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Magnetization dynamics in the inertial regime: Nutation predicted at short time scales
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The dynamical equation for magnetization has been reconsidered by enlarging the phase space of the
ferromagnetic degrees of freedom to the angular momentum. The generalized Landau-Lifshitz-Gilbert equation
that includes inertial terms, and the corresponding Fokker-Planck equation, are then derived in the framework
of mesoscopic nonequilibrium thermodynamics theory. A typical relaxation time τ is introduced describing the
relaxation of the magnetization acceleration from the inertial regime toward the precession regime defined by a
constant Larmor frequency. For time scales larger than τ , the usual Gilbert equation is recovered. For time scales
below τ , nutation and related inertial effects are predicted. The inertial regime offers new opportunities for the
implementation of ultrafast magnetization switching in magnetic devices.
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In 1935 Landau and Lifshitz proposed an equation for the
kinetic of the magnetization dM/dt (where M is of constant
modulus), composed of a precession term proportional to M ×
H and a longitudinal relaxation term proportional to M ×
(M × H), that drives the magnetization toward equilibrium
along the magnetic field H.1 Two decades later Gilbert derived
the equation that bears his name in which the relaxation toward
equilibrium is described by a damping term η (Ref. 2) through
the kinetic equation dM/dt = γ M × (H − ηdM/dt), with γ

as the gyromagnetic ratio. The two equations (Landau-Lifshitz
and Gilbert) are mathematically equivalent.

The range of validity of the Landau-Lifshitz-Gilbert (LLG)
equation was established one decade later by Brown, with a
description of a magnetic moment coupled to a heat bath.3 The
magnetic moment is treated as a Brownian particle described
by the slow degrees of freedom (>10−9 s) with the angles
{θ,φ}. The remaining degrees of freedom of the system relax in
a much shorter time scale (<10−11 s). The time scale separation
between the rapidly relaxing environmental degrees of free-
dom and the slow magnetic degrees of freedom allows the cou-
pling between the magnetization and its environment to be re-
duced to single phenomenological damping parameter η, what-
ever the complexity of the microscopic relaxation involved.4,5

However, important experimental advances toward the very
short time-resolved response of the magnetization (subpi-
cosecond resolution, i.e., below the limit proposed by Brown)
have been reported in the last decade.6 In parallel, industrial
needs for very fast memory storage technologies are approach-
ing the limits imposed by the precessional switching.7 In these
experiments and in the corresponding applications, time scale
separation between the degrees of freedom {θ,φ} and the other
degrees of freedom, assumed by Brown,3 finds its limit.

The purpose of this Rapid Communication is to investigate
the dynamics of the magnetization beyond this limit by
extending the configuration space (defined by the coordinates
of position, i.e., the angles {θ,φ}) to the phase space defined
by the dynamical variables, i.e., the angular momentum L.5,8

The angular momentum is introduced in the standard
derivation of Gilbert’s equation2 on the basis of the well-known
gyromagnetic relation L = M/γ.9 The important point for
our purpose is that, within this approach, a crude assumption
should be performed in order to obtain the expected equation:

Only one component L3 of the vector L is different than
zero.2 As a result, the Gilbert equation does not contain any
inertial terms. This crude assumption was necessary in
order to account for the experiments of damped precession
performed so far. Without this assumption, the same model
leads straightforwardly to a generalized gyromagnetic relation
L = I1

M2
s
M × dM

dt
+ M

γ
, which contains a dynamical term (I1 is

the first principal moment of inertia).
However, as shown below, the generalized gyromagnetic

relation is not deterministic and the transient nature of the
dynamical term is fundamental: The parameter I1 should
be related to a finite relaxation time τ1. The generalized
gyromagnetic relation and the corresponding extension of
Gilbert’s equation are a consequence of out-of-equilibrium
angular momentum, i.e., valid at very short time scales only.
The generalized relation is then no longer in contradiction
with experiments. Typically, in the logic of Barnett’s or
the Einstein–de Haas magnetomechanical measurements,9 the
inertial behavior of the magnetization introduced here is
equivalent to the time variation of the mechanical angular mo-
mentum that would be measured if subnanosecond transients
were measurable. The new nonzero components of the angular
momentum are defined following the classical definition of
the effective Ampère currents with a current distribution that
is no longer confined in the plane perpendicular to L3, but
distributed on an ellipsoid of revolution.10

