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Structure and consequences of vortex-core states in p-wave superfluids
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We study the properties of the subgap states in p-wave superfluids, which occur at energies below the bulk gap
and are localized inside the cores of vortices. We argue that their presence affects the topological protection of
the zero modes. Transitions between the subgap states, including the zero modes and at energies much smaller
than the gap, can alter the quantum states of the zero modes. Consequently, qubits defined uniquely in terms of
the zero modes do not remain coherent, while compound qubits involving the zero modes and the parity of the
occupation number of the subgap states on each vortex are still well defined. In neutral superfluids, it may be
difficult to measure the parity of the subgap states. We propose to avoid this difficulty by working in the regime
of small chemical potential μ, near the transition to a strongly paired phase, where the number of subgap states
is reduced. We develop the theory to describe this regime of strong pairing interactions and we show how the
subgap states are ultimately absorbed into the bulk gap. Since the bulk gap also vanishes as μ → 0 there is an
optimum value μc which maximizes the combined gap. We propose cold atomic gases as candidate systems
where the regime of strong interactions can be explored, and explicitly evaluate μc in a Feshbach resonant 40K
gas. In particular, the parameter c2 parametrizing the strength of the resonance in such gases sets the characteristic
size of vortices and the energy scale of the subgap states.
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I. INTRODUCTION

Since the vision of a quantum computer based on the
enigmatic degrees of freedom of topological phases of matter
was set out,1 the search for physical realizations of topological
phases has evolved as a leading topic of condensed-matter
physics.2 The physics of chiral px + ipy BCS pairing3

represents a simple prototype system for topological order
with prospective applications for inherently fault-tolerant
topological quantum computing.2

The px + ipy paired phase is believed to occur in a number
of settings, including in the A1 phase of superfluid 3He,4,5

in the bulk of the layered perovskite oxide Sr2RuO4,6,7 and
in two-dimensional samples of cold atomic8–12 and polar
molecular13 gases, as well as a very closely related p-wave
superconductor of composite fermions in the ν = 5/2 quantum
Hall effect.3,14–17 Physics similar to that of the topologically
nontrivial Majorana modes in px + ipy superconductors may
also be induced by the proximity effect in interfaces between
s-wave superconductors and topological insulators18 or in
related semiconductor heterostructures.19,20

In p-wave superfluids, topologically nontrivial degrees of
freedom arise from the Majorana zero-energy modes (ZEMs)
localized in vortices of the superfluid order parameter.21 The
topological protection required for the ZEM to be used in
quantum computing relies on the existence of an energy gap
toward quasiparticle excitations. It is troubling, therefore, that
vortex cores in superfluids feature eigenstates occurring at
energies much smaller than the bulk gap.5,22

In this paper, we discuss the implications of the presence
of such subgap states for implementations of topological
quantum computing (TQC) in a px + ipy paired phase. We
conclude that, while these states do not necessarily lead to
decoherence of quantum information, they can complicate
significantly the construction of any practical scheme for TQC.
In brief, at temperatures above the energy of the lowest subgap

state ε1, thermal excitations of the systems include processes
which correspond essentially to a random flip of the qubit
associated with the ZEM, represented by matrix elements
involving a single Majorana operator. However, as long as no
excitations above the bulk gap are created, no decoherence may
occur, and information remains local to the vortex. Therefore,
a compound qubit consisting of the ZEM as well as the
complete set of subgap states is still well defined, with its state
determined by the ZEM as well as the parity of the number of
subgap excitations.

The requirement to perform measurements of such com-
pound qubits, however, may prevent implementations of
TQC in practice, particularly in neutral superfluids where
interferometry is not applicable. As a possible solution to
this dilemma, we suggest the use of spin-polarized atomic
Fermi gases which may be driven to a strongly interacting
regime of px + ipy pairing in a controlled fashion (remaining
in the weak-pairing phase3) by exploiting the physics of the
BEC-BCS crossover23 in cold atomic gases.12,24 This regime,
where the bulk gap can be of the order of the Fermi energy
was not considered in detail in previous studies of vortex states
in the px + ipy paired phases.5,25–27 In particular, the existing
scheme leading to an approximate analytical solution for the
subgap states5 does not apply.

Following the need to elucidate the strongly paired regime
of neutral superfluids, in this paper we establish the theoretical
framework for characterizing the physics of a quasi-two-
dimensional cold atomic gas in the BCS regime above a
p-wave Feshbach resonance. We show how to describe the
system in a two-channel model and deduce the connection
to the underlying parameters of the atomic gas, studying the
example of 40K, in particular. As a core result of this analysis,
the size of the vortex cores is set by the parameter c2 that
characterizes the strength of the resonance. We study the
ensuing Bogoliubov–de Gennes (BdG) equations in the limit
of strong interactions and show how the subgap states merge
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with the bulk gap one by one until none is left. We then focus
particularly on the nature of the first excited subgap state, as
opposed to a number of previous studies that focused on the
zero modes.26,28–32 Based on a numerical study of the BdG
equations, we identify the regime with the best prospects for
realizing TQC in p-wave superfluid cold atomic gases, that is,
the regime maximizing the energy of the first subgap state ε1

as a function of the detuning.
The structure of this paper is as follows. In Sec. II, we review

the BdG equations for the description of p-wave superfluids,
identify the chemical potential as the single parameter of these
equations in suitable rescaled units, and restate some known
results about the subgap states in these units. Section III
provides an in-depth discussion of how the subgap states
influence the topological protection of the manifold of ZEM
in a system with many vortices. We then proceed in Sec. IV to
discuss the theoretical framework for the description of atomic
p-wave superfluids in the regime of strong interactions using
a two-channel model. Solutions to the ensuing BdG equations
are given in Sec. V, mostly based on a numerical study with
a strong focus on the properties of the first excited subgap
state. Finally, in Sec. V D we deduce concrete numbers for
experimental realizations of a p-wave superfluid based on
a Feshbach resonance in potassium gases before presenting
further conclusions in Sec. VI. Details of how to extract the
physical parameters for the Feshbach resonance in 40K are
given in Appendix A. Appendix B recapitulates how to express
the BdG equations on the sphere.

II. MODEL

Before entering the main discussion of this paper, let
us introduce the notations of the formalism that we use in
what follows. The spectrum of spinless (fully spin-polarized)
fermions whose px + ipy pairing-order parameter is described
by a gap function �(r) and gives rise to the Bogoliubov
equations(

ĥ − μ π̂

π̂ † −ĥT + μ

) (
un

vn

)
= En

(
un

vn

)
, (1)

where, in a coordinate representation, the single-particle
kinetic term can be expressed as ĥ = − ∇2

2m
and the pairing

term as π̂ = 1
2

√
�(r)( ∂

∂x
− i ∂

∂y
)
√

�(r). Note that in this
definition of p-wave pairing, the gap function � has units
of energy × length in contrast to s-wave superconductors.
In what follows, we adopt a dimensionless version of the
Bogoliubov equations, obtained from (1) by rescaling the
equations in terms of the characteristic length set by the gap
function

L = 1

m�0
, (2a)

yielding the dimensionless length and energy scales

x̄ = x

L
and Ē = EmL2 = E

m�2
0

, (2b)

respectively. Note the scale L is determined by the asymptotic
value of the gap function in the bulk, �0, measured far
away from any vortices. We should note that while the gap
function �0 yields a characteristic energy scale E0 = m�2

0

of the problem, this scale is distinct from the bulk gap, as
defined in what follows, which represents a second useful
reference energy. For the remainder of this paper, we use this
dimensionless formulation of the BdG equation (1), which
is formally equivalent to setting the mass m = 1 and the
value of the gap function in the bulk �0 = 1. This leaves
μ̄ = μ/[m�2

0] as the single dimensionless parameter of the
problem. In the remainder of this paper, symbols with a bar
refer to the dimensionless versions, while bare symbols rep-
resent fully dimensional quantities. Wherever dimensionless
parameters appear in an equation, the other parameters are also
dimensionless, even if not explicitly indicated as such.

Let us indicate a few known results in the dimensionless
units. For example, the dispersion of the bulk quasiparticle
excitations in the absence of any vortices now reads

Ēk =
√

(k2/2 − μ̄)2 + k2. (3)

The bulk gap �̄B is set by the minimum of Ek, which occurs
at momentum at k = 0 or at |k| = √

2(μ̄ − 1) for μ̄ < 1 or
μ̄ > 1, respectively, with

�̄B =
{

μ̄ for μ̄ � 1,√
2μ̄ − 1 for μ̄ > 1.

