
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 83, 020409(R) (2011)

Transition from Bose glass to a condensate of triplons in Tl1−xKxCuCl3
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We report the magnetic-field-induced Bose glass–Bose-Einstein condensate (BEC) transition of triplons in
Tl1−xKxCuCl3 and its critical behavior, which were investigated through specific heat and electron spin resonance
(ESR) measurements. The field dependence of the BEC transition temperature TN can be described by the power
law [H − Hc] ∝ T

φ

N near the quantum critical point Hc ∼ 3 T. The critical exponent φ tends to reach a value
smaller than 1/2 with decreasing fitting window in contrast to φ → 3/2 for the standard BEC in a pure system. At
sufficiently low temperatures, the ESR line shape for H � Hc is intermediate between Gaussian and Lorentzian
functions. This implies the localization of triplons for H < Hc at T = 0.
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Heisenberg antiferromagnets composed of spin dimers
often have gapped ground states and undergo quantum phase
transitions to ordered states in magnetic fields.1,2 The field-
induced magnetic ordering is typical of the quantum phase
transition and has been actively studied both theoretically
and experimentally.3–14 These studies have established that
the field-induced magnetic ordering is best described as the
Bose-Einstein condensation (BEC) of spin triplets, with Sz = 1
called triplons. However, in the case of exchange disorder,
the nature of the ground state in a magnetic field and the
critical behavior of the field-induced magnetic ordering are
not sufficiently understood, although there have been some
studies on this problem.15–21

In a magnetic field H that is comparable to the gap, the
effective Hamiltonian of triplons is expressed as

H =
∑

i

(Ji − gμBH )a†
i ai

+
∑

i

∑

j

tij a
†
i aj + 1

2

∑

i

∑

j

Uij a
†
i a

†
j aj ai . (1)

The first, second, and third terms denote the local poten-
tial, hopping, and interaction of triplons, respectively. The
intradimer exchange interaction Ji on dimer site i corresponds
to the local potential of triplons, Vi = Ji − gμBH . The ground
state and the quantum phase transition for lattice bosons in
a random potential were investigated theoretically by Fisher
et al.22 They argued that a new phase called a Bose glass
(BG) emerges as a ground state, in addition to BEC and
Mott insulating (MI) phases, which correspond to the ordered
phase and gapped phase in the magnetic system, respectively.
Bosons are localized in the BG phase because of randomness,
but there is no gap; thus, the compressibility is finite. Fisher
et al. showed that the BEC transition occurs only from
the BG phase, and that near T = 0, the relation between
transition temperature Tc and boson density ρ is expressed
as Tc ∼ [ρs(0)]y, ρs(0) ∼ (ρ − ρc)ζ , where ρc is the critical
density at which the BEC transition occurs and ρs(0) is the
condensate density at T = 0. The exponents y and ζ are given
by y = 3/4 and ζ � 8/3 in the case of three dimensions. The
critical behavior is different from that of the standard BEC case

without randomness, for which these exponents are y = 2/3
and ζ = 1.

Recent theory has demonstrated the emergence of the
BG phase in a disordered quantum magnet.17,18 The BG
phase has also been studied in other disordered quantum
systems, such as 4He adsorbed on porous Vycor glass,22,23

amorphous superconductors,24 and trapped cold atoms.25

From the correspondence between the boson density and the
magnetization in the coupled spin-dimer system, the relation
(ρ−ρc) ∝ (H−Hc) is obtained, where Hc is the critical
magnetic field of the triplon BEC. Hence, for the coupled
spin-dimer system with exchange disorder, the transition field
HN (T ) near T = 0 should be expressed by the power law

[HN (T ) − Hc] ∝ T φ, (2)

with the critical exponent φ � 1/2. Consequently, the low-
temperature phase boundary should be tangential to the
field axis at T = 0, as shown in Fig. 1(a). This phase
boundary behavior is qualitatively different from that of a
pure system, for which φ = 3/2, and thus the phase boundary
is perpendicular to the field axis. The HB in Fig. 1(a) is the
critical field for the MI-BG transition. The BG phase exists
between HB and Hc.

