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3Université Joseph Fourier, Unité de Formation et de Recherche (UFR) de Physique, F-38041 Grenoble Cedex 9, France

4Department of Chemistry, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, United Kingdom
(Received 28 September 2010; revised manuscript received 18 November 2010; published 21 January 2011)

Zn (CN)2 and Ni(CN)2 are known for exhibiting anomalous thermal expansion over a wide temperature range.
The volume thermal expansion coefficient for the cubic, three-dimensionally connected material, Zn(CN)2, is
negative (αV = −51 × 10−6 K−1) while for Ni(CN)2, a tetragonal material, the thermal expansion coefficient is
negative in the two-dimensionally connected sheets (αa = −7 × 10−6 K−1), but the overall thermal expansion
coefficient is positive (αV = 48 × 10−6 K−1). We have measured the temperature dependence of phonon spectra
in these compounds and analyzed them using ab initio calculations. The spectra of the two compounds show large
differences that cannot be explained by simple mass renormalization of the modes involving Zn (65.38 amu) and
Ni (58.69 amu) atoms. This reflects the fact that the structure and bonding are quite different in the two compounds.
The calculated pressure dependence of the phonon modes and of the thermal expansion coefficient, αV , are used to
understand the anomalous behavior in these compounds. Our ab initio calculations indicate that phonon modes of
energy ∼2 meV are major contributors to negative thermal expansion (NTE) in both compounds. The low-energy
modes of ∼8 and 13 meV also contribute significantly to the NTE in Zn(CN)2 and Ni(CN)2, respectively. The
measured temperature dependence of the phonon spectra has been used to estimate the total anharmonicity of
both compounds. For Zn(CN)2, the temperature-dependent measurements (total anharmonicity), along with our
previously reported pressure dependence of the phonon spectra (quasiharmonic), is used to separate the explicit
temperature effect at constant volume (intrinsic anharmonicity).
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I. INTRODUCTION

The discovery of anomalous thermal expansion in frame-
work solids is of fundamental scientific interest and may
find application in fabricating technological materials, in
particular for the optical and electronics industries. Besides
oxide-based materials,1,2 anomalous thermal expansion be-
havior has been observed in molecular framework materials
containing linear diatomic bridges such as cyanide anions.3–6

Recent x-ray diffraction measurements have shown6 that the
hexagonal materials, Ag3Co(CN)6 and Ag3Fe(CN)6, exhibit
exceptionally large (“colossal”) positive thermal expansion
(PTE) along the a direction (αa = +140 × 10−6 K−1) and
negative thermal expansion (NTE) along the c direction (αc =
−125 × 10−6 K−1). These thermal expansion coefficients are
an order of magnitude larger than those observed in any other
material. Even simple cyanides such as Zn(CN)2 are reported5

to have an isotropic NTE coefficient (αV = −51 × 10−6 K−1),
which is twice as large as that of ZrW2O8.1 However, when
Zn is substituted by Ni, a layered compound, Ni(CN)2,
is produced,3 which has NTE in two dimensions (αa =
−7 × 10−6 K−1) combined with a very large positive (PTE)
coefficient (αc = 61.8 × 10−6 K−1) in the third dimension
perpendicular to the layers, to yield a large overall volume
thermal expansion (αV = 48.5 × 10−6 K−1).

It has been proposed from pair distribution function (PDF)
analysis of the structural data collected using high-energy x
rays that NTE in Zn(CN)2 is induced by an average increase of
the transverse thermal amplitude of the motion of bridging C/N
atoms, away from the body diagonal.7 Further, an investigation
using ab initio calculations8 of the geometry and electronic

structure of Zn(CN)2 shows that the naturally stiff C≡N bond
is paired with weak Zn-C/N bonds. This type of bonding allows
large transverse thermally excited motions of the bridging C/N
atoms to occur in (M-CN-M) bridges within metal-cyanide
frameworks. Structural studies9 of Zn(CN)2 show that two
different models having a cubic symmetry with space group
Pn3m (disordered model) and P43m (ordered model) give
equally good accounts of the diffraction data. The ordered
structure (Fig. 1) consists of a ZnC4 tetrahedron (at the center
of the cell) linked to four neighboring ZnN4 tetrahedra (at the
corners of the cell) with CN groups along four of the body
diagonals. In the x-ray diffraction modeling of the disordered
structure, atomic sites are given 50:50 C:N occupancy. Such
models cannot be used for ab initio calculations, where sites
can contain only one type of atom, thus restricting the space
group to P43m.

Ni(CN)2 is fundamentally different from Zn(CN)2 in
that it forms a layered structure with average tetragonal
symmetry. Nickel cyanide has a long-range ordered structure
in two dimensions (a-b plane) (Fig. 2) but a high degree of
stacking disorder in the third dimension. The relationship
between neighboring layers is defined, but there is a random
element to the relationship between next-nearest neighbors.
A crystallographic model in P42/mmc (Ref. 3) reproduces the
structure well and the disorder in the stacking is dealt with more
comprehensively in the paper by Goodwin et al.4 The gridlike
layers (a-b plane) (Fig. 2) consist of NiC4 square-planar units
(as shown at the center of the figure), which are linked by vertex
sharing to four neighboring NiN4 square-planar units (shown
at the corners of the figure) with the resultant CN groups
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FIG. 1. (Color online) The structure of Zn(CN)2 in P43m. Key:
Zn, gray spheres; C, green spheres; N, blue spheres.

along the diagonals in the a-b plane. The covalent bonding
within the layers is much stronger than the van der Waals’
bonding between the layers, and it is this component that is
studied in the calculations presented here, where effectively
isolated Ni(CN)2 layers are considered. Nickel cyanide shows
anisotropic thermal behavior. Although the dimensions of its
square gridlike layers (a-b plane) decrease with increasing
temperature, this decrease is accompanied by a length increase
along the c direction, giving an overall positive thermal
expansion.

