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A first-principles-based effective Hamiltonian is used to compute linear and quadratic magnetoelectric (ME)
coefficients in epitaxial (001) BiFeO3 thin films. Its predictions are analyzed within a phenomenological model
that provides analytical expressions of the ME coefficients in terms of polarization, as well as dielectric and
magnetic susceptibilities. Its main discoveries are: (i) the quadratic ME coefficient is dramatically enhanced
by increasing the magnitude of the compressive strain within the Cc phase, similar to the previously reported
enhancement of the linear ME coefficient in these films; (ii) the enhancements of the linear and quadratic ME
coefficients have the same macroscopic origin, namely an increase in the dielectric permittivity; and (iii) the
relative contribution of two different free-energy terms on the total linear ME coefficient is extracted from the
simulations. The analytical expressions also help in understanding other ME effects.
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Multiferroics possess coupled ferroelectric and magnetic
orders1 and are currently receiving a lot of attention. These
materials can exhibit a magnetoelectric (ME) coupling that
allows electrical properties to be tuned by a magnetic field or,
conversely, magnetic properties to be varied by an electric field.
Several recent first-principles-based studies2–5 have focused
on linear ME coefficients to gain a better understanding
of such coefficients and to find materials/effects leading to
large ME couplings. In particular, it has been found that
enhanced linear ME responses can arise in highly compressed
epitaxial BiFeO3 (BFO) thin films as a result of structural
softness.2 Another kind of theory commonly used to study ME
effects gathers phenomenological approaches.1,6–10 The latter
schemes are based on analytical expressions of the free energy
and typically involve only “straightforward” macroscopic
quantities. They have the potential to be very useful to interpret
in a simple manner experimental as well as first-principles data
in multiferroics. For instance, they may reveal in BFO films
(i) which precise macroscopic property leads to the reported
optimization of the linear ME coefficient2 and (ii) which
free-energy terms play a role in the linear ME coefficient.
As a matter of fact, at least two different free energies
can exist in multiferroics: one form that is proportional to
a single product between magnetization, polarization, and
the antiferromagnetic (AFM) vector3,6,11 versus another free-
energy term that involves a product between the square of the
polarization and the square of the magnetization.12,13 To the
best of our knowledge, the relative contributions of these two
free energies on the total linear ME coefficient of BFO is not
known, despite the importance of this material.

Moreover, we are not aware of any direct first-principles
calculation yielding quadratic ME coefficients in any mul-
tiferroic; however, these coefficients are predominant over
linear ME couplings in BFO systems.4,14–17 It is thus presently
unknown whether these quadratic ME coefficients can also
be dramatically enhanced by varying the epitaxial strain in
BFO films, and, if so, what the macroscopic reason behind
it might be. Having a general analytical expression for the
quadratic ME coefficients as a function of straightforward
macroscopic properties may also help in better understanding
magnetoelectricity in various multiferroics (including BFO).

The goal of this Rapid Communication is to provide
answers to all the aforementioned issues. First-principles-
based calculations reveal that the quadratic ME coefficient
is also optimized in compressed BFO films. Furthermore, a
phenomenological model used to analyze the ab initio predic-
tions (1) indicates that the previously reported enhancement
of the linear ME coefficient2 has the same macroscopic origin
as the presently discovered optimization of the quadratic ME
coupling, which is a strain-induced increase of the dielectric
susceptibility; (2) reveals that two different free energies are
indeed involved in the linear ME coefficient of BFO films; and
(3) even allows us to extract the relative contribution of these
two free energies.