(4)

Our study focuses on the spectrum of the px + ipy super-
conductor in the presence of a radially symmetric vortex
described by a winding of the order parameter according to
�(r) = h2(r)eiκφ , where h(r) → 1 at large r . Setting u(r) =
exp[i(m + κ−1

2 )φ]u(r) and v(r) = exp[i(m − κ−1
2 )φ]v(r), the

Bogoliubov equations for general κ read

−[
Dm+ κ−1

2
+ μ̄

]
u + h2

(
∂

∂r
+

1
2 + m

r

)
v + hh′v = Ēu,

(5)[
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2
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]
v − h2

(
∂

∂r
+

1
2 − m

r

)
u − hh′u = Ēv,

where we introduced an abbreviation for the second-order
differential operator

Dl = 1

2

∂2

∂r2
+ 1

2r

∂

∂r
− l2

2r2
. (6)

In this paper, we focus on the cases of a vortex (κ = 1)
and antivortex (κ = −1). Analytical solutions to Eqs. (5) are
known for several regimes of parameters.5,22 Most importantly,
a zero mode exists for all vortices of odd vorticity and
is topologically protected against perturbations that do not
destroy the bulk gap.27,33,34 In a cylindrically symmetric vortex
of vanishing size34 and with vorticity κ = 2n − 1, the wave
function of the zero mode takes the form

u(r) = v(r) =
{

Jn(r
√

2μ̄ − 1)e−r for μ̄ � 1
2 ,

In(r
√

1 − 2μ̄)e−r for μ̄ < 1
2 ,

(7)

with the (modified) Bessel functions Jn (In) (and the angular
dependency involves and appropriate phase factor as intro-
duced previously). If a finite-sized vortex core is considered,
both the Bessel function and the exponential localization are
modified. The latter instead becomes exp[− ∫ r

0 h2(r ′) dr ′].
It is also known that there may exist additional subgap

states,5,22 with finite E < �B known as the Caroli–de Gennes–
Matricon (CdGM) states.22 While the energy of the zero mode
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is protected, the energy of the CdGM states depends on the
shape of the vortex. Their energy was calculated in the limit
of μ̄ � 1 for the closely related case of a κ = 1 vortex in the
A phase of 3He,5,22 and found to be

Ēm = −mω̄0 (8)

for the subgap state with angular momentum m, as long as
E � �B and with

ω̄0 =
∫ ∞

0 dr h2(r)
r

exp
[−2

∫ r

0 dr ′h2(r ′)
]

∫ ∞
0 dr exp

[−2
∫ r

0 dr ′h2(r ′)
] . (9)

Note that the spacing of the subgap states is independent of the
dimensionless μ̄, whereas in dimensional units ω0 ∼ �2

B/μ �
�B .35 There are thus μ/�B ∼ √

μ̄ such modes for large μ̄. In
what follows, we consider the behavior in the limit of small μ̄

and find that as μ̄ is reduced, the subgap modes merge with
the bulk one by one. Finally, we introduce ε1 as a notation for
the energy of the first subgap state, with ε1 → ω0 in the limits
of the approximation of large μ̄.

III. ROLE OF THE SUBGAP STATES

Given the presence of states below the gap energy, the
question arises as to how these states affect the topological
protection of the Majorana zero modes. The conventional
view of the topological protection of a ground-state manifold
requires the existence of an energy gap toward excited states.1

At sufficiently low temperatures, the probability of creating
an excitation is then exponentially suppressed. If the vortices
holding zero modes are well separated from each other,
recombination would most likely occur in a way that restores
the original ground-state configuration: Due to the topological
nature of the system, a quasiparticle excitation can only
permanently change the state of the system if it braids around
a second vortex.2 Excitations of the subgap states always
remain localized to a single vortex. However, even if they
cannot propagate information to a second vortex, they can
make reading off the state of the qubit very complicated, as
we see later.

For p-wave superconductors in the BCS limit, the first
subgap energy ε1 is typically much smaller than the bulk gap
�B (by a factor of �B/μ), and it may thus be impracticable or
even impossible to cool the system to temperatures below ε1.
For temperatures above ε1, excitations of the subgap state(s)
are likely.

Transitions between the zero modes and the subgap states
require nonzero matrix elements connecting these states. It can
be shown that matrix elements for a scalar potential, created,
for instance, by a passing phonon, are indeed nonzero by
expanding a disorder potential V̂ in the basis of Bogoliubov
eigenstates. Therefore, transitions into the subgap states will
occur at a finite rate in thermal equilibrium. In this case,
the necessary energy for quantum jumps is then supplied
by the heat bath, for example in the form of phonons in the
ruthenates. For the purpose of this discussion, we only need
to acknowledge the presence of processes of the form ĉ†ν γ̂ν or
γ̂ν ĉν , involving Majorana fermions γ̂ν and fermionic subgap
states ĉ(†)

ν at vortex ν.

For any static external potential, the system has well-
defined eigenstates with infinite lifetime. Time-dependent
scalar potentials, however, can provide the energy to make
transitions between eigenstates. The zero mode has an in-
teresting property in that its energy is protected against
perturbations. However, its wave function is deformed by a
changing potential. Thus, the zero mode for a given external
potential has a nonzero overlap with excited states of an
evolving potential at a later time. Nonadiabatic transitions can
only be induced by perturbations, which occur sufficiently
quickly on a time scale set by the energy scale for transitions,
as the required energy is supplied by the force resulting from
a time-dependent potential. Therefore, the presence of the
subgap states sets tighter limits on how stationary the scalar
potential needs to be to conserve adiabaticity. In this context,
we note that even a stationary disorder potential will act as
a time-dependent perturbation driving nonadiabatic processes
under braiding of the vortices.

Having identified possible nonadiabatic processes among
the zero modes and subgap states, the question remains as to
whether these transitions cause decoherence in the system. Let
us first assume that we are able to momentarily cool the system
to very low temperatures, even though nonadiabaticity cannot
be avoided during braiding operations. Thus, we may start
and end in the ground state. The consequences of temporary
transitions to the subgap states can be analyzed using the
operator describing the braid which exchanges the positions
of two vortices γ̂1 and γ̂2 and which is given by β12 =

1√
2
(1 + γ̂1γ̂2) (followed by a renaming of the vortices).21

For instance, excitation of the subgap state on vortex 1,
followed by an interchange of 1 and 2 and deexcitation of the
vortex is equivalent to a simple exchange up a to sign:

ĉ2γ̂2(1 + γ̂1γ̂2)γ̂1ĉ
†
1 = −(1 + γ̂1γ̂2). (10)

Generally, the nonadiabatic processes affect braiding pro-
cesses only up to a sign (or rather, up to a random Abelian
phase caused by the lack of knowledge of the energy as
a function of time). More generally, any even number of
transitions to subgap states will lead to an even number of
Majorana operators being inserted—thus leaving the final state
invariant. This is always the case if both the initial and the final
state are within the ground-state manifold. However, should
an odd number of subgap states be excited on a vortex, an
error occurs and the final quantum state is altered (changing
the entanglement properties of the wave function by modifying
the relative phases of the components with empty and occupied
core states36).

Provided that all subgap states remain local to its vortex,
and provided one can measure the number of fermions in
the subgap states of all vortices, one can deduce how many
Majorana operators must have been inserted in the initial state
and correct the final state accordingly. While such a procedure
seems fundamentally possible, it would likely be extremely
inconvenient in practice.

It may be possible to find a measurement scheme which
evaluates the state of the Majorana mode, as well as the
parity of the subgap states, which could be taken alto-
gether as a compound qubit. Such qubits were considered
independently in a recent paper.37 We now discuss the
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feasibility of measuring the atom number parity in the context
of possible readout schemes for quantum bits in p-wave
superconductors/superfluids.

As an example, let us consider a proposal to detect the state
of qubits in atomic p-wave superfluids via spectroscopy.38

This scheme relies on the possibility to detect the presence or
absence of a single unpaired atom after fusing two vortices
forming a qubit. Detecting a single unpaired atom is possible
as the coupling of the atom’s internal states to a Raman pulse
depends sensitively on the detuning of the incident radiation.
However, the required detuning differs by twice the bulk gap
between paired and unpaired atoms, enabling one to address
only the latter. Given the presence of the subgap states, it
is now possible that there are multiple unpaired atoms in a
single vortex. Consider, for example, a situation where an
even number of subgap states have been excited in the two
vortices of the qubit. Then, according to the proposal under
consideration,38 we would detect the presence of unpaired
atoms; however, the state of the qubit corresponds to an empty
|0〉 state. To deduce the state of the qubit, it is therefore required
to detect the parity of the number of unpaired fermions (that
is the parity of the sum of occupation numbers of all subgap
states). This requires more accurate detection techniques.