To investigate the triplon BEC under the effect of the
localization, we performed specific heat and electron spin
resonance (ESR) measurements on Tl1−xKxCuCl3. The parent
compounds TlCuCl3 and KCuCl3 have the same crystal
structure, which is composed of the chemical dimer Cu2Cl6,
in which Cu2+ has spin-1/2. Their magnetic ground states
are spin singlets with excitation gaps of 7.5 and 31 K,
respectively.26 The gaps originate from the strong antiferro-
magnetic exchange interaction between spins in the chemical
dimer. The neighboring spin dimers couple antiferromagneti-
cally in three dimensions. The intradimer exchange interaction
was evaluated to be J/kB = 65.9 and 50.4 K for TlCuCl3
and KCuCl3, respectively.27–29 Because these two intradimer
interactions are different, the partial K+ ion substitution for Tl+
ions produces the random local potential Vi of the triplon.30

Single crystals of Tl1−xKxCuCl3 were synthesized from
a melt comprising a mixture of TlCuCl3 and KCuCl3 in
the ratio of 1 − x to x. The potassium concentration x was
determined by inductively coupled plasma optical emission
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FIG. 1. (Color online) (a) Schematic low-temperature phase boundaries expected for Tl1−xKxCuCl3. Solid and dashed lines denote the
boundaries for x �= 0 and x = 0, respectively. For simplification, the critical fields Hc for both cases are plotted at the same position. (b)
Field scans of the specific heat in Tl1−xKxCuCl3 with x = 0.36 measured at various temperatures. Arrows denote the transition field HN (T ).
(c) Magnetic field vs temperature diagram obtained below 2 K for x = 0, 0.22, and 0.36. Solid lines denote the fits by Eq. (2) for T < 2 K.

spectrochemical analysis at the Center for Advanced Materials
Analysis, Tokyo Institute of Technology (TIT). The specific
heat was measured down to 0.36 K in magnetic fields of up to
9 T using a physical property measurement system (Quantum
Design PPMS) by the relaxation method. High-frequency,
high-field ESR measurements were performed using the
terahertz ESR apparatus (TESRA-IMR)31 at the Institute for
Material Research, Tohoku University. The temperature of
the sample was lowered to 0.55 K using liquid 3He. A
magnetic field was applied using a multilayer pulse magnet. In
all the present experiments, the magnetic field was applied
perpendicular to the cleavage (1,0,2̄) plane, because the
magnetic anisotropy in this plane is so small that the U (1)
symmetry is approximately conserved.32

The specific heat obtained from a temperature scan exhibits
a small cusplike anomaly owing to magnetic ordering for
H � 4.5 T. The anomaly becomes smaller with decreasing
magnetic field. Thus, we performed a field scan of the specific
heat at various temperatures below 2 K. Some examples of
the measurements for x = 0.36 are shown in Fig. 1(b). The
specific heat exhibits a cusplike anomaly, to which we assign
the transition field HN (T ). The transition field is well defined
within an error of ±0.1 T. The phase transition points obtained
below 2 K for x = 0, 0.22, and 0.36 are summarized in
Fig. 1(c). It is clear that the critical behaviors of the phase
boundaries for x = 0 and x �= 0 near T = 0 are qualitatively
different. The phase boundary for x = 0 is normal to the field
axis for T → 0 but it is not for x �= 0.

To investigate the critical behavior, we fit the power law
given by Eq. (2) taking both φ and Hc as fitting parameters. For
x = 0, we obtain φ = 1.53 ± 0.14 and Hc = 5.00 ± 0.02 T
using the data for 0.35 � T < 2 K. The solid line for
x = 0 in Fig. 1(c) is the fit with φ = 1.53. This critical
exponent φ coincides with φBEC = 3/2 predicted by the BEC
theory without disorder.4,9,10,22 On the other hand, for x =
0.22 and 0.36, we obtain φ = 1.01 ± 0.05 and 0.96 ± 0.03,
respectively, using all the data below 2 K. The solid lines