Here, we use the effective Hamiltonian approach of Ref. 4
to investigate (001) BFO films under compressive strain. Its
degrees of freedom are: the local soft-mode distortions in
every five-atom unit cell i, ui (which is directly proportional
to the local electrical dipole of cell i); the homogeneous strain
tensor {ηH };18 inhomogeneous strain-related variables vi ;18

the ωi vectors, whose directions are the axis about which the
oxygen octahedron tilts in unit cell i, while their magnitudes
provide the angle of such tilting;19 and the mi magnetic
dipoles in the cells i.14 All the parameters of this effective
Hamiltonian scheme are extracted from first principles. As
done in Refs. 2,20,21, the only distinction we assume between
simulating a BFO bulk and an epitaxial (001) BFO film is that
the latter is associated with the freezing of some components
of the homogeneous strain tensor. More precisely, mechanical
boundary conditions of this film are mimicked by imposing
that (in the basis for which the x, y, and z axes lie along the
pseudo-cubic [100], [010], and [001] directions, respectively)
ηH,xy = ηH,yx = 0 and ηH,xx = ηH,yy = δ, with δ being the
value forcing the film to adopt the in-plane lattice constant of
the substrate.22,23 In practice, δ = (asub − abulk)/abulk, where
asub is the in-plane lattice parameter of the substrate and abulk

is the 0 K pseudocubic lattice constant of bulk BFO. The total
energy of the effective Hamiltonian scheme is then used in
Monte Carlo simulations with up to 106 sweeps. Note that
first-principles-based effective Hamiltonians have success-
fully reproduced important characteristics of bulk BFO,
such as its structural ground state, quadratic magnetoelectric
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FIG. 1. (Color online) Predicted properties of epitaxial (001)
BFO films at 10 K in the Cc (filled symbols) and P4 mm (open
symbols) structural phases, as a function of the misfit strain. Panel
(a): the total internal energy per 5 atoms. Panel (b): averaged local
soft mode, which is proportional to the electrical polarization. Panel
(c): average antiphase tilting angle of oxygen octahedra. Panel (d):
G-type antiferromagnetic vector. Panel (e): magnetization. Panel (f):
tetragonal axial ratio. The x, y, and z axes are chosen along the
pseudocubic [100], [010], and [001] directions, respectively. The
tilting of oxygen octahedra and the magnetization are both found
to vanish in the P4 mm state, while the G-type AFM vector is along
the [11̄0] pseudocubic direction.

coefficients, and Néel and Curie temperatures.4,14,15 The latest
effective Hamiltonian developed for BFO (see Ref. 4) is
also able to reproduce the spin-canting structure of BiFeO3

films, which generates a weak magnetization (of the order of
0.025μB ) along with a strong G-type AFM vector.24

Figure 1 shows that this effective Hamiltonian approach
predicts that up to a critical compressive misfit strain δcrit, the
ground state of epitaxial (001) films is a Cc phase that is charac-
terized by: (1) a polarization lying along [uuv] directions, with
the out-of-plane component of the polarization increasing with
increasing magnitude of the misfit compressive strain while the
in-plane polarization adopts an opposite behavior; (2) oxygen
octahedra tilting in antiphase about [u′u′v′] directions, with
v′ (respectively, u′) increasing (respectively, decreasing) with
the magnitude of δ; (3) a G-type AFM vector that remains
perpendicular to the polarization and to the axis about which
the oxygen octahedra tilt for any compressive strain; and
(4) a weak magnetization that rotates with δ (in order to
stay orthogonal to both the AFM vector and the axis about
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FIG. 2. (Color online) Other predicted properties of epitaxial
(001) BFO films at 10 K in the Cc state, as a function of the misfit
strain: Panel (a): the β311 quadratic magnetoelectric coefficient. Panel
(b): α31 linear ME element. Panel (c): χP

33 dielectric susceptibility.
Panel (d): χM

11 magnetic susceptibility. The dashed line in Panel (a)
corresponds to the fit of the data by Eq. (4). The solid line in Panel (b)
represents the fitting by Eq. (5), while the dashed line shows the fitting
by the sole α

(1)
31 of Eq. (5). The 1, 2, and 3 subscripts are associated

with the pseudocubic [110], [11̄0], and [001] directions, respectively.