Interferometry appears as a suitable measurement method,
as it is sensitive only to the parity of the number of atoms.
In charged superfluids, interferometry is expected to work,1

provided that transport along the edge can be described
in terms of the motion of quasiparticles with no internal
degrees of freedom. However, in compressible neutral p-wave
superfluids, interferometry is certainly not applicable at all
as the compressibility of the system entails particle number
fluctuations that wash out the interferometric signal when
braiding quasiparticles.39 For incompressible states such as
the Moore-Read phase found in the ν = 5/2 quantum Hall
effect, interferometry is considered as a leading scheme for
readout;2 we should also note in passing that there are no
subgap states in the spectrum for FQHE states, as the size of
the vortex is of the order of the interparticle spacing.

As the presence of the subgap states gives additional
structure to the quantum bits, we anticipate that the readout
protocols will be more complex and thus be prone to errors
in the readout process, particularly for neutral superfluids.
Therefore, the presence of low-lying subgap states very likely
prevents the practical use of the quantum register in these
systems.

IV. p-WAVE SUPERFLUIDS IN THE LIMIT OF
STRONG INTERACTIONS

In the previous section, we argued that the presence
of low-lying subgap states complicates the use of p-wave
superfluids for TQC. From a technological point of view it
seems imperative to evade the problem of having to keep track
of the occupation numbers of all subgap states. In px + ipy

superfluids of cold atomic gases, this can be achieved by
driving the system into the regime of strong interactions where
the number of subgap states Ns is expected to be small. For
μ̄ � 1, the semiclassical approximation5 yields Ns ∝ √

μ̄.
The core task of this paper consists in establishing the nature
of the subgap states for μ̄ small.

To do so, we need to solve the BdG equations for a vortex
when μ̄ is small. This can only be done numerically. The
appropriate equations depend on the shape of the condensate
h(r), which vanishes linearly in r near the core for singly
quantized vortices. At the same time, as r increases h(r)
approaches 1 on a characteristic length scale called the
coherence length of the condensate, ξ . We need to know ξ

to fully define the BdG equations.
A known way to create p-wave superconductors with

μ̄ which is not very large is by employing cold atomic
gases with p-wave Feshbach resonances. Current experimental
realizations of atomic gases with p-wave Feshbach resonances
are not stable,40–42 due to three-body recombination.43,44

However, there are proposals to enhance stability using optical
lattices.45,46 In the next section we study such systems in order
to determine their parameters, including the scale of the gap
function, the chemical potential, and the coherence length
of the condensate. Additionally, we also consider p-wave
superfluids of dipolar molecules in Sec. IV B.

A. Atomic Fermi gases

In the context of cold atomic gases, p-wave pairing is
studied via the two-channel model that considers free fermions
and their bosonic bound states as separate entities.12 Its
Hamiltonian reads

H =
∑

p

p2

2m
â†

pâp +
∑
q,α

(
ε0 + q2

4m

)
b̂†αqb̂αq

+
∑
p,q,α

g√
V

(
b̂αqpαâ

†
q
2 +pâ

†
q
2 −p + H.c.

)
. (11)

This model describes a gas of fermions with creation and
annihilation operators â†, â which can form bosonic molecules
with the angular momentum 1 (hence the bosonic molecules
are described by the creation and annihilation operators b̂†α ,
b̂α with the vector index ν). Once the bosonic molecules
Bose condense, the fermions form a p-wave superconductor.
For homogeneous p-wave superfluids, it was found that the
px + ipy paired phase is always the ground state.8,10 In the
experimentally relevant case of gas with a dipolar anisotropy,
the triplet of m = +1,0, − 1 states is split, and the m = 0
state becomes the ground state, and as a result px pairing is
present in the phase diagram. For weak anisotropies, the chiral
state remains the low-temperate phase over a large range of
detunings. Even in the case of strong splitting, the chiral px +
ipy paired phase remains present: Feshbach resonances for
the m = 0 and m = ±1 channels are then also well separated,
and the chiral phase is observed near the latter one.12

We observe that in real experiments, the cold atomic gas
would be confined to two dimensions up to a “pancake” of
width � of the order of the wavelength of visible light, or
500 nm. The momenta in Eq. (11) are chosen appropriately
to reflect such a geometry. We call this setup a quasi-two-
dimensional (quasi-2D) gas (unlike a purely 2D setup where
all motion is completely confined to 2D geometry).

The confinement length �, while much smaller than inter-
particle separation, thus leading to a truly 2D superconductor,
is still much larger than the molecular size Re, which is set
by the range of the forces responsible for the formation of the
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molecules, typically about 1–3 nm. Therefore the formation of
molecules remains a 3D process.

The detuning δ, the parameter which can be controlled
experimentally by varying the magnetic field, makes it possible
to vary the strength of pairing between the fermions. δ is simply
related to the “bare detuning” ε0, the parameter which appears
explicitly in the Hamiltonian, by the relation

δ = ε0 − const

1 + c2
, (12)

where const is an irrelevant constant and c2 is a parameter
which characterizes the strength of the resonance,

c2 = m2

3π2
g2� = m2

3π2

g2

Re

. (13)

The parameter � = 1/Re is hidden in the two-channel model,
appearing as an upper cutoff for all the sums over momenta.

The solution to the two-channel model can be described
in the following way. First of all, the bosons are always Bose
condensed, or

〈b̂α,q=0〉 =
√

V Bα. (14)

This leads to fermions forming a p-wave superconductor.
Second, the vector structure of Bα defines the order parameter,
and for a px + ipy pairing, energetically favorable within this
model,

Bx = −iBy = B. (15)

Given the density of particles n and the corresponding Fermi
energy εF (understood as the Fermi energy of a free Fermi gas
at this density), we can identify three regimes.

If δ > 2εF , then the density of bosons is exponentially
small12 in the parameter exp{− δ−2εF

εF
S}, where S is defined

below in Eq. (30). Since the density of bosons,

nb = 2B2, (16)

is responsible for the superconducting pairing in this
problem via

�0 = 2gB, (17)

the regime of exponentially small nb corresponds to the
conventional BCS superconductors in which the transition
temperature is a small fraction of the Fermi energy. The
chemical potential in this regime is μ = εF .

Next, if 0 < δ < 2εF , a finite fraction of fermions converts
into bosons. nb is now of the order of the initial density of
fermions in this problem, and the superconductor which forms
under these conditions has a transition temperature which is
a substantial fraction of the Fermi energy (and growing as δ

is decreased). At the same time, the chemical potential of the
fermions μ is approximately equal to δ/2,

μ ≈ δ

2
, (18)

where “approximately” means up to terms of the order of g2.
Thus, in the terminology of Ref. 3 this is still a weakly paired
superconductor (that is, a superconductor with μ > 0 which
has large Cooper pairs). We refer to this regime as strongly
interacting.

Finally, when δ becomes negative, the chemical potential
changes sign. Now the density of fermions is exponentially

small, while most particles are bosonic molecules which
are Bose condensed. The transition temperature of such a
superconductor is a certain finite fraction of the Fermi energy.
In the terminology of Ref. 3 this is now a strongly paired
superconductor, separated from a weakly paired superconduc-
tor by a quantum phase transition which occurs at μ = 0 or δ

close to 0.
Returning to the discussion of possible experimental real-

izations of 2D gases with cold atoms, the two-channel model
describes a 2D superconductor which, at μ > 0 (implying
positive δ), is the topological state of matter of interest to us
here. A typical experiment would be conducted in the regime
where 0 < δ < 2εF to maximize the transition temperature
of the superconductor, and as we show later, to remove the
subgap states for a particular δ. In this regime, 0 < μ < εF ,
unlike the conventional superconductors where μ = εF . The
principal goal of this paper is to understand what happens to
the vortex subgap states as the chemical potential becomes
smaller than εF .

We now use this scenario of the quasi-2D two-channel
model to estimate the coherence length of the condensate ξ ,
which we need to be able to estimate the typical size of a
vortex.