As already mentioned above, motions at right angles to
the atomic and/or molecular bonds are identified as the
principal cause of anomalous thermal expansion in framework
compounds. Such motions are necessarily connected with
transverse vibrations. For the amplitudes of motion to be large,
the corresponding vibrations should be low in energy. That
low-energy phonon modes play an important role in anoma-
lous thermal expansion has been demonstrated by previous
work10–15 on ZrW2O8 and HfW2O8. In the case of Zn(CN)2,
time-of-flight inelastic neutron scattering measurements from
powdered samples16 indicate the existence of dispersionless
modes at ∼2 meV (∼16 cm1). To produce thermal expansion,

FIG. 2. (Color online) The structure of part of one layer of
Ni(CN)2 with D4h symmetry. Key: Ni, gray spheres; C, green spheres;
N, blue spheres.

vibrations not only have to be of large amplitude, but also
have to be anharmonic in nature. To this end, we have re-
cently investigated the anharmonicity of phonons in Zn(CN)2

(Ref. 17) by employing a high-pressure inelastic neutron
scattering technique. In this article we extend these inves-
tigations by including the temperature dependence of the
Zn(CN)2 spectra, together with a comparison with Ni(CN)2.
The analysis of the experiments is performed with the help
of state-of-the-art ab initio lattice dynamical calculations. In
this way we obtain a clear and detailed insight into the phonon
mechanisms responsible for thermal expansion in Zn(CN)2

and Ni(CN)2.

II. EXPERIMENTAL

A Zn(CN)2 (∼98.0% pure) polycrystalline sample was
obtained from Aldrich, USA. The Ni(CN)2·1.5H2O, purchased
from Alfa Aesar, was dried under vacuum at room temperature
for 12 h, reground, and then dried under vacuum at 200 ◦C for
3 weeks. Powder x-ray diffraction showed that the hydrated
nickel cyanide had been completely converted to anhydrous
nickel cyanide and that Ni(CN)2 was the only crystalline phase
present. The IR spectrum of Ni(CN)2, collected using a Perkin
Elmer 100 Fourier transform infrared (FTIR) spectrometer
with a Universal ATR sampling accessory, confirmed that
the material was fully dehydrated. The Raman spectrum was
collected on a Renishaw InVia Raman microscope.

The inelastic neutron scattering experiments were per-
formed using the IN6 time-of-flight spectrometer at the Institut
Laue-Langevin (ILL), in Grenoble, France. The temperature-
dependent measurements were performed on ∼10 g of poly-
crystalline samples of Zn(CN)2 and Ni(CN)2. The samples
were placed in a cryostat inside sealed thin-slab aluminum
containers mounted at 45◦ with respect to the incident neutron
beam. The high-resolution data for Zn(CN)2 and Ni(CN)2

were measured at several temperatures from 300 to 160 K.
The measurements were performed in the neutron-energy gain
inelastic focusing mode with an incident neutron wavelength
of 5.12 Å (3.12 meV) and 4.14 Å (4.77 meV) for Zn(CN)2 and
Ni(CN)2, respectively,. The elastic energy resolution of the
spectrometer is 0.20 meV for λ = 5.12 Å and 0.30 meV for
λ = 4.14 Å in the inelastic focusing mode. The spectrometer
is equipped with a large detector bank covering a wide range
of scattering angle (10◦–115◦).

In the incoherent one-phonon approximation, the phonon
density of states18 is related to the measured scattering function
S(Q,E), as observed in the neutron experiments by

g(n)(E) = A

〈
e2Wk (Q)

Q2

E

n(E,T ) + 1
2 ± 1

2

S(Q,E)

〉
, (1)

gn(E) = B
∑

k

(
4πb2

k

mk

)
gk (E), (2)

where the + or − signs correspond to energy loss or gain of the
neutrons, respectively, and n(E,T ) = [exp(E/kBT ) − 1]−1.
A and B are normalization constants and bk,mk , and gk(E) are,
respectively, the neutron scattering length, mass, and partial
density of states of the kth atom in the unit cell. The quantity
within 〈· · ·〉 represents an appropriate average over all Q values
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TABLE I. Fractional atomic coordinates used to generate the
Ni(CN)2 layers within the tetragonal space group P4 for Ni(CN)2.
a=b=6.869 00 Å and c=6.405 00 Å.

Ni 0.0 0.0 0.0
Ni 0.5 0.5 0.0
C 0.1909 0.1909 0.
N 0.3091 0.3091 0.0

at a given energy. 2W(Q) is the Debye-Waller factor. The

weighting factors 4πb2
k

mk
for each atom type in the units of

barns/amu are as follows: Zn: 0.063; Ni: 0.315; C: 0.462;
and N: 0.822 calculated from the neutron scattering lengths
found in Ref. 19.