For the sake of simplicity, we assume the existence of
an intermediate time domain for which the magnetization
is still uniform and the angular momentum is already out
of equilibrium. From the experimental point of view, this
hypothesis should guarantee that the dynamics of the other
internal degrees of freedom (optical phonons, electronic
relaxations, etc.) would not mask the inertial response of the
magnetization generated by a THz frequency excitation (e.g.,
far-infrared spectroscopy) or subpicosecond time resolved
excitation (pump-probe optics).7,11 Note that the existence
of inertial terms in the dynamics of the magnetization opens
the way to deterministic ultrafast magnetization switching
strategies, beyond the limitations of the precessional regime.12

We derive below the generalized Gilbert equation and
the corresponding Fokker-Planck equation for a uniform
magnetic moment. The derivation is performed in the
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framework of mesoscopic nonequilibrium thermodynamics
(MNET).13–16

It is convenient to model the dynamics of a magnetic
moment m = Mse (submitted to an applied magnetic field
H = − 1

Ms

∂V F

∂e and coupled to a heat bath) with a statistical
ensemble composed by noninteracting identical uniform mag-
netic moments found in the same given conditions (ergodic
property). Here, e, Ms, and V F are, respectively, the radial
unit vector of angles {θ,φ}, the magnetization at saturation, and
the ferromagnetic potential energy. The ensemble of magnetic
moments of constant modulus Ms defines a sphere surface
� and the number of magnetic moments oriented within
(e,e + de) defines the density n(e) of magnetic moments
over �. The magnetization M is the mean value of m. In
contrast to the standard derivation of Gilbert that introduces
the angular momentum, we have shown in previous works that
associating two degrees of freedom {θ,φ} with a magnetic
moment is sufficient to derive both the Gilbert equation
and the corresponding rotational Fokker-Planck equation
(the gyromagnetic relation does not play any role in this
derivation).16,17

Extending the configuration space to the angular momen-
tum L,10 the space � is extended from a two-dimensional
space to a space of a priori five dimensions {θ,φ,L}. A
distribution function f (e,L) of magnetic moments with the
magnetization orientation within (e,e + de) and the angu-
lar momentum within (L,L + dL) should then be defined,
where f is assumed to vanish for infinite values of L as
limL→±∞ f (e,L) = 0. The angular momentum L associated
with a magnetic moment is either changed by an applied
torque N = m × H as ( dL

dt
)s = N, or by the interaction with

the heat bath. When considering the statistical ensemble, the
interaction with the bath is modeled through a phase-space
flux JL (defined below) which vanishes for large values of L:
limL→±∞ JL = 0.

The kinetic-energy expression that Gilbert associated with
the magnetization2 is written as K = LL : ¯̄I−1/2, where the
magnetic inertial tensor ¯̄I is related to the magnetic moment. It
is assumed that ¯̄I keeps the symmetry of the magnetic moment,
i.e., is axial symmetric of symmetry axis e: ¯̄I = I1( ¯̄U − ee) +
I3ee, with ¯̄U the dyadic unit (where I1 = I2 and I3 are the
diagonal coefficients of the inertial tensor).

In the space-fixed reference frame denoted by the subscript
s, the conservation law for the number of axial symmetric
moments f (e,L) reads18

∂

∂t
f (e,Ls) = −

{
∂ (f ė)

∂e

}
Ls

− Ns · ∂f

∂Ls

− ∂JL

∂Ls
, (1)

where the derivatives with respect to the angles are made while
holding the Cartesian components of Ls constant:

{
∂(f ė)

∂e

}
Ls

= 1

sin θ

{
∂(f sin θ θ̇ )

∂θ

}
Ls

+
{

∂(f φ̇)

∂φ

}
Ls

. (2)

The density n(e) of magnetic moments in the space � is
recovered by integrating over the angular momentum degree
of freedom n(e) = ∫

f (e,L) d3L. The conservation law for

the magnetic moments in the � space is hence deduced from
Eq. (1):

∂n

∂t
=

∫
∂f

∂t
d3Ls = − ∂

∂e
·
∫

f ė d3Ls = −∂(nė)

∂e
. (3)

Beyond this, the conservation law for the mean value of the
angular momentum 〈Ls〉 is also derived18,19:

∂ n〈Ls〉
∂t

=
∫

∂f

∂t
Ls d3Ls

(1)= − ∂

∂e
·
∫

f ė Ls d3Ls + n Ns(e) +
∫

JL d3Ls ,

n
d〈Ls〉

dt
= − ∂

∂e
· (e × P s) + n Ns(e) +

∫
JL d3Ls , (4)

where the magnetic pressure tensor is defined as P s =
I

−1 ∫
(L − 〈Ls〉)(L − 〈Ls〉) f d3Ls . The conservation equa-

tion (4) states that the rate of change of the average angular
momentum 〈Ls〉 is due to three contributions: an applied
torque Ns , an average interaction with the bath

∫
JLd3Ls

(i.e., damping), and a torque due to pressure (i.e., rotational
diffusion).

