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Nernst effect from fluctuating pairs in the pseudogap phase of the cuprates
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The observation of a large Nernst signal in cuprates above the superconducting transition temperature has
attracted much attention. A potential explanation is that it originates from superconducting fluctuations. Although
the Nernst signal is indeed consistent with Gaussian fluctuations for overdoped cuprates, Gaussian theory fails
to describe the temperature dependence seen for underdoped cuprates. Here, we consider the vertex correction
to Gaussian theory resulting from the pseudogap. This yields a Nernst signal in good agreement with the data.
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For most of the doping phase diagram, high temperature
superconductivity in the cuprates emerges from a normal
state where an energy gap is already present.1 The origin
of this “pseudogap” is the subject of much debate.2 One of
the most interesting observations in the pseudogap phase is
the existence of a large Nernst signal.3,4 The Nernst effect
is the generation of a transverse electric field by a thermal
gradient in the presence of a magnetic field perpendicular to
both. Since vortices carry entropy, it is natural to attribute
such a large Nernst signal in proximity to the superconducting
transition temperature Tc to vortexlike excitations.3,4 More-
over, invoking vortices is consistent with the Nernst signal
smoothly going through Tc. On the other hand, it is not clear
whether vortices give an adequate description of the physics
of fluctuating superconductors except very near Tc.5 The
free vortex density above the Kosterlitz–Thouless temperature
increases exponentially with temperature, a dependence which
is inconsistent with the near power-law decrease of the actual
Nernst signal above Tc. Moreover, the recent observation of
a negative Nernst signal for underdoped YBa2Cu3O6+y has
further complicated the story.6 This negative signal has been
argued to be a consequence of density wave reconstruction of
the Fermi surface.

Here, we take the point of view that the dominant
contribution to the Nernst signal in the pseudogap phase is
indeed due to fluctuating pairs. This is supported by the close
correspondence of the Nernst signal with the fluctuational
diagmagnetism.7 On the other hand, we note that, although
existing theories based on Ginzburg–Landau or diagrammatic
approaches8,9 give a good description of the Nernst data for
overdoped cuprates, they do less well for underdoped cuprates.
We attribute this to the presence of the pseudogap.

As discussed in Ref. 9, it is the direct contribution from fluc-
tuating pairs—the Aslamazov–Larkin (AL) contribution10—
which governs the Nernst signal over a wide range of temper-
atures above Tc, so we focus on that. The AL contribution to
the Nernst coefficient is obtained from the electric current-
heat current Kubo response kernel �xy .8,9 The latter can
be expressed in terms of corresponding electric and heat
vertex blocks (triangular graphs) connected by interaction
lines (pair fluctuations). The vertex block can be expressed as
Tr{γ (e,h)B} with B = 〈vGGG〉, where v is the Fermi velocity
and 〈· · ·〉 indicates disorder averaging [Fig. 1(a)]. The factor γ

differentiates the electric vertex (γ (e) = e) from the heat vertex
γ (h), which we discuss below. Disorder averaging in B leads

to the presence of two Cooperons and the renormalization of
the free electron Greens function G by impurity scattering. In
order to account for the pseudogap, we replace this G which
was previously used to compute this block by the broadened
BCS Greens function

G(k,ε) = − iε̄ + ξk

ε̄2 + ξ 2
k + �2

k

(1)

as this gives a good description of photoemission data in the
pseudogap phase.11–13 In Eq. (1), �k = �

2 [cos(kx) − cos(ky)]
is the momentum-dependent d-wave pseudogap, and ε̄ =
ε + � sgn(ε), with � the scattering rate. By recomputing the
electromagnetic vertex block with this G, we find that B is
renormalized by a function of �/�, where � is the maximum
value of the pseudogap. Assuming a T -independent � and
� ∼ T as observed in photoemission,11,14 this renormalization
results in a fluctuation Nernst signal which drops off consid-
erably faster with temperature than the Gaussian result. As
we show, this gives a good description of the Nernst data for
underdoped cuprates.