To do that, we integrate out the fermions and concentrate
on the effective action of bosons. This was done in Ref. 12
with the result, in the regime where μ < εF ,

S =
∫

dV dt

[
b̄α

(
i

∂

∂t
− �

4m
+ δ − μ

)
bα(1 + c2)

+Cg2c2m

(
(b̄αbα)2 + 1

2

∣∣b2
α

∣∣2
)]

. (19)

Here C is a dimensionless constant whose precise value is not
important for our purposes here. We note that the calculations
in Ref. 12 are done in 3D, while we work in quasi-2D.
However, the contributions from integrating out the fermions
in (19) are all proportional to c2 ∼ g2�. In other words, they
come from the momenta of the order of � ∼ 1/Re � 1/�

where �, the width of the condensate, is much larger than Re,
the range of the interactions. So Eq. (19) is valid in quasi-2D,
as well as in 3D.

The coherence length ξ can be extracted by comparing the
kinetic and quartic terms of Eq. (19). We find

1 + c2

mξ 2
∼ g2c2mB2, (20)

where we replaced
∑

α b̄αbα with B2 in the spirit of the Gross-
Pitaevskii equation. This gives

ξ ∼
√

1 + c2

gBm
√

c2
. (21)

Throughout this paper, however, we are interested in the
dimensionless ξ̄ , expressed in units provided by �0 [the
units of length given by 1/(�0m), see Eq. (2)]. In turn,
the dimensionless coherence length can be found as

ξ̄ ≡ ξ�0m ∼
√

1 + c2

gBm
√

c2
mgB =

√
1 + c2

c2
. (22)
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Thus, we find that if c2 is large, the coherence length in our
units is close to 1. If c2 is small, the coherence length can be
larger than 1.

In the p-wave Feshbach resonance in 40K, c2 can be shown
to be around 14.4 (see Appendix A), and the coherence length
is close to 1. However, we do not know the value of c2 for
other p-wave Feshbach resonances, so we cannot make any
assumptions about it beyond Eq. (22).

We can further use (11) to calculate how the bulk gap �0

and the chemical potential μ depend on the detuning δ. To do
this, we rely on the following arguments.

If δ > 2εF , then �0 is exponentially small. At the same
time μ = εF . When expressed in units of m�2

0/h̄
2, as we

do throughout this paper, μ̄ � 1. This is the regime of
conventional superconductors.

When δ is lowered below 2εF , then �0 quickly starts to
increase. Let us determine �0 as a function of δ in this regime.
As before, we work in the quasi-2D regime, where the p-wave
gas is confined to a pancake of width �, such that � is much
smaller than the average particle separation. We write down
the particle conservation condition

1

2

∑
p

⎡
⎣1 −

p2

2m
− μ√(

p2

2m
− μ

)2 + �2
0p

2

⎤
⎦ + 2 · 2B2V = Ntotal.

(23)

Here, B is the condensate density originally defined in (14)
and �0 = 2gB. The summation over p reflects the quasi-2D
geometry of the p-wave gas and may not be straightforward
to convert into an integral, as is usually done in these
cases. However, we observe that the summation over p is
actually divergent at large p ∼ � � 1/�. This allows us to
capture this divergence by introducing a 3D integral

∑
p →

V
∫

d3p/(2π )3. This was already done in Ref. 12, with the
result

1

2

∑
p

⎡
⎣1 −

p2

2m
− μ√(

p2

2m
− μ

)2 + �2
0p

2

⎤
⎦+ 4B2V (1 + c2) = Ntotal.

(24)

In this equation, the summation over momenta p is now
restricted by p � 1/�, while the contribution of the leading
divergence at larger momenta can be absorbed into the B2

term. The remaining summation over p is purely 2D. We
can evaluate it by approximating the expression in the square
brackets as a Fermi-Dirac step. This yields

V

�

mμ

2π
+ 4B2V (1 + c2) = Ntotal. (25)

Note the volume V is a 3D quantity, which yields the
corresponding 2D volume as V/�. To express our final results,
let us write also

x = δ

2εF

≈ μ

εF

, (26)

which varies from 0 to 1 and measures detuning δ/2 in the
units of Fermi energy. In terms of this parameter,

B =
√

εF m(1 − x)

8π�(1 + c2)
. (27)

Finally, this gives �0 = 2gB as

�0 = g

√
εF m(1 − x)

2π�(1 + c2)
. (28)

For the purposes of this paper, we would like to compute μ =
δ/2 = xεF in the units of m�2

0. This gives the dimensionless
chemical potential

μ̄ = μ

m�2
0

= 2π (1 + c2)
�

m2g2

x

1 − x
. (29)

For future reference, we name the prefactor in this equation
which sets the overall scale of the gap and chemical potential

S = 2π (1 + c2)
�

m2g2
. (30)

We can see that as the detuning is decreased past 2εF , x is
varied from 1 to 0, the dimensionless μ̄ indeed varies from
very large values [(29) predicts infinity at x = 1, although this
is an approximation artifact; at large detuning we are in the
regime of conventional superconductor with a very large but
finite μ̄] all the way down to 0.

B. Polar molecular Fermi gases

For diatomic molecular gases in two dimensions, attractive
interactions may be generated by dressing the molecules with
circularly polarized microwave radiation.13 The result is a
dipole moment which is rotating in the plane of the 2D gas,
and the interaction averaged over the angle of rotation yields
a net attractive long-range potential V (r) = −d2

eff/(2r3). (We
follow the notations of Ref. 13.) The strength of this interaction
depends on the field strength for the incident microwave
interaction, as well as on the permanent dipole moment of
the molecules. It is characterized by a length scale r∗ =
Md2

eff/2h̄2 that can be of the order of r∗ � 200 nm for realistic
experimental parameters in typical 7Li40K molecules. The
dimensionless strength of the interaction kF r∗ can therefore
be of order one in gases of a fairly low density.13

For superfluids with dipolar interactions, theory has been
developed only at the level of a BCS mean-field description.13

In this framework, the critical temperature and bulk order
parameter �0 are obtained to be

Tc ∼ �0kF ∼ εF e
− 3π

4kF r∗ . (31)

For large kF r∗, we expect that a significant fraction of the
fermions will be paired, leading to a reduction of the chemical
potential for fermions. However, to quantify this effect more
theory would have to be developed to study the specific case
of dipolar interactions.

Similar to the reasoning leading to Eq. (20), the coherence-
length ξ is obtained by balancing the kinetic and interaction
terms in the underlying pairing Hamiltonian. The result can
be expressed in terms of the Fermi velocity and the critical
temperature

ξ ∼ vF

Tc

∼ λF e
+ 3π

4kF r∗ , (32)
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and when stated in our dimensionless units, this equates to a
coherence length of order one:

ξ̄ = ξm�0 = λF mεF /kF � 1. (33)

Note that generically, ξ̄ � 1 for any superfluid in the BCS limit,
as we have used no specific features of the dipolar interaction
to derive this relation.

V. SOLUTIONS OF THE BDG EQUATIONS

The two-channel model discussed in the previous section
provides a framework to discuss the physics of molecule
formation in strongly interacting superfluids. Formally, how-
ever, in strongly interacting p-wave superfluids with large c2,
one can integrate out the bosons in this problem and reduce
the two-channel model to the one-channel model described
by the usual BdG equations.12,44 In this section, we discuss
the solutions of this equation, focusing on the properties
of the subgap states for μ̄ � 1. We first point out some
general features of the analytic solution and then deploy the
formulation of the BdG47 equations on the sphere,26,27 as well
as its numerical solutions.

A. Asymptotic solution of the BdG equations

As an approach to discussing the solutions of the BdG
equations for a cylindrical vortex (5), let us first analyze the
asymptotic behavior in the limit of r → ∞. The solutions are
known to be strongly oscillatory functions, so the derivatives
of the Bogoliubov functions are of the order of the functions
themselves. However, terms in 1/r can be neglected, as well
as h′(r) = 0 far outside the vortex. Thus, (5) reduces to

−1

2

∂2

∂r2
u − μ̄u + ∂

∂r
v = Ēu,

(34)

− ∂

∂r
u + 1

2

∂2

∂r2
v + μ̄v = Ēv.