which the oxygen octahedra tilt4,25). For compressive strains
larger in magnitude than δcrit, the resulting ground state is
characterized by (i) a strong out-of-plane polarization and
(ii) a large tetragonal axial ratio. Items (1)–(4) and (i)–(ii)
as well as the strain-induced energetic crossing between
Cc and a strong ferroelectric phase are all consistent with
recent first-principles calculations.2,20,21 On the other hand,
the strong ferroelectric phase we predict at high compression
has the tetragonal P4 mm space group. As a result, it does
not have any in-plane component of the polarization, unlike
the monoclinic Cm state of Ref. 20. It also does not exhibit
any tilting of the oxygen octahedra, unlike the monoclinic
Cc phase of Refs. 2,21. However, all these first-principles
calculations2,20,21 have found that the P4 mm phase is quite
close in energy to these Cm and Cc states, and that the latter
monoclinic states both gradually transform into P4 mm at high
enough compressive strain (i.e., of the order of −6 or −7%).26

It is also interesting that Fig. 1(a) indicates that the Cc state
can survive for compressive strains larger in magnitude than
δcrit.27 This feature is in agreement with Refs. 2, 20, and is
relevant to our study because the linear ME coefficients of
the Cc state were found to dramatically increase in the strain
region for which this Cc phase is “only” metastable.2

Figures 2(a) and 2(b) display the β311 quadratic and α31

linear ME coefficients at 10 K in the Cc phase, respectively,
as predicted by our effective Hamiltonian approach, with the
1, 2, and 3 indices corresponding to the pseudocubic [110],
[11̄0], and [001] directions, respectively.28 These coefficients
are calculated by fitting the polarization-versus-magnetic field
curve by a polynomial of degree 2 for any δ and up to a field
of 100 Tesla.4,14,15 Figure 2(b) confirms a finding of Ref. 2,
namely that increasing the magnitude of δ within the Cc state
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leads to a spectacular enhancement of the magnitude of the
linear ME coefficient (note that our predicted magnitude of
this coefficient is equal to or larger than 5 ps/m for δ larger
in magnitude than 5%, which agrees very well with the first-
principles results of Ref. 2). Interestingly, Fig. 2(a) reveals that
the β311 quadratic coefficient also considerably increases in
magnitude at the same time (note that we predict a magnitude
of 0.3 × 10−19 s/A for β311 at zero strain, which is precisely
the low-temperature experimental value of BFO bulk16).

Let us now analyze the results of Fig. 2 via a general
phenomenological model. For that, we first start with the
definition of the αij linear and βijk quadratic ME coefficients12:

αij = ∂Pi

∂Hj

= − ∂2	

∂Ei∂Hj

and

(1)

βijk = ∂2Pi

∂Hj∂Hk

= − ∂3	

∂Ei∂Hj∂Hk

,

where 	 is the free energy. Pi and Ei are the i component
of the polarization and of the electric field, respectively. Hj

represents the j component of the magnetic field. The next
step is to determine the terms of the free energy that do not
vanish in the derivations of Eqs. (1). To the lowest orders, such
energetic terms are two-fold and are12

	(1) =
∑

pq

λpqPpPpMqMq and

(2)
	(2) =

∑

pqr

gpqrMpLqPr,

where the sums run over the components of the magnetization
(M), AFM vector (L), and polarization. The parameters λpq

and gpqr form second-rank and third-rank tensors, respectively,
that depend on the symmetry of the crystal and are materials
dependent. It is straightforward to demonstrate that inserting
Eqs. (2) into Eqs. (1) gives:

αij = α
(1)
ij + α

(2)
ij , with α

(1)
ij = −4ε0

∑

pq

λpqPpχP
piMqχ

M
qj

and α
(2)
ij = −

∑

pqr

gpqrχ
P
ri Lqχ

M
pj , (3)

and βijk = β
(1)
ijk = −4ε0

∑

pq

λpqPpχP
piχ

M
qj χM

qk ,

where the (1) and (2) superscripts indicate that the correspond-
ing coefficients originate from the 	(1) and 	(2) free energies,
respectively. The parameter ε0 is the dielectric permittivity of
vacuum, and χP represents the dielectric susceptibility tensor
(that is, χP

pi = 1
ε0

∂Pp

∂Ei
). Finally, χM

qj are the elements of the

magnetic susceptibility tensor, i.e., χM
qj = ∂Mq

∂Hj
.