We assume the standard expression for the pair propagator
whose retarded component has the form15

LR(q,ω) = − 1

N0

1

ε − iπω/8T + ηq2
. (2)

Here, ε = ln(T/Tc), N0 is the density of states, and η =
πD/8T , where D is the diffusion constant. The Nernst coef-
ficient can be expressed in terms of the electrical (σ̂ ) and ther-
moelectric (α̂) tensors as ν = (αxyσxx − αxxσxy)/H (σ 2

xx +
σ 2

xy) ≈ αxy/Hσxx . The second (approximate) expression,
which becomes exact if particle-hole symmetry is present,
gives a good approximation to ν for the case of superconduct-
ing fluctuations since αxy � αxx and σxx � σxy (see Ref. 15
for a corresponding discussion). The transverse thermoelectric
coefficient, αxy = ᾱxy + cMz/T , consists of two independent
contributions: the response of the total current to the applied
electric and magnetic fields (ᾱxy), and the magnetization
currents as derived from the equilibrium magnetization Mz.
As discussed in Ref. 9, we focus on the first contribution,
since for low fields H � Hc2 and T > Tc the latter cancels
against so-called DOS (density of states) contributions except
close to Tc,

ᾱxy = H

cT
lim

Q,�→0

1

Q�
Re

[
�R

xy(Q,�)
]
, (3)
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FIG. 1. (a) Diagram for the vertex B [Eq. (10)]. (b) and (c) The
two AL diagrams for the thermoelectric kernel �xy [Eq. (4)].

taking here weak field limit. The electric current–heat current
Kubo response kernel [Figs. 1(b) and 1(c)]

�xy(Q,i�m) = −4e2T
∑
q,ωn

Bx(q)B2
y (q)(iωn + i�m/2)

× [L(q − Qx,iωn)L(q,iωn)L(q,iωn + i�m)

+L(q,iωn)L(q,iωn + i�m)

×L(q + Qx,iωn + i�m)] (4)

is written in Matsubara representation, where we have assumed
that the heat vertex γ (h) is −iωn/(2e) times the electric
vertex.16 In Eq. (4), the Greens function block B, whose
renormalization is the subject of this paper, is assumed to
be independent of frequency. This approximation is formally
exact in the immediate vicinity of the transition temperature.
Nevertheless, a rigorous extension of this approximation to
a wider range of temperatures above Tc demonstrates that
the Ginzburg-Landau result, νAL ∼ (T − Tc)−1, remains valid
even far from Tc if one substitutes T − Tc by the more
general expression T ln(T/Tc). We note that in the Gaussian
approximation,15

BG
i (q) = −2N0ηqi. (5)

For the following linear response calculation we expand the
propagators in Eq. (4) to the leading order in Q, namely, L(q ±
Qx,iωn) → ±Q∂qx

L(q,iωn), and noting that

∂L(q,iωn)

∂qx

= −BG
x (q)L2(q,iωn), (6)

we thus find from Eq. (4)

�xy(Q,i�m) = −4e2QT
∑
q,ωn

Bx(q)BG
x (q)B2

y (q)

× (iωn + i�m/2)[L3(q,iωn)L(q,iωn + i�m)

−L(q,iωn)L3(q,iωn + i�m)]. (7)

Performing the summation over the Matsubara fre-
quency ωn by using contour integration, T

∑
ωn

f (iωn) =
1

4πi

∮
C

dω coth ω
2T

f (ω) with two branch-cuts at Im(ω) = 0
and Im(ω) = −�m, followed by an analytic continuation
�m → −i�, and keeping only the linear in � contribution
from �R

xy(Q,�), one finds for the transverse thermoelectric

coefficient

ᾱAL
xy = 4e2H

πcT

∑
q

BG
x (q)Bx(q)B2

y (q)
∫ +∞

−∞
dω coth

ω

2T

×{[ReLR(q,ω)]3ImLR(q,ω)

+ ReLR(q,ω)[ImLR(q,ω)]3}. (8)

After the remaining momentum and energy integrations, we
get the result (restoring h̄)

ᾱAL
xy = e

2πh̄

ξ 2
GL

�2
H

(B/BG)3, (9)

where �H = √
h̄c/eH is the magnetic length and ξ 2

GL =
η/ ln(T/Tc). For B = BG, this is the well-known expression
for the Nernst effect from fluctuating pairs.8,9