III. LATTICE DYNAMICAL CALCULATIONS

Ab initio calculations were performed using the projector-
augmented wave (PAW) formalism20 of the Kohn-Sham
discrete Fourier transform (DFT) (Refs. 21 and 22) at the gen-
eralized gradient approximation level (GGA), implemented
in the Vienna ab initio simulation package (VASP).23,24 The
GGA was formulated by the Perdew-Burke-Ernzerhof (PBE)
(Refs. 25 and 26) density functional. The Gaussian broadening
technique was adopted and all results are well converged with
respect to k mesh and energy cutoff for the plane-wave expan-
sion. The partially relaxed (only coordinates are optimized)
ordered structures of Zn(CN)2 and Ni(CN)2 were used for
the lattice dynamical calculations and related properties. For
Zn(CN)2, the available structure having the cubic space group
(P43m (215), [T 1

d ]) is considered.9 For Ni(CN)2, a periodic
model system is used (Table I) to generate the layers within
the tetragonal space group (P4 (75) [C1

4 ]).4 This model for
Ni(CN)2 is an approximation of the real situation as the
interlayer spacing used is double that found in the actual
material. Such a model results in no interaction between the
layers. However, the model can be used to reproduce most
features of the Raman spectrum, the phonon density of states
(DOS) and, in addition, can be used to investigate the in-plane
negative thermal expansion.

In the lattice dynamics calculations, in order to determine
all interatomic force constants, the supercell approach has been
adopted.27 For both Ni(CN)2 and Zn(CN)2, (2a,2b,2c) super
cells containing 16 formula units (80 atoms) were constructed.
Total energies and interatomic forces were calculated for
the 20 structures generated for Ni(CN)2 and for the eight
structures, generated for Zn(CN)2, by displacement of the four
symmetry inequivalent atoms present in both systems along
the three Cartesian directions (±x, ±y, and ±z). DOS, phonon
dispersion relations (PDR), and Raman active modes and/or
frequencies were extracted in subsequent calculations using
the Phonon software.28

IV. RESULTS AND DISCUSSION

A. Phonon density of states and dispersion relation

The measured temperature dependence of the phonon
spectra for Zn(CN)2 and Ni(CN)2 are shown in Figs. 3 and 4,
respectively. Differential scanning calorimetric
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FIG. 3. (Color online) The temperature dependence of the phonon
spectra for Zn(CN)2. The phonon spectra are measured with an
incident neutron wavelength of 5.12 Å using the IN6 spectrometer
at ILL. The calculated phonon spectra from ab initio calculations
are also shown. The calculated spectra have been convoluted with a
Gaussian of FWHM of 10% of the energy transfer in order to describe
the effect of energy resolution in the experiment carried out using the
IN6 spectrometer.

measurements29 for Zn(CN)2 show an anomaly at ∼250 K.
The phonon spectra for Zn(CN)2 (Fig. 3) have been measured
at 180, 240, 270, and 320 K. These measurements show a
visible change in the phonon spectra at ∼50 meV with a
change of temperature from 240 to 270 K that matches the
temperature of the anomaly in the calorimetric measurements.
All the observed features for Zn(CN)2 are well reproduced
computationally (Fig. 3), especially the low-energy peak at
∼2 meV.
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FIG. 4. (Color online) The temperature dependence of the phonon
spectra for Ni(CN)2. The phonon spectra are measured with an
incident neutron wavelength of 4.14 Å using the IN6 spectrometer
at ILL. The calculated phonon spectra from ab initio calculations
are also shown. The calculated spectra have been convoluted with a
Gaussian of FWHM of 10% of the energy transfer in order to describe
the effect of energy resolution in the experiment carried out using the
IN6 spectrometer.
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FIG. 5. (Color online) Comparison of the experimental phonon
spectra for Zn(CN)2 and Ni(CN)2.

The experimental phonon spectrum of Ni(CN)2 (Fig. 4)
shows several well-pronounced vibration bands that do not
show any significant temperature dependence. The calculated
positions of these bands are in good agreement with the
experimental data while there are slight differences in the
intensities. This is probably owing to the fact that the interlayer
interactions in Ni(CN)2 have not been included. As we do
neglect the interlayer coupling, the modes along the stacking
axis have very low energies. All these modes are included in
the calculated DOS that we have shown in Fig. 4. This explains
the extra weight in the calculated DOS at low energies.