The expression for JL is deduced from the entropy
production expression σ (e).13,14,19 Defining the ferromagnetic
chemical potential μ(e,L), the power T σ (e) dissipated by the
magnetic system is the product of the generalized flux by the
generalized force:

T σ (e) = −
∫

JL · ∂μ

∂Ls

d3Ls , (5)

where the chemical potential takes the canonical form,13,15

μ(e,L) = kT ln [f (L,e)] + K(L) + V F (e). (6)

The application of the second law of thermodynamics
together with the local equilibrium hypothesis in the (e,L)

space lead us to introduce the Onsager matrix L such that

JL = −L · ∂μ

∂Ls
. As the Onsager coefficients are a reflection

of the system’s symmetry,14 the relaxation tensor defined as

τ
−1 = 1

f
L I

−1
is also axial symmetric: τ

−1 = τ−1
1 (U − ee) +

τ−1
3 ee (where τ1 = τ2 and τ3 are the diagonal coefficients), and

is related to damping. Moreover, as e is an axis of symmetry for

the ferromagnetic potential V F (θ,φ), the relaxation tensor τ
−1

is not expected to have any components in the e direction,18

leading to τ−1
3 = 0.

The dynamic equation (4) can be rewritten as

d〈Ls〉
dt

= Ns − τ
−1
s · 〈Ls〉 − 1

n

∂

∂e
· (e × P s). (7)

As the inertial tensor I and the relaxation tensor τ
−1

are time
independent in the rotating frame (or the magnetization frame),
a simpler expression of Eq. (7) can be obtained in this frame.
After introducing the average angular velocity � such that

〈L〉 = I · �, Eq. (7) rewrites as

d�r

dt
= I

−1

r ·
[

Nr − 1

n

∂

∂e
· (e × P )

]
− τ

−1
rot · �r . (8)
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The rotating frame is denoted by the subscript r and

τ
−1
rot = τ

−1
r − ( I3

I1
− 1)
3 e × U , or

τ
−1
rot = (τ1 α∗)−1

⎛
⎝α∗ 1 0

−1 α∗ 0
0 0 0

⎞
⎠ , (9)

where α∗ = α (I3/I1 − 1)−1 with α = (
3 τ1)−1.
The three components of Eq. (8) read

⎧⎪⎪⎨
⎪⎪⎩


̇1 = −
1
τ1

− (
I3
I1

− 1
)

3
2 − MsH2

I1
− [

1
I1n

∂(e×P )
∂e

]
1


̇2 = −
2
τ1

+ (
I3
I1

− 1
)

3
1 + MsH1

I1
− [

1
I1n

∂(e×P )
∂e

]
2


̇3 = −τ−1
3 
3 = 0.

(10)

According to the last equation, the quantity L3 = I3
3 is a
constant of motion, so that the well-known gyromagnetic ratio
γ can be defined as the ratio γ = Ms

〈L3〉 (this is precisely the

hypothesis performed by Gilbert2).
On the other hand, the generalized gyromagnetic relation

discussed in the introduction is a formal property: Since the
modulus of M is conserved, the relation dM

dt
= � × M holds.

Cross-multiplying by M and using the above definition of
γ leads to the identity � = M

M2
s

× dM
dt

+ M
I3γ

(from which the
generalized gyromagnetic relation for 〈L〉 is obtained).

Furthermore, the averaged dynamic Eq. (10) introduces a
characteristic time scale τ1, which separates the behavior of
the magnetic system of particles in two regimes: the diffusion
regime or the long time scale limit t � τ1, and the inertial
regime t ≈ τ1.

In a diffusive regime, i.e., for t � τ1, the inertial terms d
1
dt

and d
2
dt

are negligible with respect to 
1
τ1

and 
2
τ1

. Equation (8)
then rewrites as the Gilbert equation with an inertial correction
performed on the previously defined gyromagnetic coefficient
γ ∗ = γ

1−I1/I3
:

dM
dt

= γ ∗ M ×
(

Heff − η
dM
dt

)
. (11)

The Gilbert damping coefficient η is now defined as η = I1
τ1M2

s

(so that α∗ = γ ∗ηMs is the corresponding dimensionless
coefficient), and Heff is an effective field that includes the
diffusion term.