for x = 0.22 and 0.36 in Fig. 1(c) are the fits with these
exponents. However, for x �= 0, the critical exponent φ tends to
decrease with decreasing fitting window. Thus, we analyze the
critical behavior of the phase boundary for x = 0.36 in detail.
We fit Eq. (2) in the temperature range of Tmin � T � Tmax,
setting the lowest temperature at Tmin = 0.36 K and varying
the highest temperature Tmax from 1.87 to 0.82 K. The critical
exponent φ as a function of Tmax is shown in Fig. 2. The critical
exponent φ decreases monotonically with decreasing Tmax, and
φ = 0.58 ± 0.17 with Hc = 2.7 ± 0.6 T for Tmax = 0.82 K.
The solid line in Fig. 2 is the fit with these φ and Hc.
With decreasing Tmax used for fitting, the critical exponent
φ shows a clear tendency to reach a value smaller than 1/2,
although the convergence of φ is not observed in the present
temperature range. This critical behavior is consistent with
that for the BG-BEC transition discussed by Fisher et al.22

The similar behavior for the critical exponent is also observed
for x = 0.22.

As shown in Fig. 1(c), the critical fields Hc for x = 0.22
and 0.36 are smaller than that for x = 0. This should be
mainly owing to the fact that the average intradimer interaction
decreases with increasing x. Within the framework of the
dimer mean-field approximation,6 the triplet gap is expressed
as � = [J (J − 2|J̃ |)]1/2, where J̃ is expressed by a linear
combination of interdimer interactions.6 The gap shrinks
either when the intradimer interaction J is reduced or when
the interdimer interaction is enhanced. The temperature TM

giving the maximum magnetic susceptibility decreases with
increasing x, as shown in Fig. 1 in Ref. 15. This indicates that
the average intradimer interaction decreases with x, because
TM is given by 1.60TM = J/kB , according to the mean-field
approximation.

To investigate the triplon localization, we performed ESR
measurements on Tl1−xKxCuCl3 with x = 0.22 and 0.36. The
crystals used in the specific heat and ESR measurements
were taken from the same batch. We used thick samples
to increase the intensity. The measurements were performed
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FIG. 2. (Color online) Low-temperature phase boundary for x =
0.36 and critical exponent φ as a function of Tmax obtained by fitting
Eq. (2) to transition points between 0.36 K and Tmax. The solid line
is the fit with φ = 0.58 and Hc = 2.7 T.

mainly at frequencies of 111 and 118.6 GHz for x = 0.22
and 0.36, respectively. The paramagnetic resonance fields
for these frequencies were estimated to be 3.55 and 3.80 T,
respectively, using g = 2.23 for H ⊥ (1,0,2̄). The resonance
field H0 is close to the critical field Hc. A single ESR line
with a width of ∼0.1 T was observed in the paramagnetic
phase for 0.55 � T � 16 K. The signal intensity below
4 K is much larger than that of the paramagnetic resonance
for pure TlCuCl3 with a gapped ground state.32 Although
the signal intensity decreases monotonically with decreasing
temperature, the intensity is sufficient, even at the lowest
temperature, to analyze the line shape as shown in Fig. 3. We
also measured the ESR spectrum at 102 GHz, but we could
not obtain a well-defined signal to analyze the line shape.

In the paramagnetic phase, the linewidth is produced by the
local field owing to perturbations that do not commute with

the total spin such as the anisotropic exchange, the dipolar
interaction, and the Zeeman interaction with nonuniform g

factors. From a statistical point of view, it is natural to assume
that the local field has a Gaussian distribution.33,34 Thus, when
the triplons that are created on the dimers localize, the line
shape should be Gaussian, because the distribution of the local
field determines the line shape of the ESR spectrum. On the
other hand, if the triplons delocalize in the crystal, the local
field acting on the spins is rapidly averaged, so that the ESR
spectrum is narrowed and becomes Lorentzian.33,34 This is
called exchange narrowing.