The comparison of the phonon spectra of Zn(CN)2 and
Ni(CN)2 shows (Fig. 5) that there are pronounced differences.
The cutoff energy for the external modes in Zn(CN)2 and
Ni(CN)2 is at ∼65 and 90 meV, respectively. The calculated
partial DOS show that the contributions from Zn and Ni in
Zn(CN)2 and Ni(CN)2 (Fig. 6) extend up to 60 and 75 meV,
respectively. These differences cannot be explained obviously
by a simple mass renormalization of the modes involving Zn
(65.38 amu) and Ni (58.69 amu) atoms. They thus imply that
the strength and may be the character of bonding is different in

0 20 40 60 80 280 300
0.0

0.2

0.0

0.2

0.0

0.2

0.0

0.1

0.2

D
en

si
ty

of
st

at
es

(m
eV

-1
)

E(meV)

Zn(CN)
2

Ni(CN)
2

Total

N

C

Zn/Ni

FIG. 6. (Color online) The calculated partial density of states for
the various atoms in Zn(CN)2 and Ni(CN)2.
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FIG. 7. Raman spectrum of Ni(CN)2. Inset shows enlargement of
the low-wave number region.

both systems. Our inelastic scattering data show that the first
low-energy band in the Zn compound is at 2 meV, while in the
Ni compound this band is at 10 meV.

The structures of Zn(CN)2 and Ni(CN)2 yield 30 phonon
modes for each wave vector. The measurements of Raman
modes for Zn(CN)2 are reported in Ref. 30. For Ni(CN)2 no
such data are available in the literature to our knowledge.
Our Raman measurements on Ni(CN)2 are shown in Fig. 7.
Specifically the νC≡N region for both the Raman and infrared
spectra of Ni(CN)2 is shown in Fig. 8. The presence of
two νC≡N absorptions in the Raman and one in the infrared
spectrum (Fig. 8) is consistent with D4h symmetry.

The comparison between the experimental and calculated
zone-center modes for Zn(CN)2 (Ref. 30) and Ni(CN)2 is given
in Tables II and III, respectively. The agreement is very close
in each case. Reference 4 reported five dispersionless phonon
modes below 1.0 THz (4.136 meV) arising from motions
of a single Ni(CN)2 layer, as obtained from reverse Monte
Carlo fitting of total neutron diffraction data. However, our
calculations for Ni(CN)2 produces the lowest optic mode at
99 cm−1 (∼3 THz, ∼12.3 meV) (Fig. 9), in agreement with
the Raman data (Table III).

The calculated phonon dispersion curves for Zn(CN)2 are
shown in Fig. 9. We notice a remarkable flat phonon dispersion
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FIG. 8. The νC≡N region of the Raman (black) and infrared (gray)
spectra for Ni(CN)2.
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TABLE II. Ab initio calculated (Calc.) and observed (Exp.)
(Ref. 30) Raman and IR frequencies (cm−1) for Zn(CN)2. Irrep.,
Type, and M stand for irreducible representation, type of the mode,
and multiplicity, respectively. R, RI, and S indicate if the mode is
Raman active or is both Raman and IR active or optically inactive,
respectively. The point group symmetry is T 1

d . The experimental
Raman and IR frequencies are taken from Table I of Ref. 30.

Calc. 59 173 178 204 240 330 336 476 481 2251 2261
Exp. 178 216 343 339 461 2218 2221
Irrep. T1 E T2 T2 T1 T2 E A1 T2 T2 A1

Type S R RI RI S RI R RI R RI R
M 3 2 3 3 3 3 2 3 1 3 1

sheet of the two lowest-energy acoustic modes at ∼2 meV.
These flat modes give rise to the observed first peak in the
DOS at ∼2 meV. Further flat phonon dispersion sheets are
found at relatively high energies of ∼25, 30, 40, and 60 meV
(Fig. 9), providing the other well isolated bands in the DOS
(Fig. 3). The calculated dispersion relation for Ni(CN)2 (Fig. 9)
is quite different as compared to Zn(CN)2. As explained in Sec.
III, the calculations for Ni(CN)2 are carried out with the layers
separated, which is different from the real situation. Further,
we find that at zone boundary the acoustic modes extend up to
10 meV. The flattening of acoustic modes at ∼10 meV gives
rise to the first peak in the DOS (Figs. 4 and 5) of Ni(CN)2.
The large difference in the energies of acoustic modes between
the compounds indicates that bonding is quite different in both
compounds. Further, the flat phonon dispersion sheets at ∼18,
30, 45, 60, and 75 meV give rise to the isolated peaks in the
DOS of Ni(CN)2. The Bose-factor corrected S(Q,E) plots for
Zn(CN)2 and Ni(CN)2 at 180 and 160 K, respectively, are
shown in Fig. 10. The figure clearly shows the presence of flat
acoustic modes at 2 meV in the S(Q,E) plot of Zn(CN)2, while
for Ni(CN)2 the acoustic modes extend up to ∼10 meV.

In case of Ni(CN)2 the acoustic dispersion within the
sheets for the transverse branches possesses in the calculation
an anomalous dispersion. The curves turn upward instead
of downward with respect to increasing q. Naturally, the
anomalous dispersion could become normal by including
the interplanar coupling. On the other hand, the measured
DOS (Fig. 4) seems to be linear. This would be compatible
with an anomalous dispersion. The fact that we do not see

FIG. 9. The calculated phonon dispersion curves for Zn(CN)2

and Ni(CN)2. The Bradley-Cracknell notation is used for the high-
symmetry points along which the dispersion relations are obtained.
Zn(CN)2: � = (0,0,0), X = (1/2,0,0), M = (1/2,1/2,0), and R =
(1/2,1/2,1/2). Ni(CN)2: � = (0,0,0), X(1/2,0,0), and M(1/2,1/2,0).
In order to expand the y scale, the sets of four and three dispersionless
modes, respectively, in Zn(CN)2 and Ni(CN)2 owing to the cyanide
stretch at ∼280 meV are not shown.