At this point, all we have done is to rederive the Gaussian
expression. The reason we have done this is to demonstrate
explicitly where the Bi current vertices enter. We now discuss
the renormalization of Bi due to the pseudogap. The expression
for the vertex is [Fig. 1(a)]10

Bi(q,ω,�) = T
∑
p,ε

vi(p)G(p,ε)G(p,ε + �)

×G(q − p,ω − ε), (10)

where ε is the fermionic loop frequency, ω the bosonic
frequency that enters the fluctuation propagator, � the external
field frequency (set to zero for the dc response), and G the
Greens function.17 We now recalculate Bi using the pseudogap
Greens function. Substituting Eq. (1) in the previous equation,
taking the dc limit, and approximating G(q − p,ω − ε) ≈
G(q − p, − ε), we obtain

Bi(q) � −T
∑
p,ε

vi

(
iε̄ + ξp

ε̄2 + ξ 2
p + �2

p

)2 −iε̄ + ξq−p

ε̄2 + ξ 2
q−p + �2

p

.

(11)

Keeping the term to linear order in q,

Bi(q) � 1

2
T v2

F qi

∑
p,ε

(
iε̄ + ξp

ε̄2 + ξ 2
p + �2

p

)2

×
[

1

ε̄2 + ξ 2
p + �2

p

− 2ξp(−iε̄ + ξp)(
ε̄2 + ξ 2

p + �2
p

)2

]
. (12)

Converting the p sum to an integral, we have

Bi(q) � 1

2
N0T v2

F qi

∑
ε

∫
dϑ

2π

∫ +∞

−∞
dξ

×
[

ξ 2 − ε̄2(
ε̄2 + ξ 2 + �2

ϑ

)3 − 2ξ 2(ξ 2 + ε̄2)(
ε̄2 + ξ 2 + �2

ϑ

)4

]
, (13)

where �ϑ = � cos 2ϑ .18 Next we perform the ξ integral by
introducing ξ = μx with μ =

√
ε̄2 + �2

ϑ :

Bi(q) � 1

4π
N0T v2

F qi

∑
ε

∫
dϑ(

ε̄2 + �2
ϑ

)5/2

∫ +∞

−∞
dx

×
[
μ2x2 − ε̄2

(1 + x2)3
− 2x2(μ2x2 + ε̄2)

(1 + x2)4

]
. (14)
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FIG. 2. (Color online) Ratio of the renormalized B vertex to its
small � limit versus T/T ∗, where T ∗ is the pseudogap temperature,
and �/� = √

3T/T ∗ with the coefficient chosen so that the spectral
gap disappears at T ∗.

The x integral is trivial, and we find

Bi(q) � −1

8
N0T v2

F qi

∑
ε

∫
ε̄2dϑ(

ε̄2 + �2
ϑ

)5/2
. (15)

The angular integral is easily performed, leading to

Bi(q) = −1

3
N0T v2

F qi

∞∑
n=0

1

ε̄2

1

(ε̄2 + �2)3/2

× [(4ε̄2 + 2�2)E(λ) − ε̄2K(λ)], (16)

where λ = �/
√

ε̄2 + �2 and K and E are elliptic functions.
As the sum converges at n � �/T , one can approximate the
elliptic functions by their value at zero argument, which is
π/2. We will also take the “zero T ” limit by converting the
Matsubara sum to an integral, noting that the dominant T

dependence comes from the T dependence of �. This gives

Bi(q) = −N0v
2
F

12
qi

∫ ∞

0

dε

ε̄2

3ε̄2 + 2�2

(ε̄2 + �2)3/2
(17)

and after the remaining integration results in

Bi(q) = −π2

12
N0ξ

2
0 qi

[
(�/�)2 + 2

(�/�)
√

(�/�)2 + 1
− 1

]
, (18)

where we have exploited the BCS relation ξ0 = h̄vF /π�.
Inserting the Gaussian expression for B, we obtain

B/BG = π2

24

ξ 2
0

η

[
(�/�)2 + 2

(�/�)
√

(�/�)2 + 1
− 1

]
. (19)