Using the ansatz of (uv)T = (AB)T exp{iγ r}, and solving the
characteristic equation for γ at a given value of the energy
yields four possible solutions of the form

γ±,± = ±[
2(μ̄ − 1) ± 2i

√
�̄2

B − Ē2
] 1

2 . (35)

First, note that in the limit of Ē → 0, μ̄ � 1, these simplify to
γ±,± ∼ ±√

2μ̄ ∓ i. Among the two solutions which are finite
as r → ∞, we recover the behavior of the modes (7), namely,
oscillations with wave number ∼kF and an exponential decay
with a characteristic length scale of localization �0 = 1. In the
general case, let us decompose γ = k(Ē) + i�−1

0 (Ē), which,
for μ̄ > 1, can be written as

k(Ē) = ±
√

2
√

μ̄2 − Ē2 cos

⎡
⎣1

2
arctan

√
�̄2

B − Ē2

μ̄ − 1

⎤
⎦ ,

(36)

�−1
0 (Ē) =

√
2
√

μ̄2 − Ē2 sin

⎡
⎣1

2
arctan

√
�̄2

B − Ē2

μ̄ − 1

⎤
⎦ .

According to these equations, the wave number of the vortex
state depends only very weakly on the energy, varying

0 0.2 0.4 0.6 0.8 1
E / Δ

B

0

0.2

0.4

0.6

0.8

1

l 0-1

μ→1
μ=2
μ=4
μ=16
μ=1024

FIG. 1. (Color online) Inverse localization length �−1
0 as a

function of the energy of a core state.

between k(0) = √
2μ̄ − 1 and k(�̄B) = √

2μ̄ − 2. This effect
is significant only if μ̄ is small. On the other hand, the
localization length is one at zero energy �0(0) = 1 and diverges
as E → �B . The dependency of the localization length on
the energy of the subgap state is illustrated in Fig. 1 for
several μ̄. For μ̄ large, the localization length goes as �0 =
[1 − (Ē/�̄B)2]−1/2.

B. BdG equations on the sphere

To study the physics of vortices in a finite size system, a
convenient choice is to place a vortex-antivortex pair on the
surface of a sphere. The BdG equations for this configuration
were recently described by Kraus et al.26 They are obtained
by expanding the p-wave pairing function on the sphere
�(�,�′) in terms of the spherical monopole harmonics48,49

Y
q

l,m, which also serve for the expansion of the Bogoliubov
eigenfunctions u, v. For convenience, we provide the resulting
equations in dimensionless units in Appendix B. The relevant
dimensionless parameters are given by the radius of the sphere
R̄ and the size of the vortex core ξ̄ ; both are measured in units
of the length scale L from Eq. (2). The dimensionless chemical
potential μ̄ is set by the Fermi angular momentum lF (number
of shells filled) and also depends on the radius of the sphere:

μ̄ = lF (lF + 1)

2R̄2
. (37)

C. Numerical results

In this section, we discuss the spectrum of Bogoliubov
quasiparticle excitations on the sphere with a vortex-antivortex
pair, which is obtained by solving the eigenvalue prob-
lem in its matrix form (B1) with standard linear algebra
packages.

1. Global spectrum

In Fig. 2, we display the energies of eigenstates found below
the bulk gap �B as a function of the chemical potential, while
areas above the bulk gap are shaded blue. These spectra were
calculated for a sphere of radius R̄ = 40 and include values of
the Fermi angular momentum lF = 1

2 , . . . , 159
2 , with a cutoff

for the equation set at lmax = 200. The bulk spectrum opens
like a cone near μ̄ = 1 and crosses over into a square root
behavior, following Eq. (4).
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G. MÖLLER, N. R. COOPER, AND V. GURARIE PHYSICAL REVIEW B 83, 014513 (2011)

0 0.5 1 1.5 2

μ
-2

-1

0

1

2

ξ=1

0 0.5 1 1.5 2

μ
-2

-1

0

1

2

ξ=3

0 0.5 1 1.5 2

μ
-2

-1

0

1

2

ξ=10

E
E

E

FIG. 2. (Color online) Spectra of a p-wave superconductor with a
vortex-antivortex pair at the antipodes of a sphere with radius R̄ = 40
as a function of the chemical potential μ̄. From top to bottom, the
figure shows the spectrum for a small vortex with ξ̄ = 1, a vortex
with ξ̄ = 3, and a vortex with ξ̄ = 10. Blue shaded areas indicate the
presence of excitations above the gap. The subgap states are marked
by crosses and include excitations below the gap up to an angular
momenta with |〈Lz〉 − 1

2 | < 10. We use the dimensionless units of
Eq. (2). The vertical line at μ̄ ≈ 0.6 situates the cut through the
spectrum, which is shown in Fig. 3 alongside μ̄ ≈ 2.

The energy of the subgap states found to depend weakly on
the chemical potential. For the CdGM states,22 the prediction
is that the eigenstates have strictly no dependency on μ̄, as
well as a linear dispersion in angular momentum [see Eq. (8)].
Our results confirm that this is true for large-enough chemical
potential μ̄ and vortex size ξ̄ . In the bottom panel of Fig. 2,
the energy of the first subgap state ε1 remains roughly constant
from μ̄ = 2 down to the point where it is absorbed into the
bulk. For vortices with smaller cores, as shown in the top and
center panel of that figure, there is some “bending” of the
subgap states: The energy of the subgap states goes toward a
constant only for large μ̄, while at smaller chemical potential
the absolute value of their energy decreases, smoothing into the
cone of the propagating Bogoliubov quasiparticles. However,
the energy where the subgap state is absorbed into the bulk
spectrum is still of the same order as the asymptotic value.

In addition to this slight μ̄ dependency, another feature
is apparent in the spectra: While low-lying subgap states are
evenly spaced, the density of states exhibits a step increase
at a value below the gap, signaling the presence of additional
subgap states.

Another phenomenon, best visible in the top panel with
ξ̄ = 1, is the splitting of the subgap states. Each of the subgap
states occurs as a doublet consisting of one state localized
in either pair of the vortex and antivortex present on the
sphere. While the splitting of the zero modes results from
the hybridization of two modes found precisely at zero energy,
the splitting of the modes at nonzero energy is predominantly
of a different nature: As we show in more detail in what
follows, the wave functions in the vortex core are distinct
for the vortex and antivortex state for E �= 0 (the splitting of
the doublet saddling E = 0 is not visible in this figure).

2. Spectra at fixed μ̄

The dispersion of the spectra as a function of the angular
momentum m = 〈Lz〉 relative to the symmetry axis of the
vortex cores reveals some additional insights. For simplicity,
the discussion focuses on the states with E > 0, keeping in
mind that states at negative energy are related by virtue of
the symmetry of the Hamiltonian E(m) = −E(1 − m). We
display the dispersion at two distinct values of the chemical
potential. Figure 3 shows the energy as a function of m for
μ̄ ≈ 0.6 (left column) and μ̄ ≈ 2 (right column), respectively,
in the geometries already used for Fig. 2 (corresponding to
values of lF = 87

2 and lF = 159
2 ).

Let us first discuss the case of μ̄ = 0.6. Irrespective of the
size of the vortex core, we find that the bulk gap �̄B (solid
red lines) conforms well with the case of a homogeneous
order parameter without vortices, as given by Eq. (4). By
contrast the estimate for the energy of the first subgap state
(black dotted lines), obtained from (9) using the same radial
profile as in (B2), is much less accurate, in particular for
the small vortex cores. For ξ̄ = 1, the predicted subgap
energy ω̄0(ξ̄ = 1) ≈ 0.814 is roughly 1.5-fold larger than the
actual eigenstates ε̄1. The chemical potential here was chosen
such that the first subgap state almost merges with the bulk
spectrum. The corresponding pair has a very large splitting
of δ1 = 0.042, almost 8% of their median eigenvalue ε1. The
splitting of the states is analyzed in more detail in what follows.
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FIG. 3. (Color online) Spectra as a function of the angular momentum m = 〈Lz〉 for a p-wave superconductor with a vortex-antivortex
pair at the antipodes of a sphere with radius R̄ = 40 at fixed chemical potential μ̄. The left column shows μ̄ ≈ 0.6 (according to the yellow
vertical cuts in Fig. 2), and the right column shows μ̄ = 2. Vertically, we show configurations for a small (top, ξ̄ = 1), medium (center,
ξ̄ = 3), and large (bottom, ξ̄ = 10) vortex, respectively, as in Fig. 2. The expected bulk gap �̄B is marked with solid red lines, the energy
ω̄0 according to (9) as dotted black lines. The subgap states can be classified as two types: The anomalous branch of the CdGM states are
approximately linearly (for small m) dispersing near E = 0, with a negative slope. Additional subgap modes with radial quantum number
n �= 0 occur in large vortices and have with a finite minimum (maximum) of |Ē| ∼ O(�̄B ) at/near m = 1

2 . The number n �= 0 modes increases
with μ̄.