any soft modes in S(Q,E) (Fig. 10) demonstrates that the
interplanar coupling is certainly not negligible. If this was
the case, then soft modes along the stacking direction would

TABLE III. Ab initio calculated (Calc.) and observed (Exp.) Raman and IR frequencies (cm−1) for Ni(CN)2. Irrep, Type, and M stand for
irreducible representation, type of the mode, and multiplicity, respectively. R and RI indicate if the mode is Raman active or is both Raman
and IR active, respectively. The point group symmetry is C1

4 , thus all IR are Raman active. A and E Irreps. (polar modes) are also IR, with
polarizations lying along the z axis and in the xy plane, respectively. The B modes are Raman active only.

Calc. 99 100 103 210 303 328 333 334 335 337
Exp. 200 334 (broad)
Irrep. E A A B E E A A B E
Type RI RI RI R RI RI RI RI R RI
M 2 1 1 1 2 2 1 1 1 2
Calc. 397 461 489 490 566 583 606 2196 2205 2238
Exp. 508 561 604 607 2202 2206 2215
Irrep. B A E B B A E E B A
Type R RI RI R R RI RI RI R RI
M 1 1 2 1 1 1 2 2 1 1

024301-5



R. MITTAL et al. PHYSICAL REVIEW B 83, 024301 (2011)

FIG. 10. (Color online) The experimental Bose-factor corrected S(Q,E) plots for Zn(CN)2 and Ni(CN)2 at 180 and 160 K, respectively. The
values of S(Q,E) are normalized to the mass of the sample in the beam. For clarity, a logarithmic representation is used for the intensities. The
measurements for Zn(CN)2 and Ni(CN)2 were performed with an incident neutron wavelength of 5.12 Å (3.12 meV) and 4.14 Å (4.77 meV),
respectively.

be inevitable. Therefore, the contraction of the plane certainly
should influence the physics along the stacking axis.

B. Grüneisen parameters and thermal expansion

The calculation of thermal expansion is carried out using
the quasiharmonic approximation. Each mode of energy Ei

contributes to the volume thermal expansion coefficient31

given by αV = 1
BV

�i�iCV i(T ), where V is the unit cell
volume, B is the bulk modulus, �i (= −∂ ln Ei/∂ ln V ) are
the mode Grüneisen parameters, and CV i is the specific-heat
contributions of the phonons in state i (= qj ) of energy
Ei . Our published high-pressure inelastic neutron scattering
experiments17 on polycrystalline samples of Zn(CN)2 enabled
us to estimate the energy dependence of the ratios �i

B
at 165 and

225 K. The measurements show that the �i

B
values are nearly

the same at 165 and 225 K. The thermal expansion coefficient
derived from the phonon data17 is in good agreement with that
obtained from diffraction measurements.5

In order to estimate theoretically the volume thermal
expansion coefficient, we have calculated the Grüneisen
parameters based on the DOS at two different unit-cell

FIG. 11. (Color online) The comparison between the experimen-
tal and calculated �i

B
plotted as a function of phonon energy E. The

�i

B
values derived from ab initio calculations from Ref. 33 are shown

by closed circles. The �i

B
values represent the average over the whole

Brillouin zone.

volumes. In addition to the phonon spectra at the experimental
cell volumes, we calculated the phonon spectra using the lattice
parameters reduced by 0.2%, together with reoptimized atomic
positions. The calculation of the bulk modulus, B, was then
accomplished by determining the total energy of the materials
as a function of unit-cell volumes and fitting them to a Birch
equation of state.32 We obtain values for B of 84.1 GPa for
Zn(CN)2 and 63.4 GPa for Ni(CN)2.

The calculated �i

B
for Zn(CN)2 and Ni(CN)2 are shown in

Figs. 11 and 12(a), respectively. The modes up to 15 meV
show negative �i

B
, with the low-frequency modes at ∼2 meV

for Zn(CN)2 showing the largest negative �i

B
. The calculated

�i

B
for Zn(CN)2 (Fig. 11) are in very good agreement with

the values obtained from our high-pressure inelastic neutron
scattering measurements and for higher-frequency modes with
the ab initio calculations done by Zwanziger.33 The calculated
temperature dependence of the volume thermal expansion
coefficient derived from these �i

B
values compares very well

with those derived from our phonon data [Fig. 13(a)]. These
values for Zn(CN)2 can be used to calculate the volume expan-
sion, and both are in good agreement with the corresponding
value obtained from diffraction data5 [Fig. 13(b)]. The ab
initio calculations by Zwanziger33 give a thermal expansion
coefficient of −12 × 10−6 K−1 at 5 K, in agreement with
the experimental data. However, Zwanziger33 did not report
Grüneisen parameters of modes below 3 meV, or a detailed
temperature dependence of αV . Note that the value of αV

changes to −51 × 10−6 at 300 K.
Ni(CN)2 shows two-dimensional NTE (Ref. 3) in the

a-b plane with αa = −6.5 × 10−6 K−1. The large positive
expansion3 along c (αc = 61.8 × 10−6 K−1) results in an in-
crease in volume with temperature (αV = 48.5 × 10−6 K−1).
The experimental �i