In the limit of small � � �, the term in parentheses reduces
to 2�/�. Since � ∼ T and η ∼ 1/T , then in this limit the ratio
is a constant, and one obtains the same functional form for the
Nernst as in the Gaussian approximation. On the other hand,
as � increases, the ratio decreases from unity as can be seen in
Fig. 2. This leads to a Nernst signal which decays more rapidly
than the Gaussian result, since three renormalized B vertices
enter the expression for the Nernst:19

ᾱxy = ᾱG
xy(B/BG)3. (20)

We now consider the Nernst data for La2−xSrxCuO4.4 The
advantage of these data is that after the normal carrier back-
ground has been subtracted, the Nernst signal is positive, and
therefore complications due to density wave reconstruction

T

x=0.10

T

x=0.07

T

x=0.12

T

x=0.17

FIG. 3. (Color online) Nernst signal, ν, versus T for
La2−xSrxCuO4 for four different values of the doping, x.4 The curve
for x = 0.17 is a fit to the Gaussian expression for ᾱxy . The other
curves include the vertex correction as described in this paper.

can to first order be ignored. In Fig. 3, we show the Nernst
signal, ν = −Ey/(Hz∇xT ), for four different dopings. For the
overdoped compound, the Gaussian expression for ᾱxy fits the
data quite well, but not for the three underdoped compounds
where the pseudogap is present. Instead, we find that the
corrected expression provides a good description of the data
(with pseudogap temperatures T ∗ ranging from about 200 to
300 K).

We now turn to a brief discussion of the bosonic con-
tribution to the conductivity. As with the Nernst, the para-
conductivity observed in underdoped cuprates well above
Tc falls off like T −δ with δ ≈ 3.20 We recall that when
extended to the higher temperature regime, Gaussian theory
(in two dimensions) predicts for the Aslamazov–Larkin21

contribution to the conductivity σ AL
xx = e2/8π2 ln3(T/Tc),

while for the Maki–Thompson22 (MT) contribution, σ MT
xx =

π2e2 ln(1/γϕ)/192 ln2(T/Tc), where γϕ is the dephasing rate.
In either case, the ln−n(T/Tc) decay is too slow to explain the
experimental data. We now argue that the same vertex renor-
malization can account for the faster decay of the fluctuational
conductivity. We start from the definition of the conductivity
in the linear response regime σ AL

xx = −Im[�R
xx(�)]/�, where

the current-current response kernel is

�xx(i�m) = −4e2T
∑
q,ωn

B2
x (q)L(q,iωn)L(q,iωn + i�m).

(21)

After Matsubara summation and analytic continuation, this
reduces to

�R
xx(�) = −2e2

π

∑
q

B2
x (q)

∫ +∞

−∞
dω coth

ω

2T
ImLR(q,ω)

× [LR(q,ω + �) + LA(q,ω − �)]. (22)
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In the dc limit, we expand LR(q,ω + �) + LA(q,ω − �) �
2i�∂ωImLR(q,ω), integrate by parts over ω, and as a result
find the following for the AL contribution to the conductivity:

σ AL
xx = e2

πT

∑
q

B2
x (q)

∫ +∞

−∞

dω

sinh2 ω
2T

[ImLR(q,ω)]2. (23)

This is formally the same expression as in Gaussian theory
except for the vertex function now defined by Eq. (18). We
thus find as a result (restoring h̄)

σ AL
xx = e2

16h̄ ln(T/Tc)
(B/BG)2, (24)

where the renormalization factor (B/BG)2 provides a faster
power-law decay, consistent with the data.20

We would like to conclude with the observation that
although we assumed a “BCS” expression for the pseudogap

Greens function, G, any theory of the pseudogap with a T -
independent d-wave-like gap and a scattering rate proportional
to T will yield results equivalent to those derived here. Similar
conclusions have been reached in regard to the fermionic
contribution to various transport properties in the pseudogap
phase.23

In summary, we note that the Nernst signal and fluctuational
conductivity for underdoped compounds drops more rapidly
with temperature than predicted from a Gaussian theory of
fluctuating pairs. This discrepancy is nicely accounted for by
a vertex correction to the fermionic current block due to the
pseudogap.
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