At the diffusive limit, the magnetic moments follow a
distribution function f (e,L) close to a Maxwellian centered
on the average angular momentum 〈L〉.8 This leads to a

diagonal form for the pressure tensor: P = nkT /U and
Heff = H − kT

n
1

Ms

∂n
∂e .16,17 Equation (11) contains the density

n(e). Inserting Eq. (11) into the conservation law (3) leads
to the rotational Fokker-Planck equation of n(e), derived by
Brown:3 ∂n

∂t
= ∂(ne×�)

∂e .
For sufficiently short time scales t ≈ τ1, the inertial terms

cannot be neglected and the Gilbert approximation is no
longer valid. The dynamic equation (10) takes the following
generalized form:

dM
dt

= γ M ×
[

Heff − η

(
dM
dt

+ τ1
d2M
dt2

)]
. (12)

The corresponding generalized rotational Fokker-Planck equa-
tion for the statistical distribution f is obtained with replacing
JL by the Onsager relation derived earlier into the conservation

FIG. 1. (Color online) Numerical solution of Eq. (12) with τ1 = 2 ps. (a) Trajectories at two different fields with |α| = 0.05 (dashed line)
and curves deduced from the LLG equation (lower line). (b) Trajectory of the magnetization with changing suddenly the effective fields from
H = 1 MA/m to H = 3 MA/m and H = 0, with damping (continuous lines) and without (dotted lines). (c) Time derivative of the azimuth
angle φ plotted as a function of time for the trajectory of (b).
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law (1) and rewriting the law in the rotating frame19:

∂f(e,Lr )

∂t
=

⎧⎨
⎩

∂
(
f e × I

−1

r Lr

)
∂e

⎫⎬
⎭

Lr

(13)

+ ∂

∂Lr

·
[
f τ

−1
rot · Lr − f Nr + kT τ

−1
r I r · ∂f

∂Lr

]
.

(14)

At short time scales t ≈ τ1 and due to the inertial effect, the
usual precessional behavior is enriched by a nutation effect.
The simplest way to understand nutation is to imagine that
the effective field is switched off suddenly with zero damping:
The precession stops suddenly because the Larmor frequency
ωL = γ ∗ H drops to zero at the same time. However, in the
absence of inertial terms, the magnetic moment also stops at
this position within an arbitrarily short time scale. But if the
kinetic energy is different from zero the movement cannot be
stopped suddenly, the precession (around the magnetic field)
stops but the magnetic moment starts to rotate around the
angular momentum vector in order to conserve the energy—the
precession is transformed into nutation.

Figure 1 shows the numerical solution of Eq. (12) (neglect-
ing thermal fluctuations) with a field along the z axis and for a
parameter τ1 fixed to 2 ps with |α| = 0.05. The trajectories are
plotted on the sphere �. The usual trajectory deduced from
the LLG equation is also plotted for comparison. The motion

of the magnetic moment displays the familiar curve due to
Larmor precession, with superimposed loops generated by the
nutation effect. Figure 1(b) shows a trajectory starting without
initial velocity under an effective field of 1 MA/m, changed
suddenly to 3 MA/m and once again down to zero. Four curves
are represented: two for Eq. (12) with |α| = 0.05 (continuous
line) and α = 0 (dashed line), and two for the usual LLG
equation with and without damping. At the end of the motion
(left), the field is set to zero and the precession is destroyed,
with the nutation effect describing a circle (without damping)
or a spiral (with damping). Note that the profile of the nutation
loops depends on the initial conditions (the cusp presented
in Fig. 1 instead of loops is due to zero initial velocity).
Figure 1(c) shows the time derivative of the angle φ as a
function of time for the trajectory displayed in Fig. 1(b). The
horizontal lines represent the constant Larmor frequencies, and
the oscillations are due to nutation (for |α| = 0.05 and α = 0).

In conclusion, we have shown that extending the phase
space of the magnetization to the degrees of freedom of the
angular momentum leads to an out-of-equilibrium general-
ization of the gyromagnetic relation, and to a generalization
of the Landau-Lifshitz-Gilbert equation that contains inertial
terms. It is predicted that inertial effects should be observed at
sufficiently short time scales (typically below the picosecond),
e.g., by measuring nutation loops superimposed to the usual
precession motion of a magnetic moment. The inertial regime
at short time scales would also offer possibilities for new exper-
iments and devices based on ultrafast magnetization switching.
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