B
values are not available, however, these

values should be positive for positive αV . We have carried
out ab initio calculations for Ni(CN)2 on what are effectively
isolated sheets. By separating the sheets, we are able to employ
P4 symmetry and achieve a great saving in computational
resource. Structures with the sheets at the correct separation
and alignment can be described only in P1. This is the case
because, in contrast to the modeling of diffraction patterns,
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FIG. 12. (a) The calculated �i

B
and (b) volume thermal expansion coefficient (αV ) derived for Ni(CN)2 from ab initio calculations.

where an average C/N atom can be employed, in ab initio
calculations discrete C or N atoms must occupy any individual
atomic site. The use of P1 symmetry would be prohibitively
expensive in computing time in ab initio calculations of the
type employed here. Attempts to introduce stacking disorder
of the type found in Ni(CN)2 into the modeling would present
additional computing costs.

We find that such a model gives negative �i

B
[Fig. 12(a)]

for Ni(CN)2. The calculated average αV [Fig. 12(b)] in the
100–300 K range is −16.5 × 10−6 K−1, which gives a linear
αL = −5.5 × 10−6 K−1 and compares excellently with the
αa value of −6.5 × 10−6 K−1 from diffraction experiments.5

Unfortunately, our modeling produces no quantitative
information on the third dimension because we have modeled
effectively isolated sheets. A qualitative explanation of the
overall positive expansion of this system is that, as these
layers contract in the a-b plane, they expand into the third
dimension, pushing the layers apart, as suggested in Hibble
et al.3 The weak interactions between the layers mean that
expansion in this direction is easy and explains the overall
PTE in this system.

The estimated �i

B
values (Fig. 11) from ab initio calculations

have been used to estimate the contribution of the various
phonons to the thermal expansion (Fig. 14) as a function of
phonon energy in Zn(CN)2 at 165 K. Previously, we estimated
this contribution from our experimental �i

B
obtained from

high-pressure phonon data.17 We find that these estimates
from experiment and ab initio calculation as given in Fig. 14
are quite close. The maximum negative contribution to αV

stems from the low-energy modes at ∼2.5 meV. Similarly
for Ni(CN)2, we find (Fig. 14) that maximum contribution to
NTE is also from phonon modes of an approximate energy
of 2.5 meV. This maximum strength appears well below the
first maximum in the DOS (Fig. 4), which is found at 4 meV.
The low-energy modes of ∼8 and 13 meV also contribute
significantly (Fig. 14) to the NTE in Zn(CN)2 and Ni(CN)2,
respectively.

NTE has been observed in a large number of polyhedral
network compounds, e.g., AW2O8 (A = Zr, Hf), ZrV2O7, M2O
(M = Cu, Ag), ReO3, etc. The phonon softening corresponding
to large negative Grüneisen parameters �(E) leads to NTE in all
these compounds. The negative �(E) and the nature of phonons
have been calculated previously using model calculations
based on a shell model. The nature of phonons is found to be
different in all these compounds. The librational and bending
modes of ∼1.5–8.0 meV were found14,15 to be responsible
for large negative �(E) in AW2O8 (A = Zr,Hf), whereas for
ZrV2O7 the soft phonon34 occur at an incommensurate wave
vector. Soft-librational modes of the M4O (M = Cu, Ag),
tetrahedral units35 are related to NTE in M2O. In the case
of ReO3, the zone-boundary M3 mode softens36 and leads to
anomalous thermal behavior.
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FIG. 13. (Color online) (a) The comparison between the volume thermal expansion coefficient (αV ) derived from the ab initio calculations
and experimental �i
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values (Ref. 17) at 165 K. (b) The comparison between the volume thermal expansion derived from the present ab initio

calculations (solid line), high-pressure inelastic neutron scattering experiment (Ref. 17) (dashed line), and that obtained using x-ray diffraction
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and Ni(CN)2. The contribution from phonons for Zn(CN)2 is obtained from experimental �i

B
as indicated in Ref. 17.

In order to determine the character of phonon modes
in Zn(CN)2 and Ni(CN)2, we have calculated the mean
squared displacements of various atoms, 〈(u2)〉, arising from
all phonons of energy E in the Brillouin zone, as follows:

〈(u2)k〉 =
∫ (

n + 1

2

)
h̄

mkωk

g(ωk) dωk, (3)

where n = [exp( h̄ωk

kBT
) − 1]−1, and ωk and mk are the mode

frequency and mass of the kth atom in the unit cell, respectively.
The calculated partial DOS (Fig. 6) has been used for this
calculation.

