime, where one
magnetically disordered phase should be gapped while the
other should be gapless.26 A transition between those phases
should manifest itself in the susceptibility by some jump in the
spectral weight. In addition the bi-spin liquid scenario suggests
no breaking of lattice symmetries, which appears to disagree
with the c-AFM fluctuations which we find in the magnetically
disordered strong anisotropy regime. In general, at large
anisotropies energy scales involved in the coupling between
the chains become so small that a caveat has to be given
from the frequency discretization incorporated in the method,
which sets a lower bound of energy scales to be resolvable.
To rule out an artefact of this kind, for the anisotropy range
considered by us, we varied the frequency mesh in the lower
energy regime, and we found no notable change of our results.
While this holds for the anisotropy regime considered, we
cannot exclude different physical scenarios for even higher
anisotropy.

V. CONCLUSION

In conclusion, we have used the pseudofermion functional
renormalization group to study the different phases of the
anisotropic triangular lattice. We find that upon variation of
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the anisotropy parameter ξ , the system is divided into three
distinct phases: Néel order, spiral order, and a disordered
phase with c-AFM stripe fluctuations. We find evidence for a
second-order transition between the first two and a first-order
transition between the last two of these phases. The results
give us confidence that our method is a suitable starting point
to discuss various other problems in the field of frustrated
magnetism.
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