Interestingly, our effective Hamiltonian approach predicts
that, in the studied BFO film, χP

33 and χM
11 are the largest

elements of the dielectric and magnetic susceptibility tensor,
respectively [such quantities are displayed in Figs. 2(c) and
2(d)]. As a result, one can rewrite Eqs. (3) for the ME
coefficients shown in Figs. 2(a) and 2(b) as

β311 = β
(1)
311 = −4ε0λ31P3χ

P
33χ

M
11 χM

11 , (4)

and

α31 = α
(1)
31 + α

(2)
31 with α

(1)
31 = −4ε0λ31P3χ

P
33M1χ

M
11

and α
(2)
31 = −g123χ

P
33L2χ

M
11 . (5)

Figure 2(a) shows that one can indeed fit very well the
β311 computed by Eq. (4) with a strain-independent λ31

coefficient equal to 4.8 × 10−3 SI. This equation, along with
Figs. 1(b), 2(c), and 2(d), allows us to prove that the increase
of the quadratic ME coefficient with strain is mostly due to
the gain in the dielectric permittivity when going toward the
boundary of the stability of the Cc phase. Interestingly and
as revealed by Fig. 2(b), α

(1)
31 = −4ε0λ31P3χ

P
33M1χ

M
11 (using

the λ31 coefficient extracted from the fit of β311) significantly
differs from the computed α31 linear coefficient. As a matter
of fact and as indicated in Fig. 2(b), one needs to also
incorporate the second part of the linear ME coefficient (i.e.,
α

(2)
31 = −g123χ

P
33L2χ

M
11 , with a fixed, misfit-independent g123

coefficient equal to 0.6 × 10−4 SI) to precisely reproduce the
computed linear ME coefficient. Such a finding reveals that
the two free energies of Eqs. (2) are both playing a role in
determining the magnitude of the total linear ME coefficient
of BFO. Both terms should thus be accounted for when
studying ME couplings in BFO films.13 Moreover, looking at
the behavior of the properties depicted in Figs. 1(b), 1(d), 1(e),
2(c), and 2(d), which are involved in the analytical expression
of Eq. (5), reveals that the enhancement of the linear ME
coefficient when increasing the magnitude of the misfit strain
mostly originates from the sudden increase of the dielectric
susceptibility.29

Interestingly, Eqs. (3) are applicable to any multiferroic
and are very informative. For instance, one can immediately
realize that the quadratic ME coefficients require “only” the
structural phase to be polar, and therefore do not need the phase
to be magnetically ordered in order to exist. On the other hand,
Eqs. (3) tell us that having nonvanishing linear coefficients is
possible only in structural states that are magnetically ordered.
The linear ME coefficient reduces to α

(1)
ij for ferromagnetic

systems, while an AFM order leaves only α
(2)
ij as the nonzero

contribution to the total αij coefficient. Equations (3) also re-
veal that α

(1)
ij and α

(2)
ij are both “activated” in spin-canted mag-

netic structures in which a weak ferromagnetism coexists with
a strong AFM vector (exactly as in BFO films below �640 K,
as discussed in Ref. 24). In contrast, cycloidal magnetic
structures that result in the annihilation of the macroscopic
magnetization and AFM vector cannot have any linear ME
coefficients according to Eqs. (3), consistent with the case of
BFO bulk.17 The rather simple expressions of Eqs. (3) also
indicate the recipes to follow to have strong ME coefficients.
In particular, large values of the dielectric and magnetic sus-
ceptibilities are automatically associated with large quadratic
ME coefficients, assuming a nonzero polarization. As a result,
finding systems simultaneously possessing just above 300 K
a second-order ferromagnetic transition and a second-order
ferroelectric transition is the ideal choice to generate huge βijk

coefficients at room temperature. Similarly, the expression of
α

(2)
ij implies that an antiferromagnet will have a large linear

ME coefficient for temperatures below the Néel temperature
for large values of the dielectric susceptibility. A second-order
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or even tricritical ferroelectric transition occurring in an
AFM phase will thus generate giant linear ME effects. It
is likely that Eqs. (3), which express linear and quadratic
ME coefficients, can further help in understanding other
magnetoelectric effects30 and can serve as a guide to find
desired materials with optimal magnetoelectric response.
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