With increasing size of the vortex core, the previous estimate
of ε1 ≈ ω0 from Eq. (9) is increasingly accurate. However, in
this regime of small μ̄, the subgap states have a dispersion
which is sublinear; that is, the mode of the CdGM states bends
to asymptote the bulk gap.

In the bottom panels of Fig. 3, it is apparent that there can be
multiple subgap states at a given angular momentum m. Like
the CdGM states, these modes consist of pairs of eigenstates at
each value of m, as expected for localized states in the presence
of two vortex cores. We refer to these states by an additional
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quantum number n, where n = 0 refers to the CdGM branch. In
addition, we denote the two degenerate states of each twofold
degenerate branch by +/−. The dispersion of the n �= 0 modes
has a minimum in |E| at or near m = 1

2 . On first sight there
appears to be a symmetry relating eigenstates of E(m) ↔
E(1 − m), but the spectrum is slightly skewed such that E( 1

2 +
δm) > E( 1

2 − δm), given (δm = 1,2, . . . , > 0). This is unlike
the case of s-wave superconductors where the n �= 0 modes
are characterized by a symmetry of the spectrum in E(m) =
E(−m).50 For large |m|, the modes asymptote toward the bulk
gap. Near their minimum, the dispersion of the n �= 0 modes
is roughly quadratic, leading to the markedly higher density
of states as compared to the n = 0 CdGM states, and thus
explaining the jump in the density of states that we pointed out
in Fig. 2.

We are not aware of other numerical studies that have
analyzed the n �= 0 subgap states, as in typical type II
superconductors, the vortex core is too small for such
additional bound states to exist.51 Within BCS theory, we
found in Sec. IV B that the coherence length of the superfluid
is generically near one. In atomic p-wave superfluids, the
existence of the dimensionless parameter c2 allows one to
scale the coherence length, which may become large for small
c2 according to Eq. (22). Therefore, we discuss their properties
in more detail in Sec. V C 4.

Due to the asymmetry of the n �= 0 subgap modes between
positive and negative angular momenta, they may influence
the dynamics of the vortices in superfluids. In particular, the
Magnus-force acting on vortices that are moving through
the system may acquire corrections resulting from the in-
fluence of the subgap states,5,50,52–54 although it was debated
whether such influences should vanish as the Magnus force can
be derived from a Berry phase.55 In s-wave superconductors,
the CdGM states would be singled out as the only mode
contributing to corrections to the Magnus force, as these
corrections vanish if ∂

∂k
En(k) is odd.50 In p-wave superfluids,

∂
∂k

En(k) does not have this symmetry and, thus, n �= 0 modes
may contribute. It is difficult to estimate the magnitude of
the additional corrections: While the asymmetry of ∂

∂k
En(k) is

small, the density of states contributing to corrections is much
higher than for the CdGM mode.

3. Splitting of the CdGM states

In Sec. V C 1, we noted that the splitting of the CdGM
states in the spectra for the vortex-antivortex pair is much
larger at E �= 0 than for the Majorana zero modes. For the
latter, this splitting is interpreted as arising from a tunneling
term that hybridizes the two degenerate modes. Contrary to
the case of the zero modes, subgap states at m �= 1

2 (or E �= 0)
are not precisely degenerate even for a well-separated vortex-
antivortex pair. This may be surprising at first, as within the
perturbative solution5 of the BdG equations, the energy of the
subgap states does not depend on the vorticity.

However, the BdG equations for different vorticity κ are
distinct: As Eq. (5) shows, the equations differ in the index
of the differential operator Dl , resulting in different short-
distance behavior via the terms [m ± (κ − 1)/2]/r2. Indeed,
the perturbative solution yields wave functions proportional
to the Bessel functions um,κ (r) ∼ Jm+ κ−1

2
(r) and vm,κ (r) ∼
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angular momentum m=3/2, R=10, μ=8

FIG. 4. (Color online) The wave functions u(r), v(r) for the
first excited state of the CdGM branch with n = 0 and m = 3/2,
for a sphere of radius R̄ = 10 and chemical potential μ̄ = 8. The
eigenvalues associated with the upper and lower eigenvalue are split
and amount to ε̄0+ = −0.441 639 and ε̄0− = −0.443 256. The top
panel shows u and v superposed with a fit that shows excellent
agreement for the behavior in the vortex core. The bottom panel
displays the wave functions on a logarithmic scale and indicates the
expected exponential decay for comparison.

Jm− κ−1
2

(r) at small r . According to this solution, u and v have
the same short-distance behavior in a vortex, while they are
proportional to two distinct Bessel functions in the antivortex,
with an index differing by two. (Only for the zero mode this
offset is trivial as it pairs u ∼ J1 and v ∼ J−1, which are
equal up to a sign.) It then becomes obvious that the energy
of the eigenstates depends on the detailed interaction between
the shape of wave functions and the order parameter within
the vortex-core that is neglected in the perturbative solution.
For illustration, Fig. 4 displays the eigenfunctions for the first
subgap state, showing clearly the distinction between the cases
of a vortex and antivortex.

A detailed analysis of this situation is presented in Fig. 5,
where we focus in particular on the splitting of the zero mode,
as well as the first subgap state. In the left panel, the magnitude
of these splittings is plotted as a function of the radius of the
underlying sphere R̄, which sets the distance of the vortex-
antivortex pair. The splitting of the zero mode is described
very well by the square of the envelope of the wave functions at

half the sphere radius exp[−2
∫ R̄/2

0 h2(r)dr] ≈ exp[−2R̄] for
low-lying subgap states. We discuss some deviations observed
at small chemical potential in more detail in what follows. For
the first excited state, the splitting falls onto this curve only
if the radius is very small. At large separation, it saturates
as a constant value and is entirely set by the physics inside
the vortex core, as argued in the previous paragraph. The two
panels on the right-hand side indicate the magnitude of the
splitting for the first subgap state as a function of either the
chemical potential μ̄ and the vortex size ξ̄ . The functional
dependency goes as δĒ(m = 3/2) ∼ μ̄−1. Its relationship to
the size of the vortex core is less clear, but it can be fit well by a
third-order polynomial in the inverse core size, in accordance
with the notion that the shape of the vortex core strongly
influences this energy scale.
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FIG. 5. (Color online) (Left) The splitting of the zero modes and
first CdGM subgap states at m = 3/2 shown as a function of the radius
R̄ of the sphere geometry for several values of μ̄. The splitting of the
zero modes follows the amplitude of the envelope of the wave function
at R̄/2 (thick dashed line). For small μ̄, some oscillations are seen,
as displayed separately in Fig. 6. At large-enough vortex separation
r = πR̄, the splitting of the m = 3/2 states is given by the shape of
the vortex core and independent of r . At small r it is increased by the
hybridization of the modes. (Top right) Splitting of the subgap states
δĒ at m = 3/2 as a function of μ̄, found to be inversely proportional.
(Bottom right) The same splitting δĒ(m = 3/2) as a function of the
vortex size. The dashed lines show a fit with a third-order polynomial
in ξ̄−1.

The amplitude for tunneling processes between vortices is
set by the overlap of the respective wave functions. As the
eigenstates are strongly oscillatory, the tunneling amplitude
as a function of the vortex separation is not merely set by
the exponential envelope, but it additionally changes sign
periodically in the separation between vortices, as recently
discussed in the literature.28,56 It may be surprising at first that
no such oscillations are seen here. However, the configuration
we study is very special in that the circumference of the
sphere is close an integer multiple of the Fermi wavelength
for large lF according to (37). Deviations from this situation
are thus found only at small values of the Fermi angular
momentum. Indeed, we find that oscillations can be seen
for small lF , as shown in Fig. 6. Given that the chemical
potential can take only the discrete set of values (37), we plot
the splitting at constant lF , rather than constant μ̄. Note that
the oscillations we see occur at a lower frequency for larger
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FIG. 6. (Color online) Splitting of the zero modes δE0 at m =
1
2 for small values of the Fermi angular momentum ranging from
lF = 12 (leftmost panel) to lF = 24 (rightmost panel) and plotted as
a function of the sphere radius R̄. See main text for a discussion.
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FIG. 7. (Color online) (a) The energy E1/2,1 of the eigenvalue at
angular momentum m = 1

2 for branches of subgap states with radial
quantum number n = 1 (solid lines) and n = 2 (dashed lines) for
different chemical potentials μ̄. This data was collected for a sphere
with radius R̄ = 8. When expressed in units of the bulk gap �B (as
shown), the dependency E/�B approximately collapses onto a single
curve for large μ̄. (b) The dependency of E1/2,1/�B on the chemical
potential for the n = 1 branches of the subgap states: The additional
branches are pushed into the continuum for small μ̄.

chemical potential, even though the wavelength of oscillations
for the wave functions of these states increases, in line with our
explanation in terms of multiple Fermi-wavelength filling the
circumference of the sphere. The oscillating behavior of the
subgap states was recently explored numerically in the plane
geometry.32

4. Subgap states: Branches with n �= 0

In large vortex cores, multiple branches of subgap states
occur, which can be interpreted as states with a different radial
quantum number n (the CdGM being n = 0). Here, we analyze
some properties of the eigenstates at angular momentum m =
1
2 at different values of ξ̄ and μ̄, with eigenvalues denoted
as Em,n.