Figure 15 indicates equal amplitudes for all the atoms
up to 5 meV in Zn(CN)2 and 12 meV in Ni(CN)2. The
contributions from Zn and Ni atoms vanish above these
energies. It is reasonable to conclude that the lowest bands
without significant Zn contribution to the vibration amplitude
correspond to rotational modes in Zn(CN)2. The ZnC4 and
ZnN4 rotational modes in Zn(CN)2 are therefore found at
lower energies (5–12 meV), in comparison to NiC4 and NiN4

(12–16 meV) rotational modes in Ni(CN)2.
We have also plotted eigenvectors corresponding to low-

energy zone-center and zone-boundary modes (Figs. 16 and
17). The mode assignments, phonon energies, and Grüneisen
parameters are given in the figures. Examination of the calcu-
lated eigenvectors for the lowest-energy optic mode (symmetry
T1) at 7.3 meV in Zn(CN)2 (Table II) shows that this mode

arises from librational motions of ZnC4 and ZnN4 tetrahedra
involving transverse motions of C and N atoms. The T1 mode
has a � value of −9.8. As shown above, modes with energies of
∼8 meV contribute significantly to NTE in Zn(CN)2 (Fig. 14).
However, Fig. 14 shows that modes of energy ∼2 meV make
the most significant contributions to NTE in Zn(CN)2. The
zone-boundary modes of about 2 meV along (100), (110), and
(111) are plotted in Fig. 16. At the zone boundary, eigenvectors
have both real and imaginary components. We have plotted
both these components separately. The actual atomic motion is
a combination of both these components. We find that only the
real part of the 1.94 meV mode along (100) shows librational
motion (Fig. 16). All other modes show translational and
bending motions. Our calculations show that zone-boundary
modes along [100] and [110] have very large negative �

values of −48.4 and −85.8, respectively, while the mode at
the zone boundary along [111] has a very low negative � value
of −0.7.

Ni(CN)2 has three low-energy optic modes at ∼12.32 meV
(E mode), 12.35 meV (A mode), and 12.77 meV (A mode)
(Table III and Fig. 9). We find that only the A-type mode of
energy 12.77 meV shows librational motion (Fig. 17). The
other two zone-center modes (12.32 and 12.35 meV) as well
as the zone-boundary modes (4.26–7.3 meV) involve (Fig. 17)
translations of atoms along the c axis. The negative � values
of all the three optic modes lie between −4.5 and −6.0, while
zone-boundary modes along [100] have large negative � values
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FIG. 15. (Color online) The calculated contribution to the mean squared amplitude of the various atoms arising from phonons of energy E
at T = 300 K in Zn(CN)2 and Ni(CN)2.
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Real Real                        Imaginary
Zone centre T1 mode, 7.3 meV, -9.8 Zone boundary mode along [100], 1.94 meV, -48.4

Real                       Imaginary Real                        Imaginary
Zone boundary mode along [110], 1.6 meV, -85.8 Zone boundary mode along [111], 2.09 meV, -0.7
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FIG. 16. (Color online) Polarization vectors of the zone-center and zone-boundary modes in Zn(CN)2. For each mode the energy and
Grüneisen parameter is indicated. The lengths of arrows are related to the displacements of the atoms. The absence of an arrow on an atom
indicates that the atom is at rest. At the zone center, where the phase factor is zero, the eigenvectors have only real components. The numbers
after the mode assignments give the phonon energies and Grüneisen parameters, respectively. Zone-boundary eigenvectors have both real and
imaginary components. The actual displacements of atoms are a combination of both these components. Key: Zn, gray spheres; C, red spheres;
N, blue spheres.

(∼−13.0) as compared to those along [110] (∼−5.3). The
modes at ∼2 meV make the most significant contribution to
NTE. As shown in Fig. 9, the 2 meV modes are largely acoustic
in nature, which include the transverse motions to produce
NTE in agreement with Chapman et al.16

C. Anharmonicity

The analysis presented here is important for understanding
the anharmonic nature of phonons in these compounds. The
change in phonon energies with temperature is owing to
implicit as well as explicit anharmonicities. The implicit an-
harmonicity of phonons is owing to the change of the unit-cell
volume and/or concomitant changes of structural parameters
with temperature. The explicit anharmonicity includes changes
in phonon frequencies owing to a large thermal amplitude of
atoms. The temperature-dependent measurements (total an-
harmonicity) include both effects. The present measurements
of phonon spectra along with the previously reported pressure
dependence of the phonon spectra (implicit anharmonicity)
can be used to separate37 the temperature effect at constant
volume (explicit or true anharmonicity) as

dEi

dT

∣∣∣∣
P

= ∂Ei

∂T

∣∣∣∣
V

+ ∂Ei

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
P

.

Using �i = − V
Ei

∂Ei

∂V
|T and α = − 1

V
∂V
∂T

|P , one obtains

1

Ei

dEi

dT

∣∣∣∣
P

= 1

Ei

∂Ei

∂T

∣∣∣∣
V

− �iα. (4)

Here the first term on the right-hand side is the true an-
harmonic (explicit) contribution, and the second the quasihar-

monic (implicit) term. The left-hand-side term represents the
total anharmonicity. The temperature dependence of phonon
spectra has been used for estimating the total anharmonicity
( 1
Ei

dEi

dT
|P ) of both compounds. For Zn(CN)2, the 1

Ei

dEi

dT
|P

values for phonons of energy Ei have been obtained using the
cumulative distributions of the experimental data of phonon
density of states at 180 and 240 K, while for Ni(CN)2 the
experimental data at 160 and 220 K have been used to obtain
1
Ei

dEi

dT
|P .

As mentioned above, the temperature-dependent measure-
ments give estimates of the total anharmonicity of phonons and
include both the implicit and explicit effects. On increasing the
temperature, the implicit anharmonicity results in a decrease
of phonon frequencies for all materials, irrespective of their
thermal expansion coefficients. However, explicit contribution
may cause either an increase or decrease of phonon frequencies
with increasing temperature. Finally, it is the net sum of the two
components, which we have observed in the measurements
and shown in Figs. 3 and 4. We find that for Ni(CN)2

the phonon energies increase with an increase (Fig. 18)
of temperature, hence the total anharmonicity ( 1

Ei

dEi

dT
|P ) is

positive. In particular, modes below 2 meV have a very large
total anharmonicity. Because the implicit part would result
in softening of modes with an increase of temperature, the
hardening of modes with an increase of temperature gives us
evidence for the large explicit anharmonic nature of phonons
in Ni(CN)2.

In the case of Zn(CN)2 (Fig. 18), for modes below 2 meV,
the total anharmonicity of phonons is negative, while it is
positive for high-energy modes. Because the implicit part
causes a decrease of phonon frequencies with an increase

024301-9



R. MITTAL et al. PHYSICAL REVIEW B 83, 024301 (2011)

FIG. 17. (Color online) Polarization vector of the zone-center and zone-boundary modes in Ni(CN)2. For each mode the energy and
Grüneisen parameter is indicated. The lengths of arrows are related to the displacement of the atoms. The absence of an arrow on an atom
indicates that the atom is at rest. At the zone center, where the phase factor is zero, the eigenvectors have only real components. The numbers
after the mode assignments give the phonon energies and Grüneisen parameters, respectively. Zone-boundary eigenvectors have both the real
and imaginary components. The actual displacements of atoms are a combination of both these components. Key: Ni, gray spheres; C, red
spheres; N, blue spheres.

of temperature, the hardening of modes above 2 meV must
be owing to large positive explicit anharmonicity of these
phonons.
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FIG. 18. (Color online) The total anharmonicities ( 1
Ei

dEi

dT
|P ) of

different phonons of energy E in Zn(CN)2 and Ni(CN)2. The
1
Ei

dEi

dT
|P has been obtained using the cumulative distributions of the

experimental data of DOS of Zn(CN)2 at 180 and 240 K, while for
Ni(CN)2 the experimental data at 160 and 220 K have been used.
The inelastic neutron scattering measurements are carried out in the
energy-gain mode. The data for Ni(CN)2 at 160 K were obtained only
up to 50 meV.
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FIG. 19. (Color online) Total anharmonicity, and implicit (quasi-
harmonic) and explicit (true anharmonic) contributions of different
phonons in Zn(CN)2. The total anharmonicity ( 1

Ei

dEi

dT
|P ) has been

obtained using the cumulative distributions of the experimental data
of DOS of Zn(CN)2 at 180 and 240 K. The quasiharmonic contribution
has been obtained (Ref. 17) using the pressure dependence of DOS at
165 K. The bulk modulus B value of 34.19 GPa (Ref. 39) has been used
for estimating �i values from our measured (Ref. 17) �i

B
values. The

large contributions to the measured spectra from the high-pressure
cell did not allow the experimental quasiharmonic contribution for
Zn(CN)2 to be obtained beyond 30 meV (Ref. 17). The data have
therefore only been shown up to 30 meV.

024301-10



RELATIONSHIP BETWEEN PHONONS AND THERMAL . . . PHYSICAL REVIEW B 83, 024301 (2011)

The present temperature dependence of phonon spectra as
well as our previous pressure dependence measurements17

have been used for obtaining the true anharmonicity of
phonons in Zn(CN)2. For materials with negative or positive
thermal expansion coefficients (α), the second term on the
right-hand side (�iα) of Eq. (4) is always positive. Zn(CN)2

has negative thermal expansion over its entire temperature
range of stability. The quasiharmonic contribution obtained
from our previous high-pressure DOS measurements is shown
in Fig. 19. The explicit ( 1

Ei

dEi

dT
|V ) contribution for phonon

modes up to 30 meV in Zn(CN)2 extracted using Eq. (4) is
shown in Fig. 19. The magnitude of anharmonicities of modes
in these compounds is substantially larger than those in other
typical solids,38 where it ranges between 2 × 10−5 K−1 and
10 × 10−5 K−1.

V. CONCLUSIONS

We have reported measurements of the temperature de-
pendence of phonon spectra for Zn(CN)2 and Ni(CN)2

and results of ab initio lattice dynamical calculations. The
comparison of phonon spectra for Zn and Ni compounds

show strong renormalization effects in the phonon spectra
of these compounds, which cannot be simply explained by
the lattice contraction and mass effect. The phonon spectra
have been well reproduced by using ab initio calculations.
The anomalous thermal expansion bahavior in both the
compounds has been estimated. Our calculated NTE coef-
ficient in Zn(CN)2 agrees well with the experimental data.
Calculations show that phonon modes of energy ∼2 meV
are major contributors to NTE. The measured temperature
dependence of the phonon spectra along with our previous
pressure-dependent phonon measurements has been used for
estimating the quasiharmonic and true anharmonicity. The
value for the NTE coefficient in the plane of the layered
material Ni(CN)2 has been calculated and found to be in
excellent agreement with that determined experimentally.
We have shown that low-energy phonon modes in these
compounds are strongly anharmonic.
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