The raw ESR spectrum is somewhat unsymmetrical with
respect to the resonance field H0, as shown in Fig. 3(a). This
should be owing to the interference of the submillimeter wave
inside the sample, because the wavelength of the submillimeter
wave used and the sample thickness have the same order.
Because the present system is an insulator, this unsymmetrical
line shape is not intrinsic to the sample. Thus, we symmetrized
the spectrum by averaging both sides of H0, i.e., we used
{I (H ) + I (2H0 − H )}/2 as the intensity I (H ) at H . The
symmetrized spectrum has a flat baseline. To analyze the
line shape of these ESR spectra, we plotted I (H0)/I (H )
against [(H−H0)/(�H )]2, where �H is the linewidth at
I (H0)/2.35 When the line shape is Gaussian, I (H0)/I (H )
increases exponentially, while for the Lorentzian line shape,
I (H0)/I (H ) is a linear function of [(H − H0)/(�H )]2 with a
slope of unity, as shown by dashed and solid lines, respectively,
in Figs. 3(b) and 3(c). The I (H0)/I (H ) vs [(H − H0)/(�H )]2

plots at various temperatures for x = 0.36 and 0.22 are
shown in Figs. 3(b) and 3(c), respectively. We can see a
similar temperature variation in both figures. The I (H0)/I (H )
at high temperatures is almost linear in [(H−H0)/(�H )]2

with a slope of unity, which indicates a Lorentzian line
shape. On the other hand, at sufficiently low temperatures,
the I (H0)/I (H ) vs [(H−H0)/(�H )]2 plot is between the
Lorentzian and Gaussian plots. Such an ESR line shape is
observed in one-dimensional Heisenberg antiferromagnets, in
which the time correlation function of the local fields acting
on the spins is not damped rapidly but has a long time
tail.35
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FIG. 3. (Color online) (a) ESR spectra for x = 0.36 observed at 0.55 K for 118.6 GHz. Lower and upper spectra are raw and symmetrized
spectra, respectively. I (H0)/I (H ) vs [(H−H0)/(�H )]2 plots for the ESR spectra measured at various temperatures (b) for x = 0.36 and
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In the present temperature range, the BEC phase is not
reached even at the lowest temperature. At high temperatures,
the thermal hopping of triplons is activated. This causes rapid
averaging of the local fields, which leads to a narrowed
Lorentzian line shape. At sufficiently low temperatures, the
thermal effect is suppressed. Thus, the intermediate line shape
observed for T � 0.8 K can be attributed to the localiza-
tion of triplons. Because the resonance fields for 111 and
118.6 GHz are close to the critical field Hc, it is considered
that the complete localization does not occur in the present
temperature range; thus, the line shape is intermediate between
Gaussian and Lorentzian functions.

Oosawa and Tanaka15 reported the results of magneti-
zation measurements on Tl1−xKxCuCl3 with x � 0.36. The
magnetization curve that they observed at T = 1.8 K had
a finite slope even for H < Hc. This was not ascribed to
the finite-temperature effect, because pure TlCuCl3 exhibits
almost zero magnetization up to the critical field Hc. This
result indicates that the magnetic susceptibility χ = ∂M/∂H

for H < Hc is finite in the ground state. Because the magnetic
susceptibility corresponds to the compressibility of the lattice
boson system κ = ∂ρ/∂μ, where μ is the chemical potential,
the finite magnetic susceptibility for T → 0 means that the
compressibility of the ground state is finite. In the low-field

phase below Hc, long-range magnetic ordering is absent in
spite of the finite susceptibility. These properties for H < Hc

are consistent with the characteristics of the BG phase.22 From
these observations and the present ESR results, we can deduce
that the ground state for H < Hc in Tl1−xKxCuCl3 is the BG
phase of triplons. The gapped MI phase for H < HB appears
to be destroyed in the present system.

In conclusion, from the analysis of the phase transition data
and the line shape of the ESR spectrum for Tl1−xKxCuCl3
combined with the previous result for magnetization measure-
ment, we deduce that the quantum phase transition at Hc is the
BG-BEC transition of triplons and that the critical behavior for
the temperature dependence of the transition field near Hc is
described by the small-exponent characteristic of the BG-BEC
transition.22
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2T. Giamarchi, Ch. Rüegg, and O. Tchernyshyov, Nat. Phys. 4, 198
(2008).

3A. Oosawa, M. Ishii, and H. Tanaka, J. Phys. Condens. Matter 11,
265 (1999).

4T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka, Phys. Rev.
Lett. 84, 5868 (2000).
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