As displayed in Fig. 7, our numerical results show that
additional modes occur for vortices with size ξ̄ � 1. The
energy of the n > 1 branches can be expressed in fractions
of the bulk gap: To a good approximation, the eigenvalues do
not depend on the chemical potential (except for small μ̄), and
Ē 1

2 ,n(ξ̄ ,μ̄) = fn(ξ̄ )�̄B(μ̄).
We now discuss features of the wave functions of the n > 0

modes. First, as these states occur at energies which are large
fractions of the bulk gap, they are less strongly localized than
the low-lying subgap states. An example set of wave functions
for a vortex pair with ξ̄ = 5 at μ̄ = 8 on a sphere with R̄ = 12
is shown in Fig. 8, where the upper panel gives a comparison of
the n = 1 state (occurring at E1/2,1/�B ≈ 0.6) and the n = 0
zero mode in logarithmic scale, showing the excited state with a
localization length of about �0 = 1.35, compared to �0 = 1 for
the ground state. This localization length is slightly larger than
the value predicted from the asymptotic solution (�0 = 1.23)
of the simplified set of BdG equations (34) that we discussed in
Sec. V A. As the size of the vortex is reduced, and the chemical
potential is increased, the localization length converges to the
asymptotic estimate.

Second, another interesting feature of the n > 0 modes
is the occurrence of a phase shift between the u and the v

functions, which is displayed in the bottom panel of Fig. 8.
In the vortex core, the two functions are oscillating at slightly
different wavelengths. Far from the vortex core, they have
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FIG. 8. (Color online) Wave functions u for the zero mode and
a nearly degenerate pair of the n = 1 modes at m = 1/2. (Top) u

in logarithmic scale, showing the exponential localization of these
modes, which is found to be weaker for the excited states. Note the
hybridization of the zero modes, while each of the excited states is
localized near a single vortex. (Bottom) The Bogoliubov functions
u(r) (solid lines) and v(r) (dashed lines) for the same modes. Note
the phase shift between u and v for the excited state. The inset, again
using a logarithmic scale, shows that the phase-shift remains constant
far from the vortex core.

sinusoidal forms of the same decreasing amplitude, but with a
constant phase shift.

D. Experimental consequences in cold atomic gases

To illustrate our findings in more familiar units, we devote
this section to discussing the orders of magnitude of the
different energy scales involved in typical experiments for
the known Feshbach resonance in cold 40K gases. As shown
in Appendix A, the scattering parameters which ultimately
determine the physics of the p-wave superfluid can be eval-
uated explicitly from experimental data. This analysis yields
the magnitudes of the coupling constant g of the two-channel
model (11), as well as the dimensionless constant c2 which
sets the maximum density of bosons and thus the coherence
length ξ̄ = √

c2/(1 + c2) in our dimensionless units. Using the
values thus obtained, of c2 ≈ 14.4 and g ≈ 1.4 × 10−46 Jm

5
2 ,

the subgap spectrum can be given as a function of the detuning
δ, resulting in Fig. 9. The scaling of the axes relative to
the dimensionless units used in the bulk of this paper is set
by the factor S [see (30)], which amounts to 68.1 for the
specific case of 40K, further assuming a confinement length
of � = 500 nm. In particular, the overall scale of energies
becomes E = S−1ĒεF , in terms of our dimensionless energies
Ē. As S is only moderately large for 40K, the minigap can
be as large as 1% of the Fermi-energy. The maximum of ε1

is rather shallow, so this magnitude of the minigap is realized
over a significant interval of detunings δ ≈ 0.05, . . . ,0.3εF . At
larger detuning, the energy scale of the subgap states decreases
linearly with δ and becomes exponentially small as δ → 2εF .
To conclude with an example, for a trapped potassium gas with
εF = 10 kHz we predict that the minigap can be of the order
of 100 Hz at a detuning frequency of δ ≈ 1500 Hz.

FIG. 9. (Color online) Spectrum of the subgap states, in units
of Fermi energy, as a function of the detuning δ for the Feshbach
resonance in a 40K gas. The graph includes subgap states with angular
momentum |m| � 10; higher angular momentum states would lie
between the displayed subgap states and the bulk gap. The largest
minigap is obtained at a detuning δ ≈ 0.062, and amounts to roughly
1% of the Fermi energy, as highlighted in the inset.

This energy scale for the minigap is still rather small, and we
now consider mechanisms to further increase ε1. As energies
are scaled with S−1, we can read off from Eq. (30) how this
can be achieved. In particular, decreasing the perpendicular
confinement length of the gas � represents a simple means
to enhance ε1 slightly. Further improvements can only be
achieved by using a different Feshbach resonance with larger
coupling constant g and smaller c2. However, as very small c2

will result in large vortex cores, this parameter should not be
smaller than about 1. To visualize the scaling of energies as the
vortex size ξ̄ is varied, Fig. 10 indicates that the dependency
the number of bound states below the bulk gap depends on the
dimensionless parameters of the problem. Besides increasing
the overall energy scale, reducing S also shifts the maximum
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FIG. 10. (Color online) Summary of how the number of Caroli–de
Gennes–Matricon subgap states varies with the size of the vortex cores
ξ̄ and the chemical potential μ̄ [in dimensionless units according to
Eq. (2)]. Typical type II superconductors yield ξ̄ � 1, while ξ̄ behaves
according to Eq. (29) in cold atomic gases.
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minigap toward larger values of the detuning, which would be
easier to stabilize experimentally.

In cold atomic gases, the presence of the subgap states
can be probed experimentally by using RF spectroscopy, in
the same way that had been proposed as a probe for the
zero modes.57 The idea is to probe the amplitude for resonant
absorption of an RF photon, leading to a transition to a different
hyperfine state and therefore projecting the affected atom out
of the spin-polarized Fermi gas. The bulk signal amounts
to an absorption edge at h̄ω = Ehyperfine − μ + �B , and the
presence of the zero modes in vortex cores results amounts
to the addition of a series of linearly spaced peaks starting at
the lower energy h̄ω = Ehyperfine − μ, whose intensity decays
on approaching the absorption edge.57 The Majorana mode
yields a sequence of peaks by coupling to different states
of the continuum. For trapped gases, these are spaced by
the trap frequency ω⊥. Finite energy subgap states result in
additional series of absorption peaks occurring. In order for
these different signals to be well separated, it is required that
the spacing of peaks in each series be small compared to the
typical energy gap between subgap states, that is, that the trap
frequency be smaller than the typical spacing of the subgap
states.

VI. CONCLUSIONS

To summarize the main results of this paper, we have shown
that the presence of subgap states complicates the use of
p-wave superfluids as the medium underlying a topological
quantum computer. While topologically protected operations
are still possible, as information remains localized at a single
vortex core even as transitions involving the Majorana zero
mode and finite-energy subgap states occur, the state of a qubit
depends additionally on the parity of the number of excitations
of the subgap states. This disqualifies some known strategies
for the readout of such quantum bits, especially for neutral
superfluids, which are the main focus of this paper.

As the number of subgap states scales roughly as the ratio
of the bulk gap to the chemical potential, we argue that the
regime of small chemical potential, or strong coupling should
be most suitable to overcome these issues and maximize the
minigap to the first subgap state.

We note in passing that unconventional realizations of p-
wave superconducting order where the magnitude of the order
parameter is set externally18–20 may require different strategies
to optimize the topological protection with regard to the subgap
states.

In particular, we study the case of atomic Fermi gases,
where this regime can be reached when tuning the system
close to a Feshbach resonance. We solve the BdG equations
for strong interactions in narrow Feshbach resonances and
calculate how the relevant system parameters, namely, the
chemical potential and the coherence length, depend on the
detuning. Unlike typical type II superconductors in the BCS
regime, the size of vortex cores can be tuned in cold atomic
gases, allowing large vortices.

As Kopnin and Salomaa’s perturbative solution of the
vortex states is not valid in small chemical potential, we
confirm numerically that the energy of the subgap states
remains finite in small chemical potential; the subgap states

are ultimately absorbed into the continuum above the bulk
gap at chemical potentials of μ̄ ∼ 0.5m�2

0. Among the most
interesting aspects of the structure of the vortex states we
considered, we note a small splitting between the states
associated with vortices and antivortices. In large vortex
cores, we characterize the nature of additional subgap states
with a nonzero radial quantum number. Unlike the case of
s-wave superconductors, these branches are not symmetric
under reversal of angular momentum. In the particular case
of 40K gases, we find that the optimal value of the detuning
δ ≈ 0.124εF yields a maximal subgap energy of the order
of 0.01εF . Mechanisms for increasing this energy scale were
discussed.
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APPENDIX A: p-WAVE FESHBACH RESONANCE
PARAMETERS FOR 40K

In this Appendix, we derive the parameters of the p-wave
Feshbach resonance in 40K. To do this, we need to restore all
physical units; thus, unlike in the rest of this paper, where we
set h̄ = 1, here we restore h̄ in every formula.

P -wave superfluids with a Feshbach resonance are char-
acterized by two parameters12: the coupling constant g and
the ultraviolet cutoff momentum �. Instead of �, it is more
convenient to talk in terms of the dimensionless combination

c2 = m2

3π2

g2�

h̄4 . (A1)

In the context of the current work, c2 sets the coherence length
of the superfluid, while g sets the scale of the gap function �0.
Here we briefly review an argument from Ref. 44 describing
how c2 and g can be extracted from the detuning between
closed-channel bosons and open-channel fermions in a two-
channel model. We then apply this method to the experimental
data from Ref. 58 to extract c2 and g for 40K.

The relevant physics is that of elastic scattering of two
atoms, as described by the p-wave scattering amplitude
3f1(k)P1(cos θ ), with the wave-vector dependency

f1(k) = k2

− 1
v

+ ck2 − ik3
. (A2)

Crucially, the scattering volume v and the prefactor of the
second order term c can be extracted from experiments and
from precise numerical modeling of the Feshbach resonance.
On the other hand, we can relate v and c to the parameters g

and c2. Indeed, we know that12

1

v
= −6πh̄2

mg2
(ε0 − const), c = −6πh̄4

m2g2
(1 + c2). (A3)
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In turn, the energy ε0, which physically represents the Zeeman
energy splitting between the open and closed channels can be
quite generally written as

ε0 = αμBB, (A4)

where μB is the Bohr magneton and α is a dimensionless
parameter controlling the Zeeman splitting and which we take
to be close to α ≈ 2 (its precise value depends on the physics
of Feshbach resonance). This allows us to write

dv−1

dB
= −6παμBh̄2

mg2
, c = −6πh̄4

m2g2
(1 + c2). (A5)

Solving these for g and c2 gives

g2 = −6παμBh̄2

mdv−1

dB

, c2 = αμBmc

h̄2 dv−1

dB

− 1. (A6)

In Ref. 58, c and v−1 are given as a function of B for the
p-wave Feshbach resonance occurring at the magnetic field
of 198.4 G for the hyperfine state |f,mf 〉 = |9/2, − 7/2〉 of
potassium 40K. Using their data, we can find the values of c

and dv−1/dB at the resonance and substitute them into (A5).
This gives

c2 ≈ 14.4, g ≈ 1.40 × 10−46 Jm
5
2 . (A7)

We can use the values found here to see at what detuning μ

becomes of the order of m�2
0/h̄

2, the units of energy controlled
by �0. To do this, we rewrite (29) with h̄ reintroduced [cf.
Eq. (29)],

h̄2μ

m�2
0

= 2π (1 + c2)
h̄4�

m2g2

x

1 − x
= S x

1 − x
, (A8)

where we again introduced the parameter S from (30), with h̄

inserted as needed,

S = 2π (1 + c2)
h̄4�

m2g2
, (A9)

and as before x = δ/(2εF ). Comparison with (A3) gives

S = c�

3
. (A10)

Substituting the value for the relevant parameter from Ref. 58
(and using � ∼ 500 nm for the transverse width), we find that
S ≈ 68.1 and

h̄2μ

m�2
0

= 68.1 × x

1 − x
. (A11)

We can estimate from here that in order to achieve the regime
where μ is of the order of m�2

0/h̄
2, that is, roughly where the

subgap states disappear, we need to keep

x = δ

2εF

∼ 0.014. (A12)

A more accurate calculation of the proposed target value of
the detuning is given in Sec. V D, based on the evaluation of
the full subgap spectrum.

APPENDIX B: FORM OF THE BdG EQUATIONS
ON THE SPHERE

We briefly summarize the equations derived by Kraus
et al.26,27 and transcribe them into the dimensionless units
used in this paper. When expressing the BdG equations for
p-wave superfluids, we choose a phase winding of −2π

for order parameter59 requires q = − 1
2 , corresponding to

the basis functions in the presence of a single monopole
flux;26,27,60 the remaining quantum numbers l,m span a com-
plete basis of eigenfunctions of this problem with l = |q| + s,
|m| � l (s = 0,1, . . .). The BdG equations thus have the
matrix form(

H(lm)(l′m′) �(lm)(l̄′m̄′)

�(l̄m̄)(l′m′) −H(l̄m̄)(l̄′m̄′)

)(
un

l′m′

vn
l̄′m̄′

)
= Ēn

(
un

lm

vn
l̄m̄

)
, (B1)

where the bar distinguishes indices that relate to the function
v and primed indices are summed over. We study the vortex
pair consisting of a vortex at the north pole and its antivortex
at the antipode,27 with the vortex field

FV (θ,φ) = R̄/ξ̄ sin θ

[1 + (R̄/ξ̄ sin θ )2]
1
2

eiφ, (B2)

which conserves the angular momentum m = 〈Lz〉 as a good
quantum number. The formulation in Ref. 27 also introduces
a pairing range ξp which we take to be much smaller than all
other length scales. The off-diagonal (pairing) matrix elements
of the resulting only couple the angular momenta m = M and
m̄ = 1 − M; that is, Eq. (B1) separates into a block-diagonal
form indexed by M with remaining matrix indices l, l′. The
entries are,27 with Dl as in Ref. 27,

H(lm)(l′m′) = δll′δmm′μ̄

(
l(l + 1) − 1/4

lF (lF + 1) − 1/4
− 1

)
, (B3)

�(lm)(l̄′m̄′) = δm,1−m̄′
√

2μ̄

√
1

16π
(2l + 1)(2l̄ + 1)

×[Dl + (−1)l+l̄′Dl̄′]
∑
L

√
2L + 1f V

L

×
(

l l̄′ L

1/2 −1/2 0

) (
l l̄′ L

−m m − 1 1

)
,

(B4)

where the last line denotes the 3-J symbols for the coupling of
angular momenta and f V

L are the expansion coefficients of the
vortex field FV in regular spherical harmonics:

f V
L =

∫
d�Yl,m=1(�)∗FV (�). (B5)

Generally, the radius of the sphere needs to be chosen much
larger than the size of the vortex core. For our numerical
calculations, we used a maximum cutoff lmax = 400. To
minimize finite size effects, it is desirable to choose the Fermi
angular momentum lF as large as possible. Convergence of
the numerical scheme depends crucially on the ratio of R̄/ξ̄ ,
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and the maximal radius and Fermi angular momentum were
determined in each case by the requirement of convergence of
the eigenvalues.

For large L, it becomes difficult to calculate the expansion
parameters (B5) explicitly by numerical integration. Instead,

we fit the values of fL[R̄,ξ̄ ] for L � 100 by a function of the
form

f
V,fit
L [R̄,ξ̄ ] = a[R̄,ξ̄ ]e−b[R̄,ξ̄ ]L/Lc[R̄,ξ̄ ], (B6)

which yields an excellent